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ABSTRACT

We investigate the properties of the one sector growth model with increasing re-
turns. Two possible organizational structures are provided, each of which is capable
of reconciling the existence of increasing returns in the aggregate technology with
competitive behavior by firms. The first of these involves input externalities and the
second involves monopolistic competition. We show, for parametric values that are
in close accord with recent literature in real business cycle theory, that the model
displays an indeterminate steady state. We point out that one may exploit this
indeterminacy to generate a model of business cycle fluctuations that is driven by
the self-fulfilling beliefs of the agents in the model. Our analysis is conducted in two
classes of growth models. In the first; growth is generated by exogenous increases
in factor productivity. In the second; we allow the marginal product of capital to
be large enough for endogenous growth to occur. In both classes of models we show
that there may be an indeterminate steady state.



1 Introduction

A number of authors have studied macroeconomic models in which tl\le social tech-
nology may differ from the technology faced by “the representative agent” because
of external effects in the production process that are not mediated by markets. If
the spillover effects of knowledge acquisition are great enough they may lead to
a description of the economy in which the social technology is linear in capital.
Models in this class have the property that although each individual faces dimin-
ishing returns to the acquisition of knowledge, society as a whole may grow without
bound. This idea has been exploited in work by Lucas (1988), Romer (1986), (1990)
and others to explain growth as an endogenous process of invention and innovation.
More recently, attention has been focused on models with significant non-competitive
elements as possible explanations of a puzzle that arises from Solow’s (1957) con-
cept of growth accounting. The idea behind growth accounting is to subtract a
divisia index of growth in inputs from the logarithmic rate of growth in output of
the aggregate economy. The residual from this exercise, under the assumptions of
perfect competition and constant returns-to-scale, represents a measure of exoge-
nous productivity growth. Hall (1990) has pointed out that the ‘Solow Residual’ is
predicted to be uncorrelated with any variable that is uncorrelated with the rate of
growth of true productivity. In post-war U.S. data this prediction fails badly. Hall
lists a number of potential reasons for this failure, two of which are the possibilities
that externalities may have important effects at business cycle frequencies and that
monopolistic competition may play an important role in the aggregate economy.
The focus of our paper is to study the effects of introducing either externalities
or monopolistic competition into the Ramsey model of optimal growth. More pre-
cisely, we use externalities and monopolistic competition as two alternative ways of
combining a social technology that displays increasing returns-to-scale with com-
petitive behaviour by individual producers. We find, for parameter values in close
accord with recent estimates of the degree of externalities in the U.S. economy, that
the model displays a unique steady state that is locally stable. The implication of
this finding is that there exists a continuum of equilibrium paths for any initial



stock of capital each of which is consistent with convergence to the unique steady
state; that is, the equilibrium of the economy is indeterminate.

The possibility of indeterminate equilibria in the presence of increasing returns
has been explored by a number of authors. ! The difference of our work from other
papers in the field involves our allowance for variable labor supply. We find that
externalities in production may cause excessive growth in the capital stock to be
dampened by reductions in the equilibrium supply of labor. The result is a model
in which there are many possible values of consumption each of which is consistent
with an equilibrium path of interest rates that converges back to the unique steady

state.

Previous work on indeterminate equilibria? has shown that stable steady states
are associated with rational expectations models in which there exist a continuum
of self-fulfilling belief driven equilibria each of which is stationary.® We calibrate
our model using estimates of the increasing returns parameter drawn from cross-
section studies by Caballero and Lyons (1989) and from a time series estimate
of the production function by Baxter and King (1990). These studies suggest an
elasticity of social output with respect to labor input of the order of 1.05 or a value
for the magnitude of externalities in the social technology of around 1.5. Since our
calibrated economy is consistent with the existence of equilibria that are driven by
random shocks in agents’ beliefs we conclude that a business cycle research program
that incorporates increasing returns must face up to the possibility that “animal

spirits” may be an important contributing factor to business fluctuations.

'Howitt and McAfee (1988a), (1988b), Kehoe, Levine and Romer (1989), Murphy, Schleifer
and Vishny (1989) and Spear (1991) are notable examples. Hammour (1989) in a recent survey
points out that increasing returns in dynamic models is often destabilizing and must be coupled
with congestion effects of one form or another to keep the equilibrium path of the economy within
reasonable bounds, although congestion effects do not seem to be necessary in two sector models
as is apparent from a recent paper by Boldrin and Rustichini (1991). See also Chamley (1991) and
Mulligan and Sala-i-Martin (1991).

2See the paper by Farmer and Woodford (1984) or the excellent survey by Chiappori and Gues-
nerie (1988).

3These stationary Rational Expectations Equilibria are dynamic examples of what Cass and
Shell (1983) have labelled ‘sunspot equilibria.’ Azariadis (1981) gives the first example of stationary
sunspot equilibria in a macroeconomic context.



In the first part of our paper we investigate a model without growth which is
easily adjusted to introduce exogenous growth. Since our work is driven by external-
ities of the same nature that have recently motivated the literature on endogenous
growth, in the latter part of the paper we allow for externalities that are large
enough for the social technology to be linear in capital. In this section we show
that, in the presence of labor externalities, our model displays indeterminate en-
dogenous growth in the sense that there are many sets of self-fulfilling beliefs each of
which is consistent with a dynamic equilibrium that converges to the same balanced
growth path but not to the same level of consumption, capital and employment.
We present an example of a model with this property which is calibrated to fit the
parameter values that are typically found for the U.S. economy.

2 The Benchmark Model

To study the dynamics of capital accumulation with increasing returns to scale,
we need a theory of income distribution that reconciles increasing returns at the
aggregate level with competitive behavior by individuals and firms. We describe
two theories, each of which is consistent with the same aggregate dynamics. The
first theory is borrowed from the recent literature on endogenous growth in which
one typically assumes that there are important external effects in the production
technology that are not mediated by markets. Our second approach is drawn from
work on monopolistic competition by Dixit and Stiglitz (1977) that has been ex-
plored in a macroeconomic model similar to ours by Kiyotaki (1988) and Blanchard
and Kiyotaki (1987).

In both approaches we assume that the aggregate production function is Cobb-
Douglas, given by:

(1) Y = K°N%, a,0>0, a+8>1.

K represents the aggregate stock of capital, and N is aggregate labor input. Notice
that the assumption a + # > 1 implies that the technology exhibits increasing

returns to scale.



We assume that the factor market is competitive and we use the symbols w for
the relative price of labor in terms of the unique consumption commodity and r for
the capital rental rate. Both of the organizational structures that we will look at

imply that factors of production receive fixed shares of national income:

(2) wN by,
(3) rK = aY.

Note that marginal products will differ from factor shares unless & = a@ and 8 = b.
Both of our models imply 0 < a < aand 0 < b < §.

2.1 The Model with Externalities

The model with externalities is the simpler and more familiar of the two. To derive
equations (1), (2), and (3) from a theory of competitive behavior we redefine the

aggregate technology as follows:
(4) Y = K°N*(K°% N%),

where K and N represent the average economy-wide levels of capital and labor. The
economy is assumed to consist of a large number of identical firms and from the
point of view of the representative firm these terms are exogenous. They represent
external effects which are not traded in markets. Equation (1), which describes
the aggregate technology, can be derived from equation (4) by recognizing that in
equilibrium K = K and N = N and by making the parameter substitution:

a=a(1+01) >0,
and,
B =>5(1+86s) >0.

We assume that from the perspective of each firm the technology exhibits constant
returns-to-scale, that is;
() a+b=1.



2.2 The Model with Monopolistic Competition

In this version of the organizational structure we assume that the individual firm
uses a technology similar to that described by Dixit and Stiglitz (1977). There is a
continuum of intermediate goods Y (¢) where 1 € [0,1]. Final output is given by:

(6) Y = (/;IY(i)*di)l/A,

where A € (0,1). Note that equation (6) displays constant returns to scale.

The final goods sector is competitive. If P(z) is the relative price of the i’th
intermediate good in terms of the final good, the profits of a final goods producer
are given by:

(7) N=Y - /0 ' Pi)Y (i)di.
First order conditions for profit maximization lead to the following demand func-

tions for intermediate goods:

(8) Y (i) = P(s) =Y.

We assume that the technology for producing an intermediate commodity is
given by:
(9) Y(i) = K(5)*N (),

and to keep things simple we assume symmetry; that is, every intermediate com-
modity is produced with the same technology. We introduce increasing returns to
scale in the intermediate goods sector with the assumption:

a+f>1.

The profit function of the i’th intermediate good producer can be expressed as
follows by solving for P(s) from (8):

(10) () = (@)H Y (i) — wN (i) — rK(3).

We assume that the intermediate goods producers are monopolistic competitors
and we capture the degree of monopoly power of each producer by the parameter



A. When A = 1 the intermediate goods are perfect substitutes in the production
of the final good and in this case the intermediate producers face perfectly elastic
demand curves. Substituting the production function into (10) we obtain:

(11) I() = YN ()P K (5)™ — wN () — rK(5).

The profit function will be concave in N(i) and K(i) as long as A(a + ) < 1.4

Maximization of (11) by each monopolistic competitor leads to the following first

order conditions:

aY (i) P(i)
K(5)

ABY (3)P(4)

(12)

T,

To derive the aggregate technology (1) from the model with monopolistic competi-
tion we set;

a = A,

and,
b= AB.

Since we have assumed symmetry we seek a solution in which:

N(@) =N, K(G)=K, and P(i)=P.
The assumption that the final goods sector is competitive implies that:
(14) = Y—/OIPY(i)di=0.

Using the intermediate demand functions (8) in the final goods zero profit condition
(14) we obtain the condition:
(15) P({)=P=1,

*It is in this sense that the model with monopolistic competition is consistent with a degree of
increasing returns in the technology. The closer is A to sero, the larger can be o and B and still
permit the existence of an interior solution to the profit maximisation problem of each producer.



and using the symmetry assumption, N(i) = N, K(¢) = K, in the production

function (6) we can express aggregate final output as:
(16) Y = K*N”.

Note that (16) is identical to (1). We can also show that factor payments plus
profits in the intermediate goods sector add up to total output in the final goods
sector since equation (11) implies that:

(17) /0 1[H(i) +wN () + rK(1))di = Y /0 KNP = .

2.3 The Consumer’s Problem and Market Equilibrium

In the previous section of the paper we described the structure of two alternative
technologies and the associated maximization problems faced by profit maximizing
firms. In this section we describe the intertemporal optimization problem faced
by a representative consumer. We will base our analysis in continuous time since
the stability analysis of a steady state is cleaner in the continuous time framework.
However, all of our results have analogs in the discrete time model and in section 4
we point out some of the implications of our analysis for the research agenda that
incorporates externalities into the real business cycle model.

The instantaneous utility of the representative consumer in our model is given
by:

(18) U =logC(t) -

1-x’

where C is consumption, N is labor supply, and x < 0. It is well known that, if
one combines separability between consumption and leisure with a Cobb-Douglas
production function, the use of a logarithmic utility function over consumption is
the only formulation of preferences that is consistent with stationary labor supply



in a growing economy.® The representative consumer maximizes:

(19) [ [log () - -1!1%5 e~#tdt,
subject to,
(20) K(t) = (r(t) - )K(t) +w(t)N () + Iz (8) — C(¥),
and,
K(0) = K,.

The parameter p represents the discount rate, 6 is the depreciation rate and Ilz(t)
is the total profits earned by the corporate sector. In the model with externalities
factor payments exhaust total output and profits are zero because, by our assump-
tion (5), @ + b = 1. In the model with monopolistic competition the final goods
producers make zero profits but there are positive profits in the intermediate goods
sector that arise from the monopoly power of each of the intermediate producers. In
this model the aggregate profits from the intermediate sector plus factor payments
add up to the total output of the final sector, as shown in equation (17). For both
models :

(21) Mz (t) + r(t)K(t) + w(t)N(t) = Y (t).

The first order conditions for the consumer’s optimization problem are given by

the equations:

(22) ;((tt))x - Wy
(23) Z%) = r(t)—p—86.

In both of the organizational structures that we will look at the real wage and the
rental rate on capital will be proportional to the average products of labor and

5We suspect that our analysis could be extended to allow for the kind of non-separable function
that is exploited by Kydland and Prescott (1982) in their “Time to Build...” paper, but we have not
explored this generalization. The utility of labor is modeled as a power function over labor supply
because this formulation allows us to derive a simple constant elasticity form for the labor supply
function.



capital. Using these facts we can eliminate w and r from the first order conditions
for the consumer to arrive at the following two expressions:

(24) C(t) = bY(t)N(t)x!
cC Y@
(25) m = am —p-—6.

Equations (20), (24) and (25) describe the equilibrium growth dynamics of the
economy. One also requires that the transversality condition:

(26) lim c""&t) =

2R Tow T

should hold. In the next section of the paper we will analyze the equilibrium

dynamics of the model.

3 Analysis of the Dynamics

To simplify our analysis it is convenient to make the following logarithmic transfor-
mation of the variables. Let y = log(Y'), k = log(K), n = log(N) and ¢ = log(C).
After dividing equation (20) by K one can express the two dynamic equations, (20)
and (25) in the form:

(27) k = eV —6—eF

(28) é = aevF—p-—6.

For (27) and (28) to be an autonomous pair of differential equations one must

express y — k in terms of £k and ¢. From the production function, expressed in
logarithmic form, it follows that:

(29) y = ak + fn,
and from the first order condition for optimal labor supply (24):

(30) c = log(b) +y + (x — 1)n.



Eliminating n from equations (29) and (30) allows us to obtain the following ex-
pression for y — k:

(31) y—k= Ao + Ark + /\20,
where,
2. = —Blog(b)
0 ﬂ+x_1,
hY =(X_1)(a_1)—ﬂ
1 ,H+X—1 ’
B
Az = .
T Brx-1

Using these definitions one may write the required pair of autonomous differential
equations as:
(32) ];: - er+A1k+A2c -6 - Cc-k,

(33) ¢ = getothiktdae _ o

Any trajectory {k(t),¢(t)} that solves (32), (33) subject to the initial condition
k(0) = k; and to the transversality condition (26) is an equilibrium path. We now
turn to an analysis of the behavior of this pair of differential equations.

3.1 Dynamics around a Steady State

Under the assumptions of our model the system (32), (33) has a unique interior
steady state {k*, ¢'}. Some simple algebra yields:

-2
(34) ePatak” _ (\” +8(1 - a)) 2 (p ks 5) e >0,
a a
(35) e = (p + 69 — a)) e >o.
Note that,

(p+6(1 —a)) >0,

a

10



since, a < a + b < 1. This holds in both versions of our model since a and b
represent factor share parameters. The (unique) solutions for k* and ¢* implied by

these equations can be written as:

.1 p+6 ‘
(36) k' = VW log Aol

—Aglogﬁi(a—}—:ﬂ

(37) ¢* = log

p+5(al‘_a')+kt,

where we note that k* and ¢* are natural logarithms which may be positive or
negative.

Using the definitions of Ao, A1, A; and the expression for y — k, equation (31),
we can compute the Jacobian of (32) and (33) evaluated at the steady state. The

trace and the determinant of this Jacobian are given by the expressions:

(38) Trace = (A; + akg) (p:é) +p+6(al—a)’
(39) Det = (p+6l1 = al) (252 -+ 1)

The variable k is predetermined since kg is given by the initial conditions of the
economy while ¢g is free to be determined by the behavior of the agents in the
economy. Suppose that the steady state {k*,c*} is completely stable in the sense
that all trajectories satisfying (32) and (33) which begin in the neighborhood of
{k*,c*} converge back to the steady state. In this case there will be a continuum
of equilibrium paths {k(t),c(t)}, indexed by ¢o, since any path that converges to
{k*,c*} necessarily satisfies the transversality condition (26). Completely stable
steady states giving rise to a continuum of equilibria will be termed “indeterminate”
and in this case we will say that the stable manifold has dimension 2.

Alternatively, if there is a one dimensional manifold in {k,c} space with the
property that trajectories that begin on this manifold converge to the steady state
but all other trajectories diverge then the equilibrium will be locally unique in the
neighborhood of the steady state. In this case for every ko in the neighborhood of

11



k* there will exist a unique ¢ in the neighborhood of ¢* that generates a trajectory
converging to {k*,c*}. This ¢, is the one that places the economy on the stable
branch of the saddle point {k*,c*}.

Since the trace of the Jacobian of (32)-(33) measures the sum of the roots and
the determinant measures the product we can use information on the sign of the
trace and the determinant to check the dimension of the stable manifold of the
steady state {k*,c*}. When there is no capital externality (in the case of the
monopolistically competitive model when the intermediate commodities become
perfect substitutes), @ = a. In this case the trace evaluated at the steady state

reduces to p, the discount rate. If the determinant, which has the sign of

(@-1)(x—-1)
B+x-—1

is also negative then the roots must be of opposite sign and the steady state is a

)

saddle point. This is the familiar case of “saddle path stability” in which there is a
locally unique consumption rate that is consistent with convergence to the steady
state for any given initial capital stock in the neighborhood of k*.

If the determinant is positive there may be either two positive roots or two
negative roots. When there are no capital externalities the case of two negative
roots cannot occur since the sum of the roots is equal to p which is positive by
the assumption of positive discounting. A positive determinant must therefore be
associated with a stable manifold of dimension zero, (an unstable steady state.) The
eventual fate of trajectories that diverge from the steady state cannot be determined
from the properties of the Jacobian evaluated at the steady state. They may
eventually violate non-negativity constraints or they may settle down to a limit

cycle or to some more complicated attracting set.®

The case of interest for our purposes is that of an indeterminate steady state,

that is, the case when there is a negative trace and a positive determinant. This

SWe cannot rule out the case where the Jacobian changes sign away from the steady state and
we cannot therefore invoke the negative Bendixon Criterion (see Guckenheimer and Holmes (1983),
page 44, Theorem 1.8.2) to rule out limit cycles.

12



can occur for a relatively mild capital and labor externality when the other param-
eters of the model are calibrated at empirically plausible values. For example, set
capital’s share, a, at 1/3, labor’s share, b, at 2/3, the continuously compounded
discount rate at 0.02, the depreciation rate at 0.07 and the parameter x at -0.25.7
Then if a = 0.83 and § = 1.66 (alternatively for A = 0.4 in the monopolistically
competitive model so that Aa = a = 0.33 and A = b = 0.67,) one has a nega-
tive trace and positive determinant and consequently there exists an indeterminate
steady state with a continuum of equilibrium trajectories indexed by ¢o each of
which converges to the steady state. The indeterminacy of the steady state is ro-
bust to perturbations of parameters and in fact holds for a large open set of values

around the ones given above.

3.2 A Necessary Condition For Indeterminacy

In order for there to exist a stable steady state, the determinant of the Jacobian
evaluated at the steady state must be positive. But we have already shown that
this condition implies that,
(a—1)(x-1)
B+x-1
and since x is negative and we are generally considering economies in which a <1

>0,

it follows that this necessary condition will be satisfied when;
B+x—-1>0.

Although it is extremely difficult to give intuitive explanations for the behavior
of two dimensional dynamical systems we find the following reasoning helpful (al-
though incomplete). In figure (1) we have depicted a labor demand curve param-

eterized by the stock of capital and a labor supply curve parameterized by the

71t is often assumed that preferences are logarithmic over lessure; see for example the work of King
Plosser and Rebello (1988). Logarithmic preferences over leisure lead to a labor supply elasticity
equal to N*/(1 — N*) where N* is the steady state supply of labor. Since US data suggests that
the average worker allocates about one quarter of his time to productive activities it has become
common to set this parameter to 0.25. The assumption that x = —0.25, using a preference function
that is isoelastic over labor supply, is consistent with this tradition.

13



consumer’s chosen rate of consumption. These equations come from breaking down
the first order condition for the optimal choice of labor (24), into a labor supply

and a labor demand schedule as follows:

(40) — =w=b
or, taking logarithms and letting & represent the logarithm of the real wage:
(41) c—xn = = log(b) + ak + (8 — 1)n.

Notice that the slope of the labor demand curve is given by 8 — 1 and the slope of
the labor supply curve is equal to —x. In standard models the labor demand curve
slopes down (as a function of employment) but in an economy in which increasing
returns are important it may slope up. Our necessary condition for the existence
of an indeterminate steady state is exactly equivalent to the requirement that the
slope of the labor demand curve should exceed the slope of the labor supply curve.
In this case expansions in the stock of capital which shift up the labor demand
curve will lower real wages and reduce employment. We find this intuition helpful
in understanding how excessive growth in the stock of capital may eventually be

damped.

4 Calibrated Economies and Indeterminacy

Since a number of authors® have begun to explore the implications of externali-
ties in the standard real business cycle framework we think that it is important
to understand the implications of this agenda for a theory of business fluctuations.
The most notable of these is the possibility that a very slight departure from the
standard paradigm can lead to the implication that business cycles may be gener-
ated by the self-fulfilling beliefs of agents in addition to the effects of technological
disturbances. Previous models that display this property have often been criticized
for being “artificial” or for being “implausible”.

8Notably Baxter and King (1990).

14



Although we conduct our analysis of the growth model in continuous time the
same effects hold in the class of discrete models that have become the main tool of
analysis in real business cycle theory. Linearized versions of simple discrete models
possess indeterminate steady states for the same magnitudes of time preference and
other calibrated parameters that we use in the continuous time model. We choose

to work in continous time because it simplifies the analysis and the presentation.

The original motivation for introducing externalities into the real business cycle
model was to understand how demand disturbances may contribute to the cycle.
In a demand driven model it is difficult to understand how labor productivity can
be pro-cyclical, since employment fluctuations result from movements along a con-
cave production function, as opposed to productivity driven shifts of the function
itself. One solution to this problem is to make the technology convex by introduc-
ing increasing returns to the social production function of the same kind that we
discussed in the first section of this paper. Baxter and King (1990) cite studies by
Caballero and Lyons (1989) who find evidence of important external effects in panel
data and they also present their own estimates of the marginal product of labor
that are generated by using simultaneous equations estimators on aggregate data.
Their findings are consistent with the view that the value of 8 in the technology is
about one and a half times labor’s share or that our parameter A which represents

the degree of monopolistic competitiveness in the economy is around 0.66.

In tables (1), (2) and (3) we report the theoretical values of the two eigenvalues
of a perfect foresight model of the economy for different values of the parameters.
Each of the three tables reports on the results of varying one of three critical
parameters from an initial benchmark case. For our benchmark model we chose
p (the rate of time preference) to be equal to 6.5 percent per year, a (capital’s
share) to be (0.42), § (the rate of depreciation) to be ten percent per year, the
parameter x (the inverse of the labor supply elasticity) to be (-0.25), and we set
the ratio of 8 to b equal to the ratio of a to a equal to (1.5). This case corresponds
exactly to the benchmark increasing returns technology calibrated by Baxter and
King (1990). In table (1) we allow the inverse of the labor supply elasticity (the

15



parameter x) to vary between zero and (-0.3). This exercise is important since an
influential variant of the standard model, originally introduced by Hansen(1985),
argues that the aggregate economy will behave as if labor were infinitely elastic.®
Notice that for all values of x in this range the model possesses one positive and
one negative root. In table (2) we hold labor elasticity at (4.0) (x=-0.25) and vary
the externality parameter, which we define as u = 1/, from (1.0) to (1.9). In table
(3) we conduct a similar analysis allowing the share parameter (a) to fluctuate. In
all of these experiments the roots of the economy split around zero; that is, the
equilibrium is a saddle point.

In table (4) we allow two parameters to differ from the Baxter-King model by
setting labor’s share at (0.7) and letting the inverse labor elasticity fluctuate from
(0.0) to (-0.09). Notice that for highly elastic labor supply the economy now has
two stable roots and a continuum of equilibrium paths. In figure (2) we graph the
real parts of the eigenvalues as a function of x. For highly elastic labor supply there
exists a pair of complex roots with negative real parts which again implies that the
economy possesses an indeterminate steady state. As x moves below (-0.015) the
roots both become real but remain negative until at (approximately) x = (—0.05)
one root passes through minus infinity and re-emerges as a positive real root. To
explore the sensitivity of these results to fluctuations in the externality parameter,
in figure (3) we hold the value of x at (0.0) (the Gary Hansen model) and we let
the externality parameter u = 1/X vary from 1 (no externalities) to 2. Again we
find the emergence of a pair of negative real roots at a value of about (1.43) for
the externality parameter. At u = (1.49) these roots become complex but retain a
negative real part.

We conclude from this exercise that the possibility of an indeterminate steady
state is more than a pure theoretical curiosity since it occurs well within regions
of the parameter space that are consistent with simple stylized facts about the

business cycle.

9The argument relies on indivisible labor at the individual level. See Hansen (1985) and also
Rogerson (1988).
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5 The Dynamics of Endogenous Growth

The model that we have described above will not display growth unless there is
exogenous technical progress. More recently, a literature has emerged in which one
tries to explain growth endogenously. Since a good part of this literature relies on
externalities of the same kind that we have exploited in this paper we will spend this
section examining the connection between endogenous growth, increasing returns

and indeterminacy.

One may define a balanced growth path for the system (32), (33) as a trajectory
{k(t),e(t)} such that:

k=é=g,

where ¢ is a constant. As in the steady state case we will say that a balanced
growth path is locally indeterminate if, given a ko in the neighborhood of k(0), for
any ¢, in the neighborhood of £(0), the equilibrium trajectory {k(t), ¢(t)} converges
to {k,}. This definition ensures that the transversality condition holds,

lim e""K(t)

oo —C(t) = 0’

since the fact that C(t) and K(t) are growing at the same rate implies that
K(t)/C(t) is a constant.

To facilitate the analysis of balanced growth we transform the variables and set:
(42) g=c—k=log(C/K).

Then using (31) and the definitions of the constants Ao, A; and Az the system can

be expressed as:
(43) k= eArtradktraetdo g o0

(44) §=(a— l)e(A1+Az)k+Azq+Ao —p+él.

A balanced growth path requires that k=gand §g=¢- k = 0. Since a < 1, it is
clear from (44) that if k = g # 0 (if k is changing through time) then ¢ = 0 (g will

17



be constant) only if A; + A; = 0. Therefore a necessary condition for the existence

of an endogenous balanced growth path is that:

Al + Az =0.
From the definitions of A; and A,
(a—1)(x-1)
A+ A= ,
11 Az Ftx—1

and since x < O this definition implies that the necessary condition for balanced
growth is that a = 1, or that social output is linear in the capital stock.

To solve for the balanced growth path we define,!®

C
X =el= =
¢ =
and write (44) as;
. _X 2o 3z =
(45) q=§=(a——1)e X —P+X=f(X).

The balanced growth paths of the system are given by the solutions to the equation:
(46) X =Xf(X)=0,

and the interior balanced growth paths are the solutions to:

(47) f(X) =o0.

The derivative of f is given by the expression:

(48) F1(X) = da(a —1)erX* 1 +1>0.

There are two cases to consider, A\; < 0 and A, > 1.1! First note that if A; < O that
is if 5+ x — 1 < O then there exists a unique interior balanced growth path. This

10Recall that we are using uppercase letters to refer to levels and lowercase letters to refer to
logarithms.
L11f X;, where g

g = ———
2 ﬂ+x_11
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follows from the facts that, f(0) = —oo, f(+00) = +o0, f is continuous and f' >0
for A; < 0.

The fact that f/(X) > O implies that this balanced growth path is unstable in
the sense that any initial value Xy # X generates a trajectory that monotonically
diverges from X. For any initial value of Kg, a choice of C such that Co/K; = X
generates a unique equilibrium trajectory along which the consumption capital ratio
is constant and from (43) and (44) it follows that the growth rate is given by:

I S o pt6(l—a)
(49) 9(X)|x=g =€°X?-6-X l—a,X T—a

When the parameter \; is greater than one, these results must be modified
since the function f(X) need no longer be monotonic. In this case it is possible
to establish that either an interior balanced growth path will not exist or two such
paths will exist. This follows from the fact that if A, > 1 then f(X) is a concave
function since: .

X

(50) Ef = Ag(Az — 1)((1 - ].)CAOJ(M_2 < 0.

But if f is concave then it can cross zero at most two times.

Suppose that there are two balanced growth paths X; and X; with X; < X,
it follows immediately that X, is unstable and X, is stable since f'(X;) must be
positive and f'(X,) negative from the concavity of f. In this case, there exists
a continuum of equilibrium trajectories. Given a Kj, any initial Cy such that
Co/Ko > X, gives rise to an equilibrium trajectory. Furthermore, for all Co such
that Co/ Ko > X,, C(t)/K(t) converges to X;. These trajectories are associated
with higher consumption-capital ratios at all times than the balanced consumption-
capital ratio X; but, paradoxically, they result in kigher asymptotic growth rates as

is greater than zero then,

f+x—-1>0,
and since x < 0 from the convexity of preferences in N it must also be true that:
1-x
Ag—1= ——F
: B+x-1
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is easily seen from (49). This apparent paradox occurs since a higher consumption-
capital ratio is also associated with a higher level of employment and with a higher

average product of capital.

In figure (4) we have depicted the functions f(X) and g(X) for an economy that
is calibrated to match U.S. data. We set a = 1 to permit endogenous growth and
B = 1.2 to capture the labor externality but we have allowed a and g to differ from
a = 0.2 and b = 0.66.!2 We chose the inverse of the labor elasticity x = 0, the
discount rate p = 0.03, and the depreciation rate § = 0.1. This calibrated economy
has two steady states one of which is determinate (unstable) and the other of which
is indeterminate with a continuum of convergent paths. The indeterminate growth
path is associated with a growth rate of about 2 percent and a ratio of consumption
to income of around (0.84).

It is worth noting the dramatic level effects in the endogenous growth model
when there is indeterminacy. An economy that starts with a given capital stock
will have a higher accumulation rate, a higher output and a higher level of employ-
ment, the higher is its initial level of consumption. Observe from equation (45) that
a path which begins with a higher consumption to capital ratio will always have
a higher consumption to capital ratio since solution trajectories cannot intersect.
But since equation (49) which determines the growth rate is monotonically increas-
ing in X, a higher initial consumption will lead to a higher accumulation rate, a
higher capital stock and higher consumption at every point along the equilibrium
trajectory. It also follows, when there is an indeterminate growth path, that the
optimal employment level is increasing in the consumption to capital ratio.!®

The level effects that we have described are particularly dramatic when we con-
trast the initial consumption level that puts the economy on the lower balanced
growth path with an alternative higher initial level of consumption that leads to
convergence to the higher balanced growth path. In the first case the economy

12Notice that we have not chosen a and b to sum to one since we are allowing for positive profits
in the intermediate goods sector which will appear as a residual return to capital in the accounting
data.

13To see this, totally differentiate equation (41).
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contracts. In the second it may contract initially but the ratio of consumption
to capital grows. The growing ratio of consumption to capital is associated with
an increasing level of employment which eventually raises the growth rate and the
economy converges to a high growth path with positive balanced growth.

6 Conclusion

We have explored a variant of the Ramsey growth model in which the economy
displays increasing returns to scale. We find that for realistic parameter values the
model may possess multiple dynamic equilibria all converging to a unique steady
state. In a version of the model which displays endogenous growth we have shown
that there may exist two balanced growth paths and that one of these paths will
be associated with multiple dynamic equilibria all of which converge to the same

asymptotic growth rate.

Our work suggests that slight departures from the real business cycle model
are consistent with the idea that economic fluctuations may be driven not only
by productivity disturbances but also by the self-fulfilling beliefs of agents. Since
the welfare implications of equilibria that depend only on fundamentals are very
different from those which are driven by ‘animal spirits’ our work suggests that it
may be important to explore the possibility that some classes of policy interventions

may be associated with higher economic welfare.
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Table 1

(Varies Labor Elasticity)

root 1 root 2

.86 -.16

-0.05 7 -14
01 6 -.13
-0.15 .54 -.13
02 5 -.13
-0.25 46 -.12
-0.3 43 -1

(Capital’s Share)
a =042

u= 1.5
(Externality)




Table 2

(Varies Externality)

U root 1 root 2
1.0 .26 -2

1.1 .28 -.19
1.2 31 -.17
1.3 35 -.16
1.4 .40 -.14
1.5 .46 -.13
1.6 .56 -.11

1.7 .70 -.09
1.8 94 -.08
1.9 1.4 -.06

(Capital’s Share)
a =042

x = -0.25
(Elasticity of
Labor Supply)




Table 3

(Varies Capital Share)

a root 1 root 2
0.20 2.85 -73
0.25 1.32 -.43
0.30 .87 -.29
0.35 .65 -.21
0.40 .50 -.15
0.45 41 -.10
0.50 .34 -.07
0.55 .29 -.04
0.60 .25 -.02
0.65 21 -.01




(Varies Labor Elasticity)

root 1 root 2

-8 + 4

-0.01 -1+ i
-0.02 -2 0.7
-0.03 -3.6 -0.6
-0.04 -8 0.5
0.05 +oo 116
-0.06 9.3 05
-0.07 s 0.4
-0.08 3.4 0.42
-0.09 2.7 04

Complex and Stable

Compiex and Stabic

Real and Stable

Real and Suabic

Real and Stable

Roots Split

Roots Split

Roou Split

Roots Split

Roots Split

a=0.30
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Figure 1

Labor Demand
o= (B-1)n + ok

Labor Supply
D= -%n +C




Figure 2
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Figure 3
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