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ABSTRACT

Instead of the more common unemployment rate, the time series data of
the level of U.S. unemployment is used together with U.S. Real GNP, and
later also with the U.S. money stock, to identify a bivariate and trivariate
structural model. The model is then used to examine the interaction of the
unemployment level of real GNP in the business cycle frequencies. The
commonly perceived Okun’s law is shown to disappear in the trivariate model.
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1. Introduction

Okun claims that returns to labor can be inferred by regressing changes
in unemployment on percentage changes in the real GNP. This procedure,
however, overestimates the returns to labor if labor supply is increasing
over timé. A support for increasing returns to labor can be made by finding
a smaller response of employment to output changes which could be explained,
for example, by labor hoarding. Labor hoarding, however, seems to be more
likely in Europe than in the USA since employment in the U.S. has been
growing at about the same rate as the real GNP over the last thirty years.

The purpose of this paper is to investigate whether unemployment in the
U.S. may be explained by co-movement in output only, for example, as in Okun
(1962), Evans (1989) and Blanchard-Quah (1988), or also is affected by mone-
tary shocks. Moreover, we want to ascertain whether output and unemployment
respond symmetrically to demand and supply disturbances i.e., whether Okun’s
law still holds in the U.S. when supply factors and money are introduced.
For this purpose we build a three-variable structural model for the levels
of unemployment (not the rate), of the real GNP and M1, and identify the
model using trivariate time series after suitable detrending them as we
later explain. In our model the unemployment level changes reflect shocks
in both labor supply and productivity. Unlike Beveridge-Nelson (1981),
cycle and trends are not treated separately but are related through a two-
step procedure (Aoki, 1989) where short-run fluctuations can affect long-run
behavior. Cycles here are obtained as residuals from the first stage of the
state space modeling, which lets the algorithm to select common stochastic
trend for the three macroeconomic series. Residuals of the first stage
display cross and serial correlation, which is modeled in the second stage

to produce a vector-valued innovation process. The residuals obtained in



the second stage should be serially uncorrelated but possibly mutually
correlated. Instead of adopting -- as in standard VAR practice -- an
arbitrary, i.e., non-unique Choleski decomposition, we utilize identifying
restrictions of the contemporaneous shocks to evaluate a structural model
and its dynamic response to structural disturbances.

The paper is organized as follows. Section 2 posits the structural
model used in this paper to identify structural innovation to be used in
multiplier analysis. Responses of the estimated model to various structural
shocks are discussed in Section 3. The paper concludes with Section 4. To
be self-contained, the Appendix contains a brief but complete description of

the detrending and state space model procedure used in the paper.

2. The Structural Model

In traditional VAR time series modeling, a (suitably detrended) weakly-

stationary data vector y 1is modeled by
$oYe = $(L)y, + n, (1)

where e is a vector of structural disturbances. The matrix ¢0 is
assumed to be nonsingular. This structural model is decomposed into a con-
temporaneous part, ¢O, and an unrestricted dynamic part, ¢(L) = ¢1L +
¢2L + ..., where Ljyt = yt—j' Usually ¢0 is a sparse matrix whose zero
restrictions are guided by economic theory. The model can be identified by
the procedure used in Bernanke (1986) and Sims (1986), for example.

In (1), the innovation vector of yt with respect to its own past is
&, = V. - E(yt|yt_1,yt_2...). On the assumption that the o-field generated

by past y’'s is the same as that generated by past structural shocks, we hawe
ﬂt - ¢Oet,

Assuming that structural disturbances are uncorrelated, the covariance



matrix E(nn') = = 1is diagonal while the covariance matrix of the
unrestricted state space model E(ee') = O will generally be non-diagonal.

The covariance X 1is related to the innovation covariance matrix by
= ' 3
T = 65080 (3)

0f the p(p+l)/2 independent relations in ¢ where p = dim Yer P of
them are used to estimate the diagonal elements in the covariance matrix z.
We may impose p(p-1)/2 =zero restrictions on the off-diagonal terms of ¢0
since its diagonal terms may be taken to be one without loss of generality.
We will return to the specification of matrix ¢0 later.

Instead of VAR modeling, we use a state space representation for the
data series and estimate the innovation vector time series {et} and its
covariance matrix, , to identify ¢0 and £. The specifics of this
procedure is similar to the one in Aoki (1990, Sec. 7.4).

Let us now formulate our structural model for the short-run dynamics as

follows:
Ut = aGNPt + lags + e (Aggregate Supply) (&)
GNPt - ﬂUt + 7Mt + lags + Mo (Aggregate Demand) (5)
Mt = lags + N3¢ (Money Feedback Rule) (6)

where U, GNP and M denote respectively logarithms of the unemployment level,
real GNP and nominal money stock (Mt) in the U.S. Here, p = 3 and the
model is just identified. The level of unemployment Ut measures the

. excess supply of labor in unit of workers:

s d
Ut = Lt - Lt'
Labor supply is approximated for statistical measurement by labor force data

and is allowed to vary over time



s
Le = 100
where €1 reflects stochastic factors affecting both population and parti-

cipation rates (approximated by civilian employment). Once labor demand is

extracted from the linear, short-run, production function posited as

d
Lt = aGNPt + €2t’

it is apparent that in (1) is equal to

Mt

Me = ‘1t
which combines both labor supply and productivity shocks. Since these
variables have opposite effects on the real wage, we can consider it to be
approximétely constant. Thus price and wage equations are ignored. These
assumptions are made, of course, for simpler analysis, yet may be expected
to hold reasonably well for the U.S. data which show that the real wage has
a much smaller variability than those of labor force and employment.

Equation (5) is a condensed version of the IS-IM model. Aggregate
demand is determined by consumption and investment components: consumption
expenditure is affected mostly by the employment level -- thus negatively by
unemployment -- while investment expenditure depends inter alia on interest
rate, thus on the nominal money stock. Fiscal and monetary shocks are
captured by Ny and M3 where the latter denotes unpredictable money
stock innovations.

Because of information lags, monetary policy, (6), is assumed not to
react to contemporaneous shocks in GNP or unemployment. Money does not

affect contemporaneously the supply equation because of time lags.
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Lacking an interest rate equation, we cannot separate out money supply
from money demand disturbances.1 Similarly, participation and productivity
shocks cannot be disentangled in the supply side. Despite this, we decided to
keep the model in the present form in order to have a direct comparison with
the output/unemployment studies in the literature where typically no money is
introduced and only casual attention is paid to detrending. The data of the
model come from OECD sources (Main Economic Indicators, Paris, several years),
are quarterly, seasonally adjusted, and range from 68:1 to 88:4.

After detrending (as discussed in the Appendix), U, GNP, and M in (4)-
(6) are interpreted as deviational variables from trend. They are then put

in the form of (1) with matrices

1 = 0 2 2 2
$o = - 1 -y}, 2= diag(al,02,03)-
0 o0 1

Then (3) is solved uniquely for the parameters a, jB, vy, and ai, i=
1,2,3. It is of some interest to compare this model with a bivariate model

in which M 1is dropped:

+ lags

Ut = GGNPt + Yie

GNPt = v, + lags

2t
with

1 -4 . 2 2
¢0 [0 l]’ P dlag(al,az).
We can also identify

Ut - GGNPc + v,, + lags

1t

GNPt - pUt + v, + lags

2t

lThis issue is specifically addressed by Gali (1989).



by minimizing the sum a% + ag. This procedure, however, produces nearly
zero 4, 1i.e., the same model as above.

Panel I of Figure 1 (with the horizontal axis from 1 to 45) shows for
the response of the bivariate model to structural shock to U (supply
shock). Panel II (with the horizontal axis from 46 to 90) are the responses
to the structural shock to GNP (demand shock). Note that GNP and -U
respond approximately the same even though demand shocks produce larger

fluctuations. This symmetric response disappears when money is introduced.

The matrix 0 1is:

_ [ 159 -.0196

-2
0196 0099 % 1O

i - 12 x 1072 and a% - .01 x 10.%2

With the three variables, we estimate

We estimate 4 = 1.96, o

172 -.0196 -.0135
Q=|-.0194 .019 -.009 | x 1072,
-.0135  .009 019

Using the estimated @ (from the second stage of the state space modeling

procedure described in Appendix), we obtain2

a= 1.01 ai = .20 x 1072
B = .20 ag = 01 x 10-2
vy = - .63 a§ = 02 x 10_2

2
1 -a -6
An alternative structural model with ¢, = [-ﬂ 1 -7} can be
0
2 > Lo o 1]
identified by minimizing gy t 9, This result is:
=143, g = .13, § = 1.32, v = -.59,
o2 = 12 x 1072, 0% = 01 < 107%, 6} - 02 x 1072

The impulse responses of these two models are qualitatively very similar and
for this reason this model is dropped from further consideration.



Figures 2 through 4 show impulse responses to one-standard deviation
shocks to U, GNP and M respectively. The model is estimated with a five
dimensional state vector. The model has eigenvalue .97, .91, .7 + j.27 and
.23. Of these five, .97 represents a dynamic mode which is longer than the
usual business cycle time span of 20 quarter or so. (Note: .97 = .54,
.9120 = .15). The pair of complex eigenvalues has magnitude .74 and the

period of 8.5 quarters. We then deflate A to eliminate the eigenvalue

.97. The resulting dynamic multipliers are the ones shown in Figs. 2-4.

3. Effects of Structural Shocks

In this section we describe structural responses of the identified
model to demand, supply and monetary shocks. Unlike the bivariate model
output and unemployment levels respond asymmetrically. The level of
unemployment reacts more to all the shocks than the level of real GNP.
Unlike Blanchard and Quah (1988), we do not assume that supply shocks are
permanent even though the effects of all shocks are in fact long-lasting.

Monetary shocks have smaller impact on real output than on unemployment.

Supply Shocks

A supply shock has a much stronger impact on unemployment than on real
GNP, i.e., there is no behavior consistent with Okun’s law. This is hardly
surprising in view of the fact that a shift in labor supply may raise unem-
ployment without increasing productivity. With increased productivity,
labor demand is also reduced and unemployment has two reasons to be larger.
Since increases in productivity cannot entirely account for the gap between
unemployment and real GNP responses, it appears that labor supply shocks are
much more relevant in explaining unemployment than recognized by Okun’'s law

Since we cannot disentangle in this model shifts in supply for labor from



productivity shifts, the transmission of the overall supply shock can only
be tentatively interpreted. By comparing, however, Figures 2 and 3 it
appears that real GNP is driven more by demand rather than by supply shocks,
even though this could reflect the fact that our combined supply shock might
be characterized by a large labor supply component rather than by exogenous
shifts to the production function which are not explicitly introduced in our
model. Another advantage of introducing money in the output/unemployment
relationship is that the difference between the responses of nominal money
stock and real GNP can be approximately interpreted as the implied price
response to demand and supply shocks (if velocity of money remains approxi-
mately constant). In this case one can see that a supply shock tends, as
expected, to reduce prices. Prices move countercyclically and absorb rather

slowly the initial shock.

Demand Shocks

Unlike previous studies (Blanchard-Quah, 1988) the main difference
between supply and demand shocks is not their duration since both tend to
decay rather slowly over time. Also in this case, the main effect of intro-
ducing money to the bivariate model is that the symmetry between output and
unemployment is lost in a way that is incomparable with Okun’s law. Unem-
ployment response is still higher than that of real GNP. The latter is
affected more by demand than by supply shocks. In the meantime expenditure
innovations raise GNP more in the very short-run, increasing inflation, and
- to an extent which again is not compatible with Okun's law. Indeed, most of
the increase in GNP happens when the shock starts. Price reaction is not
immediate but is fairly strong if we compare nominal money and real GNP
responses. By ignoring again changes in velocity, one can see that most of

the inflationary pressures occur in about 2 years and tend to be absorbed



rather slowly over time. As expected, we find that prices move in this case
procyclically or that demand shocks produce a positive covariance between
output and prices (Blanchard, 1989). What is remarkable in our results is
also that much stronger reduction of unemployment has to be attributed to
cyclical expansion since labor supply should not be reduced by a demand
shock.3 Thus if we compare the implied employment and output responses,
decreasing rather than increasing labor returns are found by our analysis.
This result seems to fit well enough some of the typical features of the
U.S. labor market where labor force is very heterogeneous in terms of skill
and seniority, and most of the increase in employment over the sample period
did not occur in manufacturing but in small or labor intensive services (see
Table 1). Combining all these factors, it is reasonable to argue that a
large part of the spectacular increase in labor supply has been absorbed by
non-manufacturing firms. This implies in some cases a selective demand for
labor that makes productivity countercyclical and that it is not compatible
with Okun’s law since secondary workers (who have lesser skill and product-
ivity) are typically hired in boom phases and fired in recession times. In
others, labor hoarding may occur which makes productivity procyclical but
which does not imply per se that Okun’s law holds since labor supply also

increases over time.

Monetary Shocks

Monetary innovations have a small impact on real variables and seem to
not be sustained over time. However, also in this case, unemployment and

not real GNP has the larger response. The monetary shock has a higher

3The empirical evidence shows that labor supply is procyclical, i.e.,
that "discouragement" effect dominates the "additjonal" worker effect
(Bowen-Finegan, 1969).
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TABLE 1

Variability and Growth of Sectoral Employment and GNP

Employment (*) GNP °
Variability Growth | Variability  Growth | m(**)
Agriculture(+) 0.04 -0.9 0.13 2.0 2.9
Mining 0.21 1.2 0.05 -2.0 -1.4
Construction 0.12 2.4 0.08 -2.0 -2.6
Manufacturing 0.04 0.0 0.17 2.7 2.7
Durable Goods 0.05 0.0 0.18 2.8 2.8
Nondurable Goods 0.03 0.0 0.15 2.6 2.6
Transportation 0.07 1.2 0.18 1.3 0.1
Trade 0.17 3.0 0.19 3.5 0.5

Wholesale 0.14 2.4 - - -

Retail 0.18 3.2 - - -
Finance and 0.20 3.5 0.19 3.4 -0.1

Insurance '

Services 0.26 4.5 0.25 4.2 -0.3
Government 0.11 2.0 0.07 1.2 -0.8

(*)Employees on non-agricultural payrolls

(+)Labor force data

(**)Productivity growth

Source:

Economic Report of the President, January 1989.
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inflationary impact at the beginning but has a smaller rate than that
implied by demand shock. After the initial negative surprise, the effect on
real GNP is negligible even though one has to consider that all types of
shocks seem to produce little deviations of real GNP from its equilibrium

path.

4. Conclusions

In this paper we apply a two-stage state space approach (Aoki, 1988) to
estimate a structural model for unemployment, real GNP and M1 in the U.S.
While the model is in the spirit of the so-called structural VAR approach as
in Bernanke (1986), Sims (1986), the state space model is utilized to
extract stochastic trends from non-stationary data, without constraining the
series to have one or more unit roots. Cyclical variables, which are
modeled in the second stage, do not have persistent response to innovations.

A few constraints introduced in the model are economic rather than
statistical in nature, which are designed to relate estimated innovations to
corresponding set of structural disturbances.

Okun'’s law never holds in the output-unemployment relationship when
money stock is introduced. Unemployment response is always larger than real
GNP response to any type of shock. Real GNP is affected more by demand than
by supply shocks and shows a little response to monetary innovations in

terms of Ml'



12

REFERENCES

Aoki, M., State Space Modeling of Time Series, Springer-Verlag, Heidelberg,

1987.
, "On Alternative State Space Representation of Time Series

Models," Journal of Economic Dynamics and Control, (1988): 595-607.

, "State Space Models for Vector-Valued Time Series with Real and
Complex Random Walk Components," mimeo, UCLA, 1988.

, "A Two-Step State Space Time Series Modeling Method," Computers

Math Applications, 1989.

, State Space Modeling of Time Series, Second Revised and Expanded

Edition, New York and Heidelberg: Springer-Verlag, 1990.

Bernanke, B.S., "Alternative Explanations of the Money-Income Correlation,"
Carnegie-Rochester Conference on Public Policy, 1986.

Beveridge, S. and C.R. Nelson, "A New Approach to Decomposition of Economic
Time Series into Permanent and Transitory Components with Particular
Attention to Measurement of the ’'Business Cycle’," Journal of Monetary
Economics, 1981.

Blanchard, 0.J., "A Traditional Interpretation of Macroeconomics
Fluctuations," American Economic Review, (September 1989): 655-673.

and D. Quah, "The Dynamic Effects of Aggregate Demand and Supply

Disturbances," American Economic Review, (September 1989): 655-673.

Bowen, W and T.A. Finegan, The Economics of Labor Force Participation,

Princeton: Princeton University Press, 1969.

Evans, G., "Output and Unemployment Dynamics in the United States: 1950-

1985," Journal of Applied Econometrics, (1989): 213-237.



13
i

Gali, J., "How Well is the IS-LM Model Fit Postwar U.S. Data?," mimeo, MIT,
June 1989.

Okun, A.M., "Potential GNP: Its Measurement and Significance," American
Statistical Association, Proceedings of the Business and Economics
Statistics Section, 1962.

Park, J.Y. and P.C.B. Phillips, "Statistical Inference in Regression with
Integrated Processes: Part 1 and 2," Econometric Theory, & (1988): 468-
497; 5 (1989): 95-132.

Phillips, P.C.B. and B. Hansen, "Statistical Inference in Instrumental
Variables Regression and I(l) Processes," Rev, Econ., Stud., 57 (1990):
99-125.

Sargan, J.D., "Wages and Prices in the United Kingdom: A Study in
Econometric Methodology," in Hart et. al. (eds.), Econometric Analysis
for National Economic Planning, London: Butterworths, 1964.

Sims, C.A., "Are Policy Models Usable for Policy Analysis," Quarterly

Review, Federal Reserve Bank of Minneapolis (1986).



APPENDIX

A.1 State Space Representation for Trends_ and Cvcles4

Suppose that the data series have rational spectral density and that
the dynamics of linear time-invariant data-generating process is such that
all the eigenvalues of the dynamic matrix A are not greater than one in
magnitude. We collect all eigenvalues of magnitude greater than some
critical value p into one class, C, as representing slower or longer-run

1

dynamic modes, and the rest into the other class C2. When there is a clear
gap between these two classes of eigenvalues, the exact value of does
not matter. For example, suppose that there is no eigenvalue of magnitude
between .89 and .97. Then any value of p between .89 and .97 will
classify all the eigenvalues into two mutually exclusive classes.

We next construct aggregate state vectors and their dynamic equations
by introducing a set of basis vectors which spans the right invariant
subspace of matrix A associated with the eigenvalues in Cl’ and another
set of basis vectors to span the left invariant subspace of A associated
with the eigenvalues in C2. This particular association yields what we
call common mode dynamic representation 15 of longer-run or slower-moving

components of the data series. Suppose that there are k eigenvalues of

Class 1. Then let P be n x k such that
AP = PA

where

4This section is based in part on Aoki (1988, 1989a).

5If the opposite assignment is made, we obtain an error-correction
model representation in the sense of Sargan (1964) of the original state
space model. See Aoki (Sec 11.4, 1990). .



P'P = Ik

and S be n X (n-k) such that
S'A = NS’
where

S'S = In—k'

Note that S'P = 0. Then, the original state transition equation for an n-

dimensional state vector, z., becomes in the new coordinate system

z, = Pst + Sft

ie., s, = P'zt and ft = S'zt are the two aggregate (sub-) state

vectors; the vector S, representing slow modes and ft representing fast

modes. From the dynamic equation z = Az _ + Bet, they evolve with time

t+l

according to

St+l -1 St -1
= [P,S]” " A[P,S] + (B,S]7 Be
t+l t
noting that
(p,s]7" -

'

the dynamic equation becomes

St+l P'AS} St !
= + , Bet
t+l Njfe

(L
which is related to the data vector by

Yo = CPs_ + CSf_+ e, (2)

Equation (2) expresses the data vector as the sum of the slow modes, fast
modes, and the innovation vector, and (1) is the recursive representation of
the dynamics. 1If there is only one eigenvalue closc¢ to one, then A is

that eigenvalue. Then S, is a scalar-valued "trend" term. If X =1,
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then s_ is a random walk term. (The residuals are weakly dependent.)

A practical procedure to produce the representation (2) is to use the
algorithm described in Aoki (1987) in two steps.6 We describe the proced-
ure for the case in which there is one eigenvalue A near 1. To eliminate
the effects of nonzero initial condition, we normalize each component of the
data vector by its initial value and take its logarithms, if all components
of the data vector seem to be trending. If not, only those trending
components are treated this way.

Let Ye be the data vector, thus properly scaled. The first stage of

the algorithm builds a model:

Ye = Cr1 + w

t
= Ar_ +
T+l et e
where Te is a common "trend" term (the S. variable in (2)), and v, is
the residuals. The series r. is the residual Terl - Xrt, where X 1is

estimated from {rt).

Since the variable T, removes the effects of the slower modes which
contribute to "nonstationary" appearance of the series, the residuals W
should be weakly stationary.

Let w be the sample mean of w_. The w_ - w 1is modeled again by

C t

the algorithm which produces

LA W o= th + e, (3)

Xepp = Fxo + CGep

. . . . . -1
and where e 1is the innovation in W Using L as the lead operator,

6An improved way of extracting a common trend series is mentioned in
Aoki (1990). Alternatives are discussed in Phillips and Hansen (1990) or
Park and Phillips (1988,1989).



=7 s i e i i
c e+l the transfer function from ¢ to w_ 1is given by

lI-F)_]'G. This is the closed form expres-

as in L—lr
(ignoring the w term) I + H(L™
sion for the shorter-run multiplier. The infinite series in L 1is the Wold
decomposition for W
The variable Tt captures the slow dynamic modes (trend) (if such
exists) common to the component series in the data vector Ve The matrix
C distributes or disaggregate these modes (trends) to individual series.

Therefore the residuals rt =7 - Aft is related to the innovation

vector e in w b r = ¢x_ + be with some and .
N N y c ¢ c N ith m ¢ n b

A.2 Stochastic Trends and Related Cycles

The modeling procedures described in Aoki (1990, chapter 9 and 11) are
used. The first stage of the model has been estimated taking one-dimension-
al state vector (n=l1) and selecting a Hankel matrix (J=K=1) to describe
the autocovariance of the observation vector. The one dimensional state was
selected because of the ratio between the first and second singular value is
large enough to justify modeling of the largest eigenvalue (.988) separately
as the nearly-integrated root of the state vector. The residuals from this
step are used in the second stage modeling as weakly stationary.

The first stage parameters are:

.44
A = .988, C = |.45
.78

The stochastic trend dynamics is disaggregated by the elements of matrix C
When a 3 x 3 matrix A 1is estimated from
Yepp T At ¢
using the least squares, the eigenvalues of the matrix A are .985, .977 »

j.015. This pair of complex eigenvalues has a period of over 400 quarters
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and this pair of complex roots could be spurious due to statistical errors
in data. This pair will be difficult to distinguish from two real
eigenvalues near .97 when sample errors are considered. In the state space
modeling, in addition to eigenvalue .988, .966, .908 are the eigenvalues
with magnitude. The roughly correspond to .9 or larger. We extract .70 +

.27, with a period of 17.3 quarters as the eigenvalue of magnitude .74.
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