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SELECTION, MUTATION, AND THE PRESERVATION OF DIVERSITY
IN EVOLUTIONARY GAMES
Abstract
Evolutionary models suggesting that in mixed-motive situations only a
single strategy, or only a single type of behavior, will ultimately prevail
cannot be regarded as satisfactory. Among the forces supporting diversity
of strategies and of behaviors are: (i) multiple and/or mixed evolutionary
equilibria, (ii) mutation pressure, and (iii) transient dynamic processes.
For the Prisoners’ Dilemma and the Chicken payoff environments, this paper
studies the degree to which "nice" and "mean" behaviors are supported by the
alternative reactive strategies TIT FOR TAT and BULLY. Only in exceptional
limiting cases does a single strategy or a single form of behavior come to
extinguish all others. TIT FOR TAT tends to support the predominance of
"nice" behaviors in Prisoners’ Dilemma (but not Chicken), while BULLY tends

to support a predominance of "mean" behaviors generally.



SELECTION, MUTATION, AND THE PRESERVATION OF DIVERSITY
IN EVOLUTIONARY GAMES

In mixed-motive situations combining elements of mutual as well as
opposed interests, human behaviors and the underlying strategies are highly
varied. Some people show a conciliatory talent, some are belligerent,
others give the impression of being aggressive without actually acting
violently, while still others may appear pacific yet respond forcefully to
attack.

Despite this observed diversity, a rather contrasting claim has gained
some acceptance in recent years: that, at least in long-run evolutionary
competition, a single optimal strategy does exist -- to wit, the simple
reactive strategy known as TIT FOR TAT.l TIT FOR TAT was the "winning"
contender in the well-known computer tournaments conducted by Robert Axelrod
(Axelrod [1984]). And in his evolutionary simulations extending the results
of those tournaments, TIT FOR TAT appeared to be driving all other
strategies to extinction.2 Accordingly, Axelrod’'s well-received book
strongly emphasized the optimality and superior survivability of TIT FOR TAT
in evolutionary competition.3 And while Axelrod’'s own work was limited to
the Prisoners’ Dilemma payoff environment, somewhat parallel claims have
been made for TIT FOR TAT in the Chicken and other payoff environments as
well (Lipman [1986]).

The present authors have shown, however, that contentions as to the
evolutionary superiority of TIT FOR TAT are valid only under a very narrow
"window" of assumptions (Hirshleifer and Martinez Coll [1988], Martinez Coll
and Hirshleifer [1991]).4 As just one example, TIT FOR TAT has very little
survival value when the evolutionary competition takes the form of an

elimination tournament rather than a round-robin tournament. The purpose of
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the present paper is not to offer further criticisms of the sometimes
excessive claims made on behalf of TIT FOR TAT, but instead to provide a
more systematic analysis of the different strategic elements tending to
generate and maintain diversity in evolutionary games.

It is important to distinguish diversity in strategies from diversity
in behaviors. Anyone following a "reactive" strategy like TIT FOR TAT must
have the capability of engaging in different behaviors: in the Prisoners’
Dilemma environment, for example, he must be able to make either a DEFECT
move or a COOPERATE move. Conversely, followers of different strategies may
find themselves engaging in the same behavior, as when TIT FOR TAT players
interact with ALWAYS-COOPERATE players in the Prisoners’ Dilemma
environment. The evolutionary survival of diversity in both strategies and
behaviors will be exploréd in the analysis that follows.

The two archetype strategies that define Prisoners’ Dilemma are the
"nice" strategy ALWAYS-COOPERATE (C) and the "mean" strategy ALWAYS-DEFECT
(D). (Henceforth we will drop the ALWAYS unless there is danger of
confusion.) This paper will place these archetype strategies in competition
with each of two reactive strategies: TIT FOR TAT and a less friendly one
called BULLY. We then do the same for the payoff environment of Chicken
(also known as Hawk-Dove).5 In Chicken the "nice" archetype strategy will
be called COWARD, the "mean" archetype DAREDEVIL (thus retaining the
convenient C and D abbreviations).6

The analysis concentrates on three elements tending to generate or to
maintain diversity in evolutionary processes:

(i) Multiple equilibria: Two distinct types of multiple equilibria

will be of importance in what follows. (a) Even if the postulated dynamic
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process would lead to a single determinate terminal state -- to what we call
an Evolutionary Equilibrium Point (EEP) -- from any given initial population

distribution, different starting points might lead to different terminal
EEP's. (b) Or, it may be that the dynamic trajectories are not attracted to
any single EEP but are attracted to what we call an Evolutionary Equilibrium
Region (EER), within which the population distribution may drift without
ever settling down to a unique outcome.

(ii) Mutation pressure: Mutations play an essential role in genetic
evolution, and are evidently also important in the evolution of social
behavior. The term "mutation pressure" suggests that mutation is
directional, and may operate more powerfully in some directions than others.
The directional effect of mutation pressure is generally to preserve
variety, whereas selectional pressures tend to destroy variety.

(iii) Transient vs. equilibrium states: In this paper we will be
devoting attention not only to final equilibrium but also to the dynamic
trajectories of change. Even if variety is destined ultimately to be
extinguished, it persists longer if the rate of dynamic change is slow. And
before equilibrium is reached, as will be seen, certain patterns of

diversity turn out to be more likely than others ("probability clouds").

1. GAMES AND STRATEGIES

Prisoners’ Dilemma and Chicken are best thought of as different payoff
environments within which a number of simple or complex strategies may be
chosen. The two environments have very similar structures. Matrices 1 and
2 show the respective payoffs, ranked ordinally from 1 (lowest) to 4

(highest). (Variations in the actual cardinal payoffs, so long as they
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leave these rankings unaffected, will generally not alter the qualitative
nature of the solutions.) 1In the basic 2x2 games involving the archetype

strategies only, each player chooses between a nice strategy C (COOPERATE in

Prisoners’ Dilemma, COWARD in Chicken) and a mean strategy D (DEFECT in
Prisoners’ Dilemma, DAREDEVIL in Chicken). The crucial difference between
the two environments is that in Prisoners’ Dilemma the worst outcome (payoff
of 1) is suffered by someone playing nice against mean (COOPERATE against
DEFECT), while in Chicken the worst outcome is incurred when the contenders
both play mean (both choose DAREDEVIL). So in Chicken the two players have
a stronger mutual interest in avoiding the D-D behavior combination.

[Table 1 about here]

Turning now to more complex strategies, as already indicated only the
reactive strategies TIT FOR TAT and BULLY will be considered in this paper.
However, our interpretation of the nature of the reaction differs from the
usual one in the literature. Evolutionary analysis necessarily deals with
multiple generations, that is, with the changes that selectional and
mutational forces bring about between one generation and the next. But
whether or not to assume multiple rounds of play in any given one-on-one
interaction is a question of fitting the model to the real-world situation.

IRR versus DRR: Consider first TIT FOR TAT. On the usual
interpretation, such a player initially makes a nice C move and then,
observing what the opponent does, in each following round mirrors the
latter’'s previous choice -- replying C to C and D to D. And a BULLY player
would open initially with a mean D move and then respond in each following
round with the reverse of the opponent’s previous choice.9 This usual

assumption, that reaction can be effectuated only in the next round of play,
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we call "deferred recognition and response" (DRR). However, an alternative
assumption is employed here, under which the reactive players have the
capacity of "immediate recognition and response" (IRR). Thus, the TIT FOR
TAT and BULLY players are assumed here to be able to detect immediately
whether the opponent is opening with a mean or a nice move, in time for
making the appropriate reply in the very same round.

Neither DRR or IRR is right or wrong of itself; which is the correct
assumption to make depends upon the situation investigated. Someone playing
DEFECT in Prisoners’ Dilemma or DAREDEVIL in Chicken would of course always
prefer to do so covertly, thus getting away with a mean move for at least
one round before the reactive player can respond. And if the actual real-
world situation permits such disguise, DRR would be the appropriate
assumption to make. But sometimes disguise is impossible and a mean move
must be made overtly. Consider the battleship construction race between
Britain and Germany in the years preceding World War I. Battleships being
too big to hide, mean behavior on either side (building more battleships)
had to be quite overt. Thus IRR would have been the appropriate assumption
for that competitive interaction. (If on the other hand covert mean play is
actually feasible, in real-world situations a reactive player might have to
observe behavior in several successive rounds before being able to recognize
the opponent’s type. Thus, the usual DRR assumption, that exactly one round
is both necessary and sufficient, is a very special one that could either be
too optimistic or too pessimistic.)10

The IRR interpretation permits a much simpler analysis, dealing only
with single-round rather than multiple-round play. Under IRR there is no

need to be concerned about the "shadow of the future," since a reactive
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player is always in a position to make the correct response here and now.
Evidently, the IRR assumption favors TIT FOR TAT, since under DRR a TIT FOR
TAT player’s opening move would leave him open to exploitation in the first
round. And of course IRR operates correspondingly to the disadvantage of
the archetype D (DEFECT or DAREDEVIL) players. So whenever TIT FOR TAT
loses out against overt mean play under our IRR interpretation, it would do
even worse against covert mean play under the more usual DRR assumption.

Employing the IRR interpretation, Matrices 3 and 4 show the effect of
adding TIT FOR TAT to the available menus of strategies corresponding to the
underlying Prisoners’ Dilemma and Chicken games, respectively. The only new
element needed is the payoff combination when two TIT FOR TAT players
encounter one another. Following the definition of TIT FOR TAT, each player
will make an opening nice (C) move, to which the other will immediately
respond in kind. Thus, as shown, the payoff-pair is (3,3) in each case.

Matrices 5 and 6 show the corresponding payoffs when BULLY is the
reactive strategy considered. Here the only new element to be determined is
the BULLY-BULLY payoff combination. Following the definition of BULLY, it
is reasonable to suppose that whichever player is in a position to go first
will open with a mean D move, to which the opponent will instantly respond
with the reverse nice C move. Since each player can expect to have the
opening move just half the time, the BULLY-BULLY payoffs are calculated as
the average of the outcomes of playing C against D and D against C.
Specifically, in Matrix 5 for Prisoners’ Dilemma the BULLY-BULLY payoffs are
calculated as (4+1)/2 = 2.5 for each player. In Matrix 6 for Chicken the

corresponding calculation yields (4+2)/2 = 2 for each.



2. THE MODEL
2.1 Dynamics

The essence of evolutionary dynamics is that more profitable strategies
gain increased prevalence over time while less profitable ones suffer
diminished representation in the population.

Denote as aij the payoff obtained from playing strategy I in an
encounter with strategy J. The mean return Yi to a player of strategy I
will be weighted by the proportions pj of the population actually playing
all the different possible strategies:

L Y.1 = szjalj

It will also be useful to define the global mean return Y received by a
population distributed over the different strategies:

(2) Y = zipiYi

Let Fi signify the relative "fitness" of strategy I, that is to say,

the difference between its return and the global mean return:

(3 Fi = Yi -Y

Evidently, the mean fitness averaged over the population as a whole will be
zero.

When the force of selection is considered alone, in each generation the

change in the fractional representation of strategy 1 is given by:

SEL

(&) /N

; = kpyFy = kp (Y, - 1)

- Here k 1is a parameter that reflects the sensitivity of the dynamic
process; the higher is k, the more rapid the change in the population

proportions.

Thus, in each generation the change in p; due to the force of

selection alone will be proportional to the sensitivity parameter k, to the
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current level of P and to the relative fitness of strategy I (the
difference between its mean return and the global mean return in the
population).12 It is easy to verify that (4) implies the logically
necessary property that, over the population as a whole, the sum of the

increments must be zero. In general, (4) will be a cubic equation in the

P, -

However, the evolution of the population proportions can also be
affected by the force of mutation. Let mij denote the rate at which an
individual playing strategy I changes to strategy J in any time-period. Let
N be the number of distinct strategies available. If N = 3, for example,

then the change in the representation of strategy 1 due to mutation,

AMUTpl, will be the algebraic sum of those who shift away from 1 and toward

2 or 3 and those who move toward 1 and away from 2 or 3. Thus:

MUT
(5) A77Tpy = s(myy 4 myg)py + MyPy ¥ MgyPy

There are of course corresponding equations for the changes in Py and

13
Py

Using the simplification that all the mij are equal to a common

mutation rate m, equation (5) reduces to:

MUT
(5a) A7 "py = m(1 - 3pp)

Generalizing, an equation valid for any strategy I, when there are N

distinct strategies, is:

(5b) AMUTpi - m(1 - Np,)

Mutation acts as a centripetal force, pulling the population

MUT

distribution toward interior solutions. If all the mij = m, then A P;

will be positive whenever 1 is less than 1/N and negative when P; <

1/N.
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Summing the effects of selection and mutation, the proportionate
representation of strategy I in the following generation, symbolized as pi’,
will be given by:

, SEL MUT

(6) p.’' = p; + A P; +4 P; = P, + kpiFi + m(1 - Npi)

1

2.2 Equilibrium concepts

Several different concepts of evolutionary equilibrium have to be
distinguished. Unfortunately, some of these involve considerable
mathematical difficulties. Rather than attempt a rigorous development and
comparison, we limit this discussion to an intuitive interpretation of the
fundamental ideas.

Any possible state of the population -- that is, any vector p = (pl'
p2,....pN), where ijj = 1 -- must be one of three types:

Vertex: only one strategy is represented, that is, p; = 1 for some I.

the proportions pj for all other Strategies being zero.

Edge: more than one strategy, but not all, have positive representation

(so that pj = 0 for at least one strategy J)

Interior: all strategies have positive representation.

A necessary though by no means sufficient condition for a state of the
population to be an evolutionary equilibrium is that the proportions P
are stationary under the dynamic process considered. A vector meeting this
condition is called a Critical Point (CP)

(7) pi' - pi, for all I Definition of CP
Or, combining (6) and (7):
(8) kpiFi + m(l - Npi) =0, for all 1 Conditica for CP

It follows trivially that:
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*If only the force of selection is operative, so that m = 0, the
condition for a CP reduces to:

(8a) piFi =0, for all 1 CP under selection alone
Thus, when only the force of selection is operative, all vertex states of
the population are CP’'s, while edge or interior states might or might not
satisfy the condition for a CP.

*If only the force of mutation is operative, so that k = 0, the
condition becomes:

(8b) pi = 1/N, for all 1 CP under mutation alone
Thus, under mutation alone there is only a single interior CP. This would
remain true even in the more general case where the mij are no longer
assumed all equal.

It follows that when the forces of selection and mutation are both
operative there may or may not be more than one CP, but all the CP’'s will
lie in the interior. The exact iocations will depend upon the ratio k/m,
that is to say, the relative weights of the selectional and mutational
forces.

As already indicated, not all CP’'s are actually evolutionary
equilibria, Evolutionary equilibria are points; or sets of points, which
are the stable termini of the dynamic evolutionary process considered. an
evolutionary equilibrium must be an attractor. All trajectories in its
(sufficiently small) neighborhood must lead into it, which of course implies
there will be no trajectories leading out.

In more formal language, for a Critical Point (CP) to be an

Evolutiona;x Equilibrium Point (EEP) it must have a convergency zone -- a

set of points from which all the dynamic trajectories lead into it -- that
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covers all the points in some (sufficiently small) neighborhood. Thus, an
EEP is immune to (sufficiently small) shocks: if the population proportions
were momentarily displaced, the dynamic process would work to restore the
population back to the equilibrium state.14

There is also a second type of evolutionary equilibrium, which we call

an Evolutionary Equilibrium Region (EER). Such a region is a set of CP's no

one of which is an EEP, but the region as a whole attracts all sufficiently
nearby trajectories.

Two other classes of equilibria, while less essential for our present
purposes, have been discussed extensively in the literature:

Nash Equilibrium (NE): A Nash Equilibrium in pure strategies exists
when, at some cell in the payoff matrix, neither player can gain by
deviating. An NE is stgict if the deviating player actually loses thereby,
or weak if the deviator merely does no worse.

Considering only the symmetrical NE's (corresponding to the cells along
the main diagonal of the payoff matrix), the NE condition can be expressed
as:

(9) FS(S) b-] Fj(S) Condition for symmetrical NE
This means that when all the population is following strategy S, that
strategy must have po less fitness than any other strategy J.l5

Only a partial listing of the relationships between this NE condition
and our other equilibrium concepts will be relevant for us here: (i) a
sérict NE along the main diagonal of the payoff matrix, i.e., where the
strict inequality in (9) holds, corresponds to a vertex EEP, in which only
the single strategy associated with that row and column of the matrix is

represented. (ii) A weak NE along the main diagonal may or may not be an
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EEP, or the end-point of an EER. (iii) If there is no NE along the main
diagonal, any NE must correspond to an edge or an interior state in which
the various pure strategies are being played by corresponding fractions of
the population. Any such edge or interior vector might or might not be an
EEP.

Evolutionarily Stable Strategy (ESS): The Evolutionarily Stable
Strategy concept (Maynard Smith [1976]) is a strengthening of the NE
condition. Considering once again only symmetrical states, the condition
for an ESS is:

FS(S) > Fj(S)
(10) or Condition for symmetrical ESS
FS(S) - Fj(S) and FS(J) > Fj(J)
That is, strategy S must have strictly superior fitness when the population
is all-S, or, if an equality with some other strategy J holds there, then S
must be strictly superior when the population is all-J. It can be shown

that the conditions (10) are sufficient but not necessary to identify an EEP

at a vertex.

2.3 Graphical Representation

In the 3-strategy case it is convenient to represent the possible
states of the population as points associated with an equilateral triangle.
In Figure 1, the vertex C represents a population distribution in which P
"= 1, that is, all the individuals are following the archetype nice strategy
C (COOPERATE in Prisoners’ Dilemma, COWARD in Chicken). Vertex D similarly
corresponds to Py - 1, where everyone plays the mea;, strategy D (DEFECT in

Prisoners’ Dilemma, DAREDEVIL in Chicken). Vertex.T corresponds to p,r = 1,
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representing a population all of whom are playing the reactive TIT FOR TAT
strategy. (When BULLY is substituted for TIT FOR TAT as the reactive
Strategy considered, the third vertex will be labelled B.) For the state
represented by any point in the triangle, the proportion Pe is shown by
the distance from that point to the opposite side DT, and similarly for the
other proportions P, and Pr- At the specific point X in Figure 1, the
associated distribution is (pc,pD,pT) - (.7,.2,.1).16

(Figure 1 about here]

Starting from any given point, the dynamic represented by equation (6)
génerates a series of points or trajectory, whose course and direction
depend solely upon the associated payoff matrix and the values of the
parameters k and @ -- representing the sensitivities to the forces of
selection and mutation, respectively. Figure 1 pictures a trajectory
starting at point X and ending at point Z. In each simulation to be
described, 200 evolutionary trajectories are pictured (beginning from
initial positions spaced randomly throughout the triangle). Every
trajectory is represented by 50 points, corresponding to 50 iterations of
equation (6). Arrows are used to suggest the general direction of the
trajectories within regions,

For given 'k and m, the separations between successive points along a
trajectory depend exclusively upon the profitability differences among the
strategies considered. For the trajectory in Figure 1 the points are widelv
separated to begin with, but as the final point Z is approached the
distances from one point to the next normally diminish, since the
profitability differences are becoming smaller. Of course, as k and nm

become larger, other things equal the dvnamic rates of change and therefore
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the separations between points increase.

Relatively dense concentrations of points or "probability clouds"
appear in certain regions of the diagrams. Those are regions attracting and
retaining, at least for a while, a large number of the trajectories passing
nearby. Such clouds tend to appear in the neighborhood of any Evolutionary
Equilibrium Point (EEP) or Evolutionary Equilibrium Region (EER). But even
a Critical Point that is not an EEP or part of an EER may have a probability
cloud nearby, owing to the stationarity property of equation (7) that

defines a CP.

3. PRISONERS' DILEMMA SIMULATIONS

In this section we picture and analyze the evolutionary survival of
diversity in the Prisoners’ Dilemma (PD) payoff environment. The available
strategies include the archetype strategies COOPERATE (C) and DEFECT (D)
plus one or the other of the reactive strategies TIT FOR TAT and BULLY. The
section following provides a corresponding analysis for the Chicken

environment.

3.1 TIT FOR TAT as reactive strategy in PD -- under selection alone

Figure 2 suggests the nature of the evolutionary process in the

Prisoners’ Dilemma environment, when TIT FOR TAT (T) is the reactive
strategy considered and only the force of selection is operative. Thus, the
m;tation coefficient is m = 0. The value k = .4 was employed for the
selection coefficient. The payoffs are as shown in Matrix 3.

[Figure 2 about here]

The curve LD in Figure 2 connects those points where Fd = 0, that is.
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where the relative fitness of the mean strategy D is zero. Its equation,
using the payoffs of Matrix 3, is:
2

where 0 < Po Py S 1 and of course P, = 1l - Pg - In the region above

Py
LD, the relative fitness of D is positive; Py is increasing, and all the
trajectories progress toward vertex D. Below the curve, Fd is negative
and all the trajectories move away from D.

The diagram Suggests that there is no interjor Critical Point. From
equations (6) and (7), such a CP would require that all the fitnesses Fi
equal zero. But it is easily seen from the Payoff matrix that the curves
corresponding to FC =0 and Ft = 0 would lie along the side TC of the
triangle. In other words, when there are no D players in the population,
COOPERATE (C) and TIT FOR TAT (T) have equal fitness. And of course, these
relative fitnesses must be zero since they equal the population average. It
follows that point L where Fd also equals 2zero, which is located at
(pc,pd,pt) = (.5,0,.5), is an edge Critical Point. But a moment'’s further
reflection reveals that each and every point along the TC edge is also a CPp
-- since, even where Fd differs from zero along this edge, condition (8a)
is still met because Py = 0. So the CP’'s in Figure 2 are the three
vertices and the entire side TC.

Let us now consider the evolutionary equilibria. Along the side TC,
looking first at the upper range LC, the diagram shows that all the
trajectories are moving away in the direction of vertex D. Thus this upper
range does not contain anf evolutionary equilibria, as is evident also from

the consideration that the DEFECT Strategy has positive fitness in this

range -- lying as it does above the curve LD -- while COOPERATE and TIT FOR
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TAT have zero fitness. But the lower range TL along the side TC does
represent a set of terminal points of the evolutionary process. However, as
the diagram suggests, every point in the range TL has a convergency zone

consisting only of one single curve (trajectory) leading to that point as

terminus. Consequently, no single point within the range TL is an

Evolutiona uilibri oint (EEP), but the range as a whole is an
Evolutionary Equilibrium Region (EER). And, as would be expected, there is
a somewhat diffuse "probability cloud" in the neighborhood of the EER
represented by the range TL.

Near the CP at vertex D, representing an all-DEFECT population, there
is also a faint probability cloud, particularly below the curve LD.
Nevertheless, vertex D is not an Evolutionary Equilibrium Point. As has
been seen, while above LD all the trajectories are moving toward D, below
that curve they are all heading away. More formally, an EEP must have a
convergency zone that consist; of all the points in its (sufficiently small)
neighborhood. Starting from D, a finite displacement of radius e, no matter
how small, would have some chance of falling below the curve LD -- thus
initiating a trajectory leading away from rather than back toward vertex D.
What generates the denser concentration below curve LD is that, whereas the
trajectories above that curve approach vertex D from a wide spread of
directions, those departing the close neighborhood of D are all funneled
into a narrow "channel of high probabilitv" below.
mwﬂww
In view of the wide attention his work has received, at this point we
digress to make a brief comparison of Axelrod’'s analysis (Axelrod [1984,

Appendix B]) with ours. So far as results are concerned, Axelrod contends
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that DEFECT (the D vertex) and TIT FOR TAT (the T vertex) are both
evolutionary equilibria -- more specifically, in his terminology, they are
"collectively stable" -- whereas in our analysis neither of the two is an
EEP (although the T vertex is the end-point of an EER).

First, with regard to the T vertex. Here the explanation for the
discrepancy lies in Axelrod’s inappropriate formal definition of what he
calls "collective stability.” (While a definition cannot be said to be
incorrect, it is inappropriate if it fails to describe the intended
referent.) From his non-technical discussion and interpretations, it is
evident that the evolutionary equilibrium concept Axelrod had in mind was
the same as ours: a strategy or distribution of strategies that is an
attractor and thus secure from invasions, i.e., is stable as against
sufficiently small shocks. However, his formal treatment defined a strategy
S as "collectively stable" whenever no other strategy S' has strictly higher
payoff in an all-S population. This corresponds to equation (9) above,
which is the condition for a symmetrical Nash Equilibrium (NE). But, we
have seen, (9) is not strong enough to define an evolutionary equilibrium.
It is true that a strict NE along the main diagonal is always a vertex EEP.
But a weak NE, while still "collectively stable" on Axelrod’s definition,
need not be an EEP. So Axelrod’'s "collective stability" is not sufficient
for an EEP.17 And specifically, the T-T strategy-pair in Matrix 3,
corresponding to the T vertex in the diagram, is only a weak NE since a
"COOPERATE player does equally well in an all-TIT FOR TAT population. Such a
weak NE could still be an EEP if had a convergency zone including all the
points in its sufficiently small neighborhood, but it can be seen in Figure

2 that the convergency zone for vertex T consists only of one single
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trajectory.

Next, with regard to the D vertex. Here, under the usual DRR (deferred
recognition and response) assumption used by Axelrod, in an otherwise all-
DEFECT population a single TIT FOR TAT player would actually do worse than
any of the D players, losing out in the very first round of a multiple-round
interaction and doing no better in any of the later rounds. Thus, under the
DRR assumption Axelrod is quite correct in claiming that all-D is an EEP:
there is a neighborhood of D in which all arbitrary shocks would initiate
trajectories leading back toward D. But as seen above, under our IRR
(immediate recognition and response) assumption the D vertex is not an EEP,

since its convergency zone fails to cover all the points in its

neighborhood.
3.2 TIT FOR TAT as reactive strategy in PD -- selection and mutation

The evolutionary outcome in Prisoners’ Dilemma + TIT FOR TAT, under
selectional forces alone, is therefore a range of population mixtures of the
COOPERATE and TFT strategies. Since this is an edge solution, or a set of
edge solutions, rather than a vertex solution proper, in equilibrium there
is diversity in strategies. But there is no diversity ip behavior, since
the two surviving strategies are both "nice": only cooperative moves will
actually be observed in equilibrium. To model the survival of both nice and
mean behaviors, in a previous paper we expanded the underlying payoff
environment to allow a strategy called PL‘NISHER.18 This paper employs a
different method of achieving an interior equilibrium, namely, introducing

mutational pressure.

Figure 3 shows the effect of allowing mutation as well as selection,
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the mutation coefficient being m = .01 while the selection coefficient
remains k = .4 as before. As follows from equation (6), if P, - 0 in
any generation for any strategy S, then in the next generation ps' = m.
Thus the edges of the triangle "reject" any nearby trajectory. The darker
probability clouds of the previous Figure 2, in the neighborhood of the
previous Critical Point at vertex D and of the Evolutionary Equilibrium
Region TL along the vertical axis, here have both been displaced somewhat
into the interior and converted into a single channel of high probability.
The vertex at D is no longer even a Critical Point, and there no longer is
an Evolutionary Equilibrium Region. And in fact, in Figure 3 there is only
a single Evolutionary Equilibrium Point, in the interior, located
approximately at (pc’pd’pt) - (.268,.056,.676).19

[Figure 3 about here]

The exact position of the EEP will depend upon the numerical values in
the payoff matrix, and also upon the ratio m/k which reflects the relative
strength of the mutational and selective forces. As the mutation rate m
increases relative to the selection rate k, the EEP will shift inward
toward the center of the triangle. This is pictured in Figure 4 where m
has been increased to .03 (with k = .4 remaining unchanged). Here the
trajectories are forming a definite "whirlpool"” in the neighborhood of the
EEP located approximately at (pc,pd,pt) = (.254,.164,.580).

(Figure 4 about here]

3.3 BU as reactive strate in PD

Building on the previous discussion, a more compact treatment will

suffice when BULLY replaces TIT FOR TAT as the reactive strategy played
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against the two archetype strategies of Prisoners’ Dilemma.

After replacing the T vertex by the B (all-BULLY) vertex, Figure 5 is
like Figure 2 in representing selectional forces alone (m = 0 while k =
.2). The probability cloud in Figure 5 is dense only in the neighborhood of
the all-DEFECT vertex. Indeed, it is easy to verify that all-DEFECT is now
the sole Critical Point CP and sole Evolutionary Equilibrium Point EEP.

That BULLY does so poorly is not surprising when we notice that its payoffs
in Matrix 5 are dominated by DEFECT.20 Figure 6 shows the effect of
introducing a mutatjonal element (m = .02) into the simulation, with the
anticipated consequence of shifting the probability cloud and the EEP
somewhat into the interior. The single EEP here is at the vector
(pc,pd,pd) = (.077,.832,.092).

(Figures 5 and 6 about here]

Summarizing for the Prisoners’ Dilemma payoff environment: (1) With TIT
FOR TAT as reactive strategy, under selection alone there is no single
Evolutionary Equilibrium Point (EEP) but rather an Evolutionary Equilibrium
Region EER representing a range of mixtures of TIT FOR TAT and COOPERATE.
Under our assumption of immediate recognition and response (IRR), an all-
DEFECT population is a Critical Point but not an EEP or part of any EER.
Since TIT FOR TAT and COOPERATE are both "nice" there is strategy diversity
but no behavioral diversity. When mutation pressure is introduced, a single
EEP does emerge, displaced somewhat into the interior from the EER under
selection alone. So mutation pressure generates a degree of behavioral
diversity as well as strategy diversity. (2) With BULLY as reactive
strategy, under selection alone there is only an all-DEFECT EEP; neither

strategy diversity nor behavior diversity exist in equilibrium. Introducing
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mutations displaces this equilibrium somewhat into the interior, generating
as before some diversity of both types. (3) Apart from the diversity that
persists in equilibrium, the transient non-equilibrium diversity displays
some systematic patterns: probability clouds near the various EEP's or EER's
and, with the introduction of mutation pressure, channels of high
probability that tend to attract all nearby trajectories in the course of

their dynamic progress.

4. CHICKEN SIMULATIONS

Figure 7 is the analog for the Chicken environment of Figure 2 for
Prisoners’ Dilemma, portraying selectional forces alone with TIT FOR TAT
serving as the reactive strategy (Matrix 4), but the diagrams have some
notable differences. Like Figure 2, Figure 7 contains a curve LD that
divides two convergence zones. (However, LD in Figure 7 is a separatrix,
whereas in Figure 2 the curve LD represented the set of points where Fd =
0.) Like Figure 2 again, the trajectories in Figure 7 suggest the existence
of an Evolutionary Equilibrium Region (EER) running along the side TC from
vertex T to point L -- located at (pc,pd,pt) = (.667,0,.333) and
surrounded by a loose probability cloud. However, what looks very different
from Figure 2 is the second, denser probability cloud in the region near
point N, at the population proportions (pc,pd,pt) = (.5,.5,0) representing
a mixture of COWARD and DAREDEVIL. The directions shown for the
;rajectories correctly suggest that the range TL is indeed an EER while
point N is indeed an EEP. Which of these multiple equilibria is actually

21

attained will depend upon the initial state of the pupulation.

(Figure 7 about here]



22

When mutations are introduced, we see in Figure 8 that (as in the
comparable Figures 3 and 4 for Prisoners’ Dilemma) only a single interior CP
survives, and it may be verified that this is also an EEP. The numerical
solution is (pc,pd,pt) = (.532,.357,.111). What is rather remarkable is
the difference between the fates of the two selection-alone equilibria after
mutation pressure is introduced. The EEP at point N in Figure 7
(representing a mixture of COWARD and DAREDEVIL) is displaced in Figure 8
only slightly into the interior. 1In contrast, the former EER in Figure 7
(representing "nice"-behavior mixtures of COWARD and TIT FOR TAT along the
TC edge) disappears entirely in Figure 8, having been converted into an
interior channel of high probability that leads inexorably to the EEP near
point N. We might say that the selection-alone EEP at N is "resilient,"”
while the EER along thé TC edge is not, with regard to the introduction of
mutation pressure; the former bends a bit, the latter falls apart entirely.

(Figure 8 about here]

Turning to BULLY as the reactive strategy in the Chicken environment
(Matrix 6), the picture in Figure 9 under selection alone (using k = .4)
leads to a unique edge EEP at point H located at (pc,pd,pb) = (0,.5,.5).
This equilibrium is a mixture of BULLY and DAREDEVIL, both involving "mean"
behaviors! In this case, introducing mutations (m = .02) leads only to the
expected minor change as shown in Figure 10, in which the single EEP is
displaced somewhat into the interior of the triangle, the solution being
(pc,pd,pb) = (.077,.461, .461).

[Figure 9 about here]
Summarizing for the Chicken environment: (1) With TIT FOR TAT as

reactive strategy, under selection alone there is-an Evolutionary
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Equilibrium Region EER representing a range of mixtures of TIT FOR TAT and
COWARD (paralleling the Prisoners’ Dilemma EER involving TIT FOR TAT and
COOPERATE) and an alternative Evolutionary Equilibrium Point EEP
representing a unique specific mixture of COWARD and DAREDEVIL players. So
there are two types of mixed equilibria, one involving uniformly nice
behavior and the other both nice and mean behaviors. However, introducing
mutational pressure eliminates the first of these equilibria, leading to a
unique EEP quite close to the second equilibrium in which TIT FOR TAT is
unrepresented. (2) With BULLY as reactive strategy, under selection alone
there is a single EEP mixture of BULLY and DEFECT (both involving mean
behaviors); introducing mutations leads only to a small shift of this
equilibrium into the interior. (3) As before, the dynamic process generates
probability clouds near the evolutionary equilibria and channels of high
probability that attract the dynamic trajectories before ultimate
equilibrium is attained.

Comparing the evolutionary outcomes. in the Chicken environment TIT FOR
TAT does not do nearly so well as in Prisoners’ Dilemma, while BULLY does
better. Correspondingly, in Chicken TIT FOR TAT is noticeably less

effective in eliciting or supporting survival of nice behavior generally.

5. SUMMARY AND DISCUSSION

(1) In the actual world a wide diversi-— of strategies and behaviors
persist. Our central aim has been to c¢xplore several factors that can
support this diversity, even in narrow.- specified environments like
Prisoners’ Dilemma or Chicken and with res:ricted menus of strategies.

Special attention was paid to three sources of diversity: (i) multiple
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equilibria and/or equilibria involving mixtures of strategies and behaviors;
(ii) random mutations, and (iii) the fact that equilibrium may be approached
only slowly, so that high probability may attach to some states or sets of
states that are not absolutely stable.
(2) In both Prisoners’ Dilemma and Chicken there is a nice strategy C
(COOPERATE in Prisoners’ Dilemma, COWARD in Chicken) and a mean strategy D
(DEFECT in Prisoners’ Dilemma, DAREDEVIL in Chicken). As against these two
archetype strategies in each environment, we considered two reactive
strategies: TIT FOR TAT, and a less friendly one termed BULLY. In contrast
with most recent analyses, we allowed reactive players the capacity of
"immediate recognition and response” (IRR). This worked to the advantage
particularly of TIT FOR TAT, since under IRR a TIT FOR TAT player cannot be
exploited by a D player even in the very first round.
(3) For a state of the population to be an Evolutionary Equilibrium Point
(EEP), under the dynamic process considered it must be a stationary state or
Critical Point (CP) that, in addition, has a convergency zone covering all

the points in its (sufficiently small) neighborhood. Intuitively, all

re

nearby trajectories must lead into it. There has been some confusion in ¢
literature as to the necessary and sufficient conditions for evolutionarv
equilibrium. In particular, Axelrod’s "collective stability" is not
sufficient for an EEP. We also defined an Evolutionary Equilibrium Region
(EER), for which the convergency condition is satisfied by the region as a
whole though not for any single point within it.

(4) Without recapitulating the detailed results, TIT FOR TAT in the
Prisoners’ Dilemma enviromment, while not as successful as has sometimes

been claimed, does support a tendency toward the predominance of nice
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behaviors. BULLY, in contrast, survives only thanks to mutation pressure

and otherwise has little influence upon the outcome. In the Chicken

environment, the picture is somewhat reversed: TIT FOR TAT has little
survival value, at least in the presence of mutation pressure, while BULLY
survives and supports a tendency of mean behaviors to predominate.

(5) When transient as well as equilibrium states are considered, the
possible diversity is of course greater. Transient diversity is not merely
random, and a number of systematic patterns can be observed. Most evident
are the "probability clouds" in the neighborhood of the various equilibria.
Perhaps more interesting, the dynamic process tends to generate "channels of
high probability" attracting the trajectofies along which the population
distributions progress on the way to equilibrium. Transient as against
equilibrium states take on enhanced importance if we think of a higher-level
process that extinguishes and regenerates populations as a whole at random
moments of time. If so, then our probabilistic diagrams can be regarded as
snapshots showing how the "population of populations" will be distributed
over transient and equilibrium states.

(6) Apart from the sources of diversity considered here, in the world at
large wider menus of strategies are available in both Prisoners’ Dilemma and
Chicken environments. Even more important, strategies are chosen and
behaviors take place not only under these payoff conditions but
simultaneously under many other payoff conditions as well. Thus there is no
reason to expect any single strategy like TIT FOR TAT to emerge as
universally superior. Rather, our models and simulations predict (as is in
fact observed) a great variety of strategies and behaviors coexisting, each

doing relatively well in some environmental contexts but not in others.
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ENDNOTES

lMarimon (1988) translates TIT FOR TAT as 0OJO POR 0JO.

2"Simulated future rounds of the tournament suggested that TIT-FOR-TAT
would continue to thrive, and that eventually it might be used by virtually

everyone." [Axelrod (1984), p. 55]

3Axelrod also correctly indicated a number of the necessary
qualifications. For one thing, if TIT FOR TAT is to be an equilibrium
evolutionary outcome the "shadow of the future” must be sufficiently great -
- the discounting of future payoffs cannot be too severe. Also, in his
analyses the all-DEFECT strategy always remained an alternative possible

evolutionary outcome (Axelrod [1984], Appendix B).

4Other authors, including Molander (1985), Boyd and Lorberbaum (1987),

and Mueller (1987), have obtained somewhat analogous results.

5The evolutionary equilibrium application to Chicken, under the
alternative name Hawk-Dove (Maynard Smith [1976]), actually preceded
Axelrod’'s work on Prisoners’ Dilemma. An early contrast of evolutionary
outcomes under Chicken and Prisoners’ Dilemma was provided in Hirshleifer

(1982). Lipman (1986) is a more recent comparison.

6Whi1e this paper examines only 3-way competitions, elsewhere
we have explored 4-way competitions in which both reactive strategies, TIT

FOR TAT and BULLY, are simultaneously in play against the two archetype
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strategies (Martinez Coll and Hirshleifer [1991]).

7Mutation has no close connection with another type of chance variation

known as "trembling hand" -- in which a player, while intending to follow
some particular strategy, with some small probability accidentally behaves
in a way consistent with a different strategy. In mutation the random
variation has the player permanently changing his type; in trembling hand,
the player's type remains the same but the actual executed move is subject
to variation. The latter comes closer to, though still is not quite the
same as, the "probability of error" (POE) considered in Hirshleifer and
Martinez Coll (1988). The latter concept, applicable only to reactive

strategies, referred to recognition errors rather than to execution "trembles."

8A number of other sources of variety could be generated by breaking
out of the bind of the very simple underlying Prisoners’ Dilemma or Chicken
game. Members of a single population might be interacting via several
distinct games simultaneously, or a single game could be played by
interacting populations (buyers encountering sellers, say). Or, it might be
possible to append additional archetype choices to either Prisoners’ Dilemma

or Chicken, for example the PUNISHER strategy mentioned below.

9 . .
There are actually four rather than only two simple reactive
strategies, since a double dichotomy is involved: (i) the initial move can

‘be hard or soft, and (ii) the reactive reply can either mirror or reverse

the opponent’s move. TIT FOR TAT combines a soft opening with a mirroring
reply while BULLY combines a hard opening with a reversing reply. The other
two possible combinations do not lack interest, but for reasons of space are

not considered here; under a somewhat different approach, they were analyzed
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in Martinez Coll (1986).

1OInterestingly, the biologist John Maynard Smith, who may be regarded

as the founder of evolutionary game theory, employed the DRR assumption in
one of his earliest articles (Maynard Smith and Price [1973]) but in later
papers has more usually used the equivalent of our IRR assumption. In
particular, the RETALIATOR strategy in Maynard Smith (1976) is the
equivalent of TIT FOR TAT with our IRR assumption; each round lasts long
enough for effective recognition and response to influence the payoff in

that same round.

11We are assuming that only pure strategies are ever employed.

12This is one of a number of possible variants of what has been called

"replicator dynamics" in the biological literature. The form of equation
(4) has the desirable property that ASELpi, the step size, approaches zero
as p; approaches extinction (goes to zero) or as P; approaches fixation
(goes to unity). Nevertheless, in any such discrete dynamic formulation the
possibility remains of a too-big step that would take P; outside the
allowable range between zero and one. In our simulations, we took care to
keep the sensitivity parameter k sufficiently small to avoid such an
eventuality. Alternatively, it would have been possible to employ a

continuous rather than a discrete dynamic equation, replacing Api with

the time-derivative dpi/dt.

13, . e ysos . c 1 oes . .
While the individual mutations are probabilistic, equation (5) is
expressed in deterministic form. This is equivalent to assuming a

population of infinite size.
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14 : ; . ; ;
Mutations are not momentary displacements in this sense; mutations

represent a systematic dynamic force in the evolutionary process.

15An NE off the main diagonal of the payoff matrix corresponds to a

non-vertex Critical Point involving a distribution of the population over
the associated row and column strategies. Adjusting equation (9) for such a
case, the S within the parentheses describing the state of the population
would have to be interpreted as a population distribution. We will not

consider such NE’s in this paper.

16This representation makes use of the geometrical proposition that,
for any equilateral triangle, the sum of the distances from any point to the
three sides equals the altitude. By setting the altitude equal to 1, the

three distances become the population proportions.

17And, comparing it with equations (10), we see that it is not

sufficient for an ESS either.

18Rather like bounty-hunters in the 0ld West, PUNISHER players make a

living from profitable encounters with DEFECT players (criminals). Thus, i»
an all-COOPERATE population, DEFECT is most profitable; in an all-DEFECT
population, PUNISHER is most profitable; in an all-PUNISHER population,
COOPERATE is most profitable. (Note the analogy with the children’s game o
Rock-Paper-Scissors.) It follows that when the PUNISHER strategy becomes
available in the Prisoners’ Dilemma environment, only interior solutions c.

maintain themselves even under selection alone.
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19 : ‘es : i
As an important qualification, the possibility of an EEP depends also
upon the values of k and m. If k were sufficiently large relative to
m, all the trajectories might be spiralling outward rather than inward, and
no EEP would exist. In this paper we will always be assuming, as pictured

in the simulation diagrams, that whenever an evolutionary equilibrium is

otherwise possible the dynamic parameters will be such as to permit its existence.

20A dominated strategy may sometimes survive as some positive
proportion of the population at a Critical Point or at points within an
Evolutionary Equilibrium Region, although not at an Evolutionary Equilibrium
Point. For example, COOPERATE (which is dominated by TIT FOR TAT in Matrix
3) comprises a fraction of the population in the Evolutionary Equilibrium
Region of Figure 2. The explanation is that, once in that region, COOPERATE
has the same payoff as TIT FOR TAT. However, in Figure 5 DEFECT dominates

BULLY increasingly as the all-DEFECT vertex is approached.

21These results are somewhat at variance with Lipman (1986). The main
explanations parallel those discussed in our comment on Axelrod: Lipman
follows Axelrod in (i) mistaking the so-called "collective stability"
concept (i.e., the Nash Equilibrium condition) for an evolutionary
equilibrium, and (ii) employing the "deferred response" DRR instead of the
"instant response” IRR assumption for the reactive strategies. (The first

of these is an analytical error, the second only a modelling difference.)
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Figure 1: Triangular representation of population states
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Figure &4: Prisoners’ Dilemma plus TIT FOR TAT -- selection and mutation
(m = .03)
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Figure 5: Prisoners’ Dilemma plus BULLY -- selection alone
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Figure 6: Prisoners’ Dilemma plus BULLY -- selection and mutation (m = .02)



TRAJECTORIES = 268 ~ e et

ITERATIONS = S8
SELECTION k = .4 S,
MUTATION » = 8

Heo
WawWO
Y X

Wew«

Figure 7: Chicken plus TIT FOR TAT -- selection alone
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Figure 10: Chicken plus BULLY -- selection and mutation (m =



