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Abstract

We formulate the notion of competitive behavior in a nonatomic exchange
economy as exploiting arbitrage possibilities. We show that arbitrage is an
alternative to the standard description of how equilibrium is achieved: compet-
itive equilibrium can be regarded as the elimination of arbitrage opportunities
rather than the elimination of excess demands. Characterization and existence
theorems for the arbitrage version of competitive equilibrium are given under
- various assumptions, e.g., with and without convexity of preferences, and com-
parisons with Walrasian equilibrium and the core are made.

We also make some historical connections between the arbitrage approach
adopted here and its antecedents in the work of Jevons and Edgeworth. Point-
ing out certain strengths and weaknesses in this earlier work, we reach a dif-
ferent position on just where the margin is that links ‘marginalism’ to the
competitive theory of value.



1. INTRODUCTION

What we think happens outside of equilibrium is important in understanding
the meaning of equilibrium. Walras’ tdtonnement, or groping process, remains the
standard way to think about the path to competitive equilibrium. Taking prices as
given, participants register their utility-maximizing and profit-maximizing quantities,
and prices adjust to eliminate excess demands. Not only does price-taking occur
at equilibrium, but away from equilibrium as well. While there is no particular
justification for this behavior away from equilibrium, it has nevertheless been quite
influential in reinforcing the view that competitive behavior means price-taking.

Suppose that out of equilibrium trades take place at different prices among dif-
ferent individuals and that these differences create arbitrage opportunities which are
then exploited. We show that competitive equilibrium may be regarded as the elimi-
nation of arbitrage opportunities rather than the elimination of excess demands.

There are two notable qualifications for this conclusion. The first is that there
should be numerous buyers and sellers, literally a continuum; otherwise, arbitrage
with small numbers generally has no definite implications for equilibrium. This qual-_~
ification is more or less implicit in the traditional idea that thick markets are required
for competitive equilibrium; therefore, it is only a qualification compared to the Wal-
rasian definition of equilibrium, where the price-taking hypothesis acts as a substitute
for thick markets. Note: While we rely on the continuum idealization of thick mar-
kets, we shall assume that an individual arbitrager can trade with only a finite number
of other market participants.

The second qualification is more substantive: arbitrage is based on ‘reservation
prices’ rather than market prices, i.e., an arbitrager can make offers to buy and sell
which exploit differences in individual tastes. In Section 7, we shall distinguish this
entrepreneurial form of arbitrage from the standard version which exploits only a
monotonicity hypothesis on tastes. Until Section 7, however, the term ‘arbitrage’ will
stand for ‘entrepreneurial arbitrage’.

There is a distinctive and appealing geometry associated with the arbitrage ap-
proach to perfectly competitive equilibrium which may be usefully separated into two
parts. The first is that arbitrage results in the formation of an opportunity set—the
arbitrager’s budget set—which is a convex cone. A similar condition characterizes
" (the standard version of) arbitrage in financial markets where traders are allowed
unlimited short sales (e.g., Ross [1978], Harrison and Kreps [1979], Werner [1987]).
In an exchange economy with a continuum of individuals, an arbitrager—whose scale
is infinitesimal with respect to the economy as a whole—may be able to deliver much
more of any commodity than his endowment would permit. The cone condition on
trading opportunities underlies the distinctive features of the arbitrage approach to



competitive equilibrium in contrast to Walrasian price-taking: in particular, prices
emerge as the supporting hyperplane to a convex cone, rather than as the supporting
hyperplane to a convex set.

Convex cones are flatter than convex sets, but they need not be flat, i.e., the
cone may be pointed. The second feature of the geometry is that for the definition
of perfectly competitive arbitrage equilibrium below, the arbitrage cone must be flat
because it is only in this way that we obtain the ‘emergence of the competitive budget
line’ as the arbitrager’s opportunity set. (Note: the need for the flatness condition
counters the presumption that in a continuum an individual will automatically be
able to buy or sell any amount at the same terms of trade.)

To emphasize the integrity of the arbitrage approach to perfectly competitive
equilibrium, we shall give a self-contained demonstration of the existence of arbitrage
equilibrium. We say ‘self-contained’ because our formulation of arbitrage equilibrium
will imply that it is a Walrasian equilibrium (plus some added restrictions), and we
could therefore simply appeal to known results. But this would give the arbitrage
approach the appearance of a mere adjunct to Walras’ method of demand-and-supply,
instead of the stand-alone alternative that it is.

-

Arbitrage is a story of what happens outside of equilibrium that fits the no-surplus
characterization of perfectly competitive equilibrium (Ostroy [1980], Makowski [1980]).
The no-surplus condition is related to other characterizations of competitive equilib-
rium having to do with marginal productivity theory (Makowski and Ostroy [1991a])
and efficient mechanism design (Makowski and Ostroy [1987, 1991b]), but the relation
we want to emphasize in this paper is with the core.

Core bargaining is much closer to what one might mean by an arbitrage approach
to competitive equilibrium than tdtonnement. With the core, prices are not taken
as given. Away from equilibrium, groups of individuals seek, in effect, to find better
terms of trade; and in a market with large numbers of individuals, this leads to the
‘emergence of prices’ (Edgeworth [1881], Shubik [1959], Debreu and Scarf [1963]).
Nevertheless, with the exception of Mas-Colell [1982], the core has been more com-
monly regarded as sui generis than as related to arbitrage. One possible explanation
is that the formation of coalitions for mutual gain used in the core does not directly
suggest the individualistic, non-cooperative activity associated with the term ‘arbi-
trage’.

Besides the fact that core bargaining is itself a form of arbitrage, other points
of contact are: the equivalence of the core and Walrasian equilibrium only holds in
general when there is a continuum of individuals (Aumann [1964]), and core equiv-
alence in continuum models has been demonstrated for finite ‘blocking coalitions’
(Hammond, Kaneko and Wooders [1986]) much as an individual arbitrager is only
permitted to deal with a finite number of other market participants.



That there is something special about the properties of the core in the Core
Equivalence Theorem—in comparison to the way the core is obtained in economic
models with small numbers—can be inferred from work characterizing the ubiquity
and size of blocking coalitions (e.g., Schmeidler [1972], Grodal [1972], Vind [1972],
Mas-Colell (1979]). The conclusions of this paper can be regarded as a continuation in
this line, except that the notion of core bargaining has been streamlined and carried
sufficiently far from its cooperative game-theoretic antecedents that it can be replaced
by a non-cooperative model of individualistic arbitrage. In fact, our formulation of
arbitrage equilibrium is, on the surface at least, closer in appearance to Dubey, Mas-
Colell and Shubik [1980] on Cournot-Nash equilibrium than it is to the core.

What are the distinctions between the core and the arbitrage approaches to com-
petitive equilibrium? At the conceptual level, we shall argue that the model of ar-
bitrage adopted here is a more parsimonious description of the competitive process.
Such a distinction would be relevant even when both approaches lead to the same
conclusion about the competitivity of a particular economy. But conceptual differ-
ences are also reflected in formal distinctions: the ‘emergence of prices’ in the core
does not have the same implications as the ‘emergence of the competitive budget line’ -
that takes place via arbitrage—core equivalence does not necessarily imply the flat -
cone condition underlying competitive arbitrage.

The arbitrage approach to equilibrium brings out certain issues that are tied to
the origins of marginalism. It emphasizes the interplay between the (traditional) com-
modity margin and another infinitesimal margin, that of the arbitrager relative to the
economy as a whole. Convexity of individual preferences implies that the boundary
of an arbitrager’s opportunity set is enlarged by making small trades with many indi-
viduals rather than large trades with a few. In the limiting ideal the (tiny) arbitrager
trades only an infinitesimal amount with an arbitrarily large number of individuals
at terms of trade reflecting individual marginal rates of substitution. This interac-
tion between the two infinitesimal margins, (1) the infinitesimal arbitrager and (2) the
infinitesimal quantities the arbitrager trades to exploit his position, leads to the emer-
gence of the linear opportunity set. Note the new role the commodity margin plays in
the arbitrage approach to equilibrium: Not only does the individual/arbitrager reg-
ulate his purchases based on his own marginal rate of substitution once equilibrium
prices are determined—this is the emphasis of the price-taking approach,—but it is
others’ marginal rates of substitution that determine the trading opportunities open
to any individual/arbitrager—this is its added role.

Rather surprisingly, the interaction between the two infinitesimal margins of analysis—
the commodity and the individual—and their relation to arbitrage made an appear-
ance at the very beginning of the marginalist era, in the work of Jevons [1879]. But
Walras’ theory of exchange, with its more exclusive emphasis on the commodity mar-
gin, took precedence and became the standard by which the contributions of his
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contemporaries were measured. Consequently, since Jevons’ treatment of equilibrium
in exchange does not rely on the Walrasian apparatus of demand and supply, it has
been regarded as distinctly inferior.

Contemporary interest in the core has paired Edgeworth with Walras, but Edge-
worth’s Mathematical Psychics owes more to Jevons than to Walras. Both the core
and the arbitrage approach described here may be viewed as alternative ways of filling
out Jevons’ theory of exchange, into a complete theory of perfect competition that
does not depend on Walrasian demand-and-supply and price-taking behavior. This
is documented in the concluding section of the paper which contains a discussion of
Jevons’ theory of exchange, its relation to the work of Edgeworth, and to the arbi-
trage approach adopted here. These remarks coupled with the results of this paper
will provide the background for the following conclusion: (entrepreneurial) arbitrage
establishes a different connection between ‘marginalism’ and the competitive theory
of value than that laid out by Walras and maintained up to the present.

In Section 2 we describe the basic model of a nonatomic exchange economy con-
sisting of a finite number of types of individuals having convex preferences. Section
3 gives the definition of arbitrage, the key Arbitrage Lemma and the definition of
perfectly competitive arbitrage equilibrium. In Section 4, we compare arbitrage equi-
librium with Walrasian equilibrium in the continuum and also make some comparisons
for a model with a finite number of individuals. In Section 5 we prove the existence
of perfectly competitive equilibrium for the model described in Section 2. In Section
6, the model is extended to include non-convex preferences and an infinite number of
types. Similarly, we extend the Arbitrage Lemma, the definition of equilibrium and
the existence theorem. Section 7 is devoted to historical and concluding remarks.
The Appendix contains omitted proofs of theorems. For a first reading, Section 6 and
the Appendix might be omitted.

A



2. THE MODEL

To focus on what is essential, we work in ‘trade space’ as opposed to ‘consumption
space’. The two are, of course, related since a person’s consumption is just the sum
of his endowment and his trade.

The basic building block is the characteristics of an individual of type ¢, which are
concisely described by the extended real-valued function v; : R! = RU {—o0}. This
function serves a double duty: Its effective domain gives the set of feasible trades for
i, namely,

Z; = {Z.' : ‘U,'(Z,') > —OO};

and the values of v; on Z; describe ¢’s preferences over his/her feasible trades. We
convene that z; will always represent a point in Z;; however other elements such as y;
or z} need not be contained in Z;. Our sign convention will be the usual one: positive
components of z; represent purchases and negative components, sales.

The following assumptions are made throughout:

(A.1) Z; = R% — {w;}, wherew; €RS .
(A.2) v; is continuous on Z;, with v;(0) = 0 (a normalization).

(A.3) v; is weakly monotone on Z;: for any 2; € Z;, z; > z; implies v,-(z:.) > vi(2:)-

Until Section 6, we shall also assume

(A.4) v; is quasi-concave.!

DEFINITION: The at-least-as-good-as set for individual i with respect to changes from
¥4 is
Si(z:) = {wi - vz + w) 2 vi(z)}-

The following construction gives a local characterization of the at-least-as-good-as
set near its origin. The cone generated by S;(z;) is

ray Si(z;) = {yi : for some a > 0, ay; € Si(z)}.

This is the set of directions in which it is possible to move from z; while remaining
in Si(z;). Thus, y; € ray Si(2) implies that there is some ap > 0 such that for all
a € [0, o), ayi € Si(z:) (this follows from the convexity of Si(z)).

1For any a € [0,1] and any z;, 2! € RS, vi(azi + (1 - a)z{) > min{vi(z;), vi(z])}. This inequality
applies whether or not z;, 2} € Z;.



For any set S, the smallest convex cone containing S is denoted ‘cone S’. We will
see that cone S;(z;) is the set of directions in which it is possible for an individual
arbitrager to move when dealing with many individuals of type ¢. The convexity of
Si(z;) guarantees that these directions coincide with ray S;(z;):

e ray Si(z;) = cone Si(z;)

(Rockafellar [1970], Corollary 2.6.3).

To assemble the building blocks v; into the description of an economy, let I be a
finite set of types. Denote by €& = {v;}ics the economy consisting of one member of
each type. Contrast this with the economy consisting of a unit mass of each type,
denoted by E = {v; - 1}ic;. Under the hypotheses of our model, both economies will
have the same Walrasian equilibria, but the theorem to be established below holds
only for E and not for £.

Let z = (z;) be an allocation for £. As a simplification to emphasize comparisons
between £ and E, we shall assume that members of the same type will receive identical
allocations. (This assumption is eliminated in Section 6.) Denote an allocation for
the economy E by z = (z;) where z; = 2; - 1. We use boldface to distinguish the
fact that z;, the allocation to a single member of type %, is a vector of infinitesimal
magnitudes compared to z;, the allocation to all members of type .

DEFINITION: The set of feasible allocations in £ is
Z={z=(z,-) Vi, €2 & 22520}.
Therefore the set of feasible (equal-treatment) allocations in E is

Z={Z=(Z;):Vi, z;=2-1 2,€Z; & ZZ,"1=0}.

Because each Z; is closed, convex and bounded below, Z is compact and convex.
Unless the contrary is explicitly stated, from now on we assume z € Z.

There are three orders of commodity magnitudes in E:
e the vector z; which is on the scale of the economy as a whole;

e the vector z;, the scale of an individual, which is infinitesimal with respect to
the economy as a whole;

e the vector dy;, an infinitesimal compared to z;.



‘Marginal analysis’ is traditionally associated with the commodity margin, the third
and smallest magnitude; however, the economy E introduces the possibility of making
the second magnitude, i.e., the vector z; associated with the individual, the infinites-
imal margin of analysis. In the following section, we show that the individual margin
can be combined with the commodity margin to yield an arbitrage approach to per-
fectly competitive equilibrium. Our method will be to approximate the commodity
margin dy; on the boundary of S;(z;) by feasible directions in cone Si(z:)-

3. ARBITRAGE AND EQUILIBRIUM

Arbitrage is usually associated with opportunities for trade due to differences in
market prices. Here we consider arbitrage as an activity exploiting differences in
reservation prices.

At the allocation z the opportunities for an individual arbitrager to make deals in
the economy E are given by

Ki={y:y=>_Y v, and for each i, —y;, € Si(z)}.
Tk

The trade y is possible at z if it can be decomposed into a sum of trades among
individuals each of whom would be no worse off than they are at z. (Given our sign
conventions on net trades, if an individual gives —y;, to someone of type i then he
gets y;, for himself.) '

Assume that arbitragers are individuals who also trade on their own account.
Then, an individual of type ¢ will not be satisfied if the opportunities for arbitrage
are such that there exists a y in Kz for which

v,-(z.- + y) > U,'(Z,').

Also assume that any arbitrager can individually recontract, i.e., he can drop his
contracted trades z; to return to his endowment (no-trade) position w; and begin
arbitraging from there rather than from z;. Then, i also will not be satisfied with z;
if there is a y in Kz such that

vi(y) > vilz).
This leads to the following definition.

DEFINITION: The allocation z is an arbitrage equilibrium for E if for each ¢,

vi(z:) > vi(z;) for all z; € Kz U Kz + {2}



An arbitrage equilibrium is an allocation z which no individual arbitrager can
improve upon. The definition is an amalgam of core-like and non-cooperative equilib-
rium concepts. In its emphasis on individual behavior, it is evidently non-cooperative;
whereas in its out-of-equilibrium behavior, it is reminiscent of the core in the sense
that the arbitrager is organizing an improving coalition. But this is not an improving
coalition in the usual sense: for the core, an improving coalition with respect to z
requires that its members be able to do better by withdrawing from the economy
and arranging another trade using only their own resources. This may involve group
recontracting since several or even all the members of the coalition may have to drop
their contracts in z to improve upon it for themselves. By contrast, the individual
arbitrager does not suppose his new trading partners could also recontract. Neverthe-
less, we shall see that individual arbitrage suffices for reaching perfectly competitive
equilibrium in all environments for which such an equilibrium exists. This will be the
theme of Section 4, after a discussion of the properties of agents’ arbitrage possibili-
ties.

REMARK 1: Formally, our restriction to individual recontracting amounts to a reduc-
tion in the number of possible improving coalitions, and therefore arbitrage equilibria _
are a superset of the core. To demonstrate, suppose y € Kz and

ki
(a‘) y= Z Z Yies
i k=1
where —y;, € Si(z;) for each 1. Let r = max;{k;}. Note that, given equal-treatment,
any z can be realized by trade within finite groups of individuals involving one of
each type. Therefore,

(b) Z 2 Ri, = 0.
i k=1

Set y;, = 0 for k = kiyq,...,r. Hence, since 0 € S;,, vi(z, — vi,) 2 vi(2i,) for all ¢.
Further, from (a) and (b), y+ ¥; z=1(2i, — ¥i,) = 0. Thus, individual recontracting
with respect to z may be regarded as the formation of a coalition organized by a
single arbitrager, say j, and at most r of all types. In core terminology, it is at least
a weakly improving coalition if v;(y) > vj(z;). For more on the relation between
arbitrage equilibrium and the core, see the discussion centering around Example 1A
in Section 4.

The Properties of K,

In a model with a small number of individuals such as £, the arbitrage oppor-
tunities associated with an allocation would reflect the properties of each S;(z;); for
example, since each S;(z;) is not typically a cone, the set of arbitrage opportunities
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would not be a cone (see Section 4.2). However, in E the following result shows that
the global curvature properties of each S; are flattened out in the aggregate. This
flattening phenomenon is the origin of arbitrage pricing.

3.1 Arbitrage Lemma with quasi-concavity and finite types
Kz = — ¥ cone Si(z;), a convex cone containing the origin.

Proof: Suppose y € ¥ cone Si(z;). Then y = ¥ y;, where each y; = r¥/, ¥} €
Si(z:), i > 0. Since Si(2;) is convex, without loss of generality we can assume each
r; = n, an integer. Letting —y;, = y/ for each i, k =1,...,n, shows —y € Kj3.

Conversely, if ~y € Kz then —y = ¥; 7., —v,. Since each y;, € Si(z:), by
convexity p_; 2y, € Si(z); or Tipyi, € cone Si(z;). Hence y = ¥, Ty, €
Y cone Si(z;).

Finally, since K is the sum of convex cones containing the origin, it is also such
a cone. O

The Arbitrage Lemma says that the traditional margin of analysis does play an
important role in the description of arbitrage opportunities in E in the sense that these
opportunities depend on the local curvature properties of each S;(z;). An explanation
can be given in terms of (the ordinal version of ) diminishing marginal utility. Suppose
—¥; € Si(2;) so that an arbitrager would find it impossible to make the trade y; with
an individual of type i. Nevertheless, from the convexity of the at-least-as-good-as set
it may be the case that —y;/2 € Si(2;), i.e., by trading half this amount with each of
two members of the same type, an arbitrager may be able accomplish what he could
not with one. Thus, the prospects for making y € Ky are enhanced if y = ¥; ¥ vi,
is broken up so that y;, = ay; for each i, where « is small. Evidently the tradi-
tional assumption of frictionless trade is essential for this idealization. However, the
construction of K does not permit unlimited arbitrage possibilities—the arbitrager
cannot trade infinitesimal quantities dy;, with a continuum of individuals. But the
arbitrager can come arbitrarily close to this ideal since, by the Arbitrage Lemma, the
closure of Ky includes —bdry S;(2;) for each type .

Consider the following alternatives: either
(A) Kz n Rs__‘, # 0 or
(NA) Kz n Ri_+ = @.

Condition (A) says that by “buying low and selling high” it is possible for an
arbitrager to make unlimited profits: If y 3> 0 is in K then so is ry for any r > 0
(recall K3 is a cone). Given the monotonicity of preferences, this implies i can achieve
unbounded utility. Therefore, a necessary condition for arbitrage equilibrium is that

9
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z must satisfy (NA).

DEFINITION: A no arbitrage allocation is a z such that Kz N RfH = 0. Zya denotes
the set of all such allocations.

The alternatives (A) and (NA) hold no matter what the nature of the set Kj.
But the fact that arbitrage possibilities for an individual in E are given by a convex
cone containing the origin has immediate implications for commodity pricing: they
follow from the dual notion of the polar of K5 defined as

K; ={p:pK; < 0}.

(Note: this set always contains the origin.)

Evidently, when Kz N R‘+ + # 0 and therefore arbitrage profits are possible, K7 =
{0}. The well known converse property for polars shows that commodity prices emerge
from the elimination of arbitrage possibilities.

DEFINITION: An element p € K;\{0} is a no arbitrage price vector.
The following is the basic separation theorem for convex cones.

Lemma 3.2 (Existence of no arbitrage prices) Kj # {0} if and onlyifz € Zya.

We have emphasized the flattening phenomenon associated with arbitrage as evi-
denced by the fact that Kj is a convex cone rather than merely a convex set. Convex
cones differ from convex sets (with boundary point at the origin) in that any bound-
ary point of the cone lies on one of its supporting hyperplanes through the origin.
More formally, let H, = {y : py = 0} be the hyperplane perpendicular to p; then for
any y € bdry Kj, there is a p € K3\ {0} such that y € H,. Nevertheless, the cone
K itself need not be flat.

DEFINITION: Among z in Zya, K3 is flat if bdry K is a hyperplane; otherwise, K5
is pointed.

The definition of flatness is equivalent to any of the following conditions: (i)
bdry Kz = H, for any p € Kz\{0}, (ii) dim K = 1, or (iii) the boundary of K,
is smooth at the origin. Because K3 is a convex cone, when it is smooth its entire
boundary coincides with the tangent hyperplane H,. Therefore, when Kj is flat, no
arbitrage prices (an element of K3\{0}) literally characterize trading opportunities.
In contrast, when Kj is pointed, arbitrage prices lose this distinctive feature and play
a role similar to that of a supporting hyperplane to a convex set whose boundary
merely lies in one of its half-spaces, but not necessarily on the hyperplane.
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The following is a characterization of no arbitrage allocations.

DEFINITION: The allocation z is weakly Pareto efficient if there is no z € Z such
that v;(z;) > v;(z;) for all 4.

3.3 No Arbitrage/Efficiency Lemma z € Zy, if and only if z is weakly Pareto
efficient.

Proof: 1f z is weakly efficient then 0 € bdry ¥ Si(z;), and hence there is a p > 0
such that pY° Si(z;) > 0. Since 0 is in each S;(2;) set, this can be strengthened to
pSi(z:) 2 0 for each i. Or, since cone S;(z;) is contained in the half-space {y : py > 0}
(another convex cone), p - cone Si(2;) > 0 for each i. Summing, p ¥ cone S;(z;) > 0
or pKz < 0. That is, Kz NRY, = 0.

Conversely, z € Zna implies there is a p > 0 such that —pK; = p¥ cone Si(z;) >
0. Hence pY. Si(z;) 2 0 or 0 € bdry ¥ S;(z;). That is, z is weakly efficient. O

4. PERFECTLY COMPETITIVE AND WALRASIAN EQUI-
LIBRIUM

We will be interested in economies for which Ky is flat (for z € Zy, ). The flatness
of Kz may be interpreted as a necessary and sufficient condition for any individual
arbitrager to have a linear opportunity set or, equivalently, to face perfectly elastic
demands and supplies (PED) at prices p, where p € K3\{0}. To see this observe
that given flatness the arbitrager can buy or sell as much as he likes at p; i.e., for
any trade y such that py = 0, the rest of the economy would be willing to trade y
(or something arbitrarily close to y) with him. (More formally, given flatness, y € H,
implies y € bdry Kj; hence there are trades y;, such that ¥; ¥ v, is in K; and is
arbitrarily close to y.) Identifying perfect competition with perfectly elastic demands
and supplies leads to the following definition.

 DEFINITION: The allocation z is a perfectly competitive (arbitrage) equilibrium for E
if z is an arbitrage equilibrium with K flat.

To compare perfectly competitive with Walrasian equilibrium, define the (excess)
demand correspondence

Di(p) ={zi:pzi =0 & wvi(z)=max,{v(y):py=0}}.
DEFINITION: A Walrasian equilibrium for E is a pair (p, z) such that
o (price-taking utility maximization) z; € D;(p) for each ¢, and
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o (market clearance) 3" z;-1 = 0.

In contrasting the two definitions, the main difference is the way in which price-
taking acts in Walrasian equilibrium as a substitute for the background conditions of
a perfectly competitive market, namely, the flatness of the arbitrage cone or, equiva-
lently, the linearity of the arbitrager’s opportunity set.

REMARK 2: It would have been possible to call the above a perfectly competitive
equilibrium allocation rather than merely a perfectly competitive equilibrium because
it is only quantities that are explicitly recognized. Nevertheless, and to emphasize
the contrast with Walrasian price-taking, the explicit addition of prices would be
redundant because equilibrium implies the elimination of arbitrage opportunities, and
it is from the elimination of these opportunities that the determination of equilibrium
prices immediately follows. The redundancy of prices here in comparison to their
primary role in the Walrasian tradition is, of course, an obvious consequence of price-
taking in the latter where there is no other means to adjust to disequilibrium.

Define L, as the smallest linear subspace containing the set {2i}ier. Except for-
scale this is identical to the smallest linear subspace containing {2;}cs, but Lz is to
be thought of as on a scale comparable to Kj, i.e., on a scale at which an individual
trades, rather than on a scale comparable to the economy as a whole.

Some formal properties of perfectly competitive equilibrium are:
Theorem 4.1 (Characterization of perfectly competitive equilibrium) The
following are equivalent:
(PCE.1) z is a perfectly competitive equilibrium for E
(PCE.2) (p,z) is a Walrasian eguilibrium for every p € K2\{0}, where dim K¢ =
(PCE.3) Lz C bdry K3, a hyperplane
(PCE.4) K3\{0} L Lj, where dim K = 1.

Proof: (PCE.1) = (PCE.2): First we verify that pz; = 0 for each i. Since by
feasibility 3" z; = 0, if the contrary then pz; < 0 for some i. Then there would exist
Y > 2 with py < 0. But then, by monotonicity, vi(y) > vi(z); and by flatness
y € Kj. Contradiction.

Next we show 2; € D;(p) for each i. If the contrary then there would exist an i
and y such that v;(y) > v;(2;) with py = 0. Since v; is continuous and py # min pZ;
(recall w; > 0), there would then be a g close to y satlsfymg vi(y') > vi(2;) and
py <0 (soy € Kz). Contradiction. -
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(PCE.2) = (PCE.1): We need to prove that z is an arbitrage equilibrium. Since
z is Walrasian, vi(z;) > v;(y) for all y such that py = 0, hence for all y € Kz (using
dim K2 = 1 implies Ky is flat). To show vi(z) > vi(z + y) for all y € K3z, observe
that this statement follows from v;(z;) > vi(2z; + y) for all y such that py < 0 (using
flatness). But this is just equivalent to v;(2;) > vi(y/) for all ¥ such that py <0
(using pz; = 0).

(PCE.3) <= (PCE.4): This readily follows from the fact that bdry Kz is a
hyperplane H,, if and only if dim K =1 and p € K3\{0}.

(PCE.4) « (PCE.2): It suffices to prove that (p,z) is Walrasian if and only if
p L Ly, where p € K3\{0}.

If (p, z) is Walrasian then pSi(z;) > for all i. Hence p - cone Si(z;) 2 0 for all #;
or summing, pKz < 0. We conclude that p € Kj3. Since pz; =0 foreach i, p L Ly is
obvious. Conversely, p € K2\{0} implies p - cone S;(z;) > 0 for each i, or pSi(z;) 2 0
for each i. Combining with p L Ly shows

pz; =0 < pSi(z;) for each i.
Since pz; # min pZ; (recall w; > 0), a standard argument now shows that z; € D;i(p)
for each ¢. O

The characterization of Walrasian equilibrium is somewhat different.

Theorem 4.2 (Characterization of Walrasian equilibrium) The following are
equivalent:

(WE.1) (p,2z) is a Walrasian equilibrium for E
(WE.2) p L Ly for some p € Kz\{0}.

Proof: See proof that (PCE.4) <= (PCE.2), above. O

The contrast is revealed in the comparison between (PCE.4) and (WE.2). The
latter says that at least one nonzero element of the polar is orthogonal to Lz, while
the former adds the requirement that there is no other linearly independent element in
the polar. Since the uniqueness condition, dim K3 = 1, will often hold when z satisfies
(NA), we can say that there is often no difference between perfectly competitive and
Walrasian equilibrium in the class of economies such as E (see, below, for a more
extensive discussion). Nevertheless, when there is a discrepancy it occurs because
Walrasian equilibrium does not exhibit “perfectly elastic exchange opportunities”.
The following example illustrates this point.

EXAMPLE 1. Consider the 2-good, 2-type economy in Figure 1. The Edgeworth box
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uo]. =(0,2)

p=(1,1)

Figure 1: A Walrasian equilibrium that is not perfectly competitive

should be thought of as representing the Walrasian equilibrium trading between a
typical pair of individuals of types i and j. Since cone Si(z;) = Si(z;) = R2 and
cone S;(2;) = Sj(2;) = R, in this example K; = R% and K? = R%. Hence the
Walrasian equilibrium illustrated is not a perfectly competitive equilibrium. (Recall
from (PCE.1-2) that a perfectly competitive equilibrium is a Walrasian equilibrium
with dim K3 =1.)

As our discussion would suggest, this Walrasian equilibrium fails to satisfy PED.
If any individual of type i were to try to switch from 2; to any trade y # z; on
his budget line Hj, no other individuals would be willing to accommodate him since
such a trade would make them worse off than at z (only y € Kz = R2 would be
acceptable to others). Similarly if any individual of type j tried to switch. Hence
individual arbitragers do not face linear opportunity sets.

Often failures of PED are associated with the implausibility of price-taking behav-
ior. This also is illustrated by the example. Continuum economies are idealizations of
economies with a large but finite number of individuals; similarly, a nonatomic indi-
vidual is an idealization of an individual with arbitrarily small but positive mass, i.e.,
an ‘infinitesimal individual’. In this spirit observe that if any infinitesimal (nonnull)
mass of type i traders were to sell anything less than one unit of commodity 2 then
market clearing prices would jump to p’ = (0, 1)—the relative price of commodity
2 would jump to infinity. (Any price vector in the unit simplex is market clearing
when each type i individual sells exactly one unit. Thus any decrease in the supply
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of commodity 2 would create an excess demand unless its price jumps as indicated.)
Similarly, if any infinitesimal mass of type j traders were to sell anything less than one
unit of commodity 1, its relative price would jump to infinity. This illustrates that
even with a large number of buyers and sellers, a single (infinitesimal) seller may be
able to profitably influence market clearing prices—when K is not flat,—and further
motivates our interest in large economies with flat arbitrage cones.

Like the core, arbitrage equilibrium is a stability condition on z under which
there would be no further departures based on arbitrage opportunities alone. But,
as already noted in Remark 1, arbitrage equilibrium is a weaker stability condition.
Specifically, since 0 € Kz, the definition of arbitrage equilibrium implies that for any
arbitrager of any type i, vi(z;) = sup v;( Kz + {2:}). But in the absence of a flat cone,
it remains possible that v;(z;) > supv;(K3); that is, z; may be strictly better than
anything ¢ can realize starting from w; via arbitrage. Indeed, in economies without
flat cones, arbitrage equilibria need not even exhibit a Law of One Price, much less
be in the core. This is illustrated by the following variant of Example 1.

EXAMPLE 1A. Divide the two types into four equal-sized types called i,, %, and j,,
Js. Give the members of i, and j, the allocation at A in Figure 1 and the members
of i, and j, the allocation at B, so that i, is treated worse than the twin ¢, and
j» worse than j,. Call this allocation Z. Note that Kz = Kz = R%. Therefore,
v, (%,) = supv;, (K + %,) > supv;, (Kz) = 0. Similarly, Z satisafies the conditions
for arbitrage equilibrium for each ¢, j,, and j,. To improve upon Z requires both a
type i, and j; to drop their contracts in Z; in the terminology of Remark 1, it requires
group recontracting, not just individual recontracting.

The example illustrates the importance of the flat cone condition for the con-
cept of arbitrage equilibrium. In environments with flat cones—heuristically, ones
in which everyone truly faces perfectly elastic demands and supplies—we have seen
that individual arbitrage suffices to ensure not just Walrasian equilibrium, but per-
fectly competitive equilibrium. The conclusion is that the remarkable implications of
arbitrage come from its application to a particular family of environments.

It is interesting to observe that if preferences were smooth rather than kinked
at z in Figure 1 then K; would be flat with boundary H,. Hence, each individual
arbitrager would face a linear opportunity set. This follows from the following char-
acterization. For any set S with 0 € S, denote by N(S) the normal cone to S at zero,
ie., N(S) = {p: pS < 0}. Of course, if S is a cone then N(S) = S°. Let Sz denote
the aggregate at-least-as-good-as z set for the economy E, i.e., Sz = ¥ Si(2:)-1. This
is a convex set with zero on its boundary if z € Zys. An element of —N(Sz)\{0} is
frequently referred to as efficiency prices.

4.3 No Arbitrage/Efficiency Price Lemma Kj = —N(Sz).
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Proof: The Arbitrage Lemma 3.1 implies that p € K ifand only if p ¥~ cone S;(z;) >
0. In turn, the latter implies p 3 Si(z;) > 0 or pSz > 0.

Conversely, pSz > 0 implies pS;(z;) > 0 for each i (since 0 is in each Si(z;) set);
hence p - cone S;(z;) > 0 for each i. Summing, p ¥~ cone Si(2;) > 0 or pKz < 0. That
is,pe K;. O

Hence, it immediately follows that:

Corollary 4.4 K is flat if and only if Sz is smooth at the origin.

REMARK 3: Even though K§ and —N (Sz) are equivalent, it is worth emphasizing
that they represent support theorems for different kinds of convex sets. The contrast is
sharpest in environments where no arbitrage prices represent the tangent hyperplane
to a convex cone that is smooth because it is here that the supporting hyperplane
and the boundary of the set being supported coincide. In this case, arbitrage leads
to the “emergence of the budget line”.

The geometric intuition bekind the “cmergence of the budget line” is that when -
the aggregate at-least-as-good-as z set is smooth at the origin then it is seen as a linear
opportunity set H, by each individual, whose size is infinitesimal relative to Sz and
who is operating around the origin of the latter set. The construction of the arbitrage
possibilities Kz amounts to a blow-up or magnification of the trading opportunities
implied by S; as seen from the individual’s perspective. See Figure 2. This picture is

Figure 2: The “emergence of the budget line” under perfect competition

offered as the arbitrage alternative (or at least complement) to the familiar, partial
equilibrium Marshallian picture of a perfectly competitive market. For the latter, the
left panel of Figure 2 would be replaced by a downward-sloping market demand and
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an upward-sloping market supply curve; and the right panel, by a perfectly elastic
demand (or supply) curve with height equal to the market-clearing price derived from
the left panel. In either version, the left panel illustrates the market perspective while
the right illustrates the (infinitesimal) individual’s perspective.

4.1 THE ARBITRAGE PATH TO EQUILIBRIUM

Let
Zir = {z € Z : v;(2) 2 0 for all i}

represent the subset of feasible allocations that are individually rational, i.e., that
leave each individual at least as well off as with his endowment/no trade allocation.

DEFINITION: Call E a perfectly competitive economy if it satisfies the flatness condi-
tion

(F) K3 is flat for any z € Zna N Zir.

Like core bargaining, arbitrage gives a story of how the economy gets to perfectly
competitive equilibrium. First, it leads to a position on the locus of efficient, individ-
ually rational allocations: If Kz N RY, # 0 then individual arbitrage can generate
unbounded profits in moving away from z. Further, since agents will always individu-
ally recontract away from any z & Zr, a necessary condition for arbitrage equilibrium
is that z € Zna N Zir. Second, once a position on the locus of efficient, individually
rational allocations is reached, individuals will only settle for a perfectly competitive
equilibrium allocation: For any z € Zya N Zg, there are unique prices p defining
each individual’s remaining arbitrage possibilities (p € K3\{0}). Unless pz; = 0 for
each individual, pz; < 0 for some individuals (recall feasibility implies 3 z; = 0, hence
Y pz; = 0). But since i has linear arbitrage possibilities at z;, if pz; < 0 then he will
be able to reach a more preferred trade y with py = 0 by individually recontract-
ing away from z;. Hence, unless pz; = 0 for all i, again z will not be an arbitrage
equilibrium. Indeed, even if pz; = 0 for all individuals, since ¢ has linear arbitrage
possibilities H,, at z;, he will not be satisfied with z; unless it maximizes his utility
on H,. Thus the economy reaches a price-taking equilibrium, but through arbitrage
not through Walrasian tdtonnement.

The arbitrage approach differs from the core in that prices (K3) and the linear-
ity /flatness of individuals’ opportunity sets (PED) play an important role both in
and out of equilibrium. Thus the arbitrage story is designed for perfectly competi-
tive economies, to generate the equivalence between arbitrage equilibria and perfectly
competitive equilibria. By contrast, the core story (only) generates the equivalence
between core and Walrasian allocations—even when such allocations do not satisfy
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PED and price-taking behavior is implausible, as in Example 1. Insofar as the logic
of perfect competition is intimately connected with the logic of PED, the arbitrage
story serves as a useful supplement to the core story of how equilibrium can be
reached. And, insofar as the logic of perfect competititon derives from the behavior
of individuals, arbitrage can serve as a replacement for the core.

4.2 ARBITRAGE IN &£

A remarkable feature of Walrasian equilibrium is that its definition is precisely the
same in £ as in E, while with arbitrage a literal transcription makes no sense because
the definition presupposes the existence of a continuum of individuals. In this section
we exhibit a set of modifications to describe arbitrage possibilities in £, show why its
implications are distinct from those in E, and illustrate that arbitrage opportunities
in E are the limiting case of an increasing sequence of replicas of £.

Assume throughout that z = (2;) € Z, a feasible allocation for £. Then, arbitrage
opportunities available to individual ¢ in £ are

K;=-Y"S;(z),
i

in contrast to Kz = — ¥ cone S;(z;).

The key distinctions between the finite and continuum versions of arbitrage are

o K! depends on i; Kz does not

e K! is a convex set but not a cone; Kz is.

Nevertheless, we want to emphasize that the contrast we have drawn between the
finite and continuum models does not point to a discontinuity at infinity. Letting z"
be the r-fold replica of z, define

.= —Tg Si(z;) = (r = 1)8i(2).

Evidently, K}, C K!,,; C Kgz. Further, lim K?, = K. In fact, for any bounded set
B c RY, it can be shown that K. N B is converging to Kz N B more rapidly than
r~1 is converging to zero.

18



5. EXISTENCE OF PERFECTLY COMPETITIVE EQUILIB-
RIUM

In this section, we prove a theorem on the existence of perfectly competitive equi-
librium. The key assumption is the flatness condition (F) on the arbitrage cones.
Hence our existence theorem will only apply to perfectly competitive economies. The
fact that a perfectly competitive equilibrium is necessarily a special case of Walrasian
equilibrium means that this result is hardly new; indeed (PCE.1-2) imply that under
the flatness condition, perfectly competitive and Walrasian equilibrium are equivalent.
Thus, our result amounts to a demonstration of Walrasian equilibrium in a special
case; and we could refer to the results of several authors (see for example Mas-Colell
[1985]) on the existence of Walrasian equilibrium for an economy &, translate into
an existence theorem for the economy E, and then impose the requisite smoothness
conditions to obtain the existence of a perfectly competitive arbitrage equilibrium for
E. However, to emphasize the integrity of the arbitrage approach as a self-contained
alternative to Walras' method of demand-and-supply, we prefer to provide a demon-
stration that is based directly on arbitrage rather than on price-taking behavior. The
proof is broken up into two parts: first, we demonstrate that perfectly competitive-
equilibrium exists for the economy E when it satisfies (F); then we give sufficient con-
ditions on the underlying characteristics {v;},c; which imply the flatness condition.

5.1 Existence Theorem with quasi-concavity and finite types
In a perfectly competitive economy E (i.e., one satisfying (F)), there ezists a perfectly
competitive equilibrium.

To prove the result, suppose first that individuals’ endowment /no-trade allocation
happens to be efficient, i.e., 0 € Zys. Then, given convexity (A.4), there exists a
p # O such that 0 < p 3 5;(0). This pisin K3\{0} (recall the No Arbitrage/Efficiency
Price Lemma 4.3). Hence, given (F), z = 0 would satisfy (PCE.4) and we would be
done.

If instead O & Zya, then we will need to appeal to a fixed point mapping. We
shall use an adaptation of a mapping due to Arrow and Hahn [1971, p.114-116).
The mapping is more in the spirit of the arbitrage approach to equilibrium in that it
involves a search on Zys NZg (the locus of efficient, individually rational allocations),
instead of a Walrasian excess demand correspondence. Whenever pz; < 0 for some 1,
the mapping rejects the point z in Zys NZr and continues searching for a fixed point.
Arrow-Hahn did not intend their mapping to prove the existence of an arbitrage
equilibrium but rather of a Walrasian demand-and-supply equilibrium; so we give
their mapping a new interpretation. Also, our restriction to perfectly competitive
economies—ones satisfying (F)—allows for a simplification of their mapping.
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Since Zna N Zig need not be convex, the mapping will instead be on a convex
set whose points can be associated with points in Zya N Zjg. Specifically, suppose
#I = m and let

U={ueR}:u=(viz)) for some z € Zya N Zr}.

If 0 € Zna, then this set is topologically an (m — 1) unit simplex (see Figue 3).
Specifically, letting A denote this simplex, we have

Figure 3: U is topologically an (m — 1) simplex

Lemma 5.2 If 0 € Zya, then there is a one-to-one continuous function from A to
U such that for any i and any q € A, u;(q) =0 if and only if ¢; = 0.

(For a proof see Arrow and Hahn [1971], Chapter 5, Lemma 3 or Mas-Colell [1985],
Proposition 4.6.1.)

Let Z(q) = {z € Zya NZir : (vi(z:)) = u(q)}; let z(q) be an arbitrary selection
from Z(q); and let p; = K3y N {p : || p ||= 1}. Consider the correspondence ¢ : & —
A defined by

¥(g) = AN{7:7; =0 if p,zi(q) > 0}.

Note §; = 0 implies v;(2;(g)) = 0 by Lemma 5.2. Hence the mapping has the following
natural interpretation. If pz; > 0 for any individual ¢, where z = z(g) and p = p,,
then some of ¢’s trading partners j must have pz; < 0 (recall Section 4.1). They will
be able to improve on z; by individually recontracting away from 7; hence ¢ will not
remain with the ‘subsidy’ pz; > 0. The mapping punishes such i’s, recognizing that
this z is not an equilibrium position.

Lemma 5.3 1 is a non-empty, upper hemicontinuous, convez valued correspondence.
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For a proof, see Arrow and Hahn, Chapter 5. The Arrow-Hahn mapping is on
the Cartesian product of A, the price simplex, and Z—not just on A.2 The flatness
condition, (F), allows for the simplification. Given (F), there is no need to search on
the price simplex since supporting prices are unique. Relatedly, there is no need to
search on Z since all allocations in Z(gq) are essentially equivalent; hence an arbitrary
selection suffices. Specifically, let z = z(g) and p = p,. Then for any 2’ € Z(q) it
will be the case that pz] = pz; for each i; hence p € K3,. (Proof: pKz < 0 implies
pSi(z:) > 0 for each i; or equivalently, pz; < p[Si(z:) + {z}]. Hence pz; < pz! for
each i. Summing, p¥ z; < p¥ /. But feasibility implies p¥ z; = p¥. 2/ = 0; hence
pzi = pz, for each i. That p € K3, now follows from Lemma 4.3 since pSz = pSy.)

Given Lemma 5.3, we can apply Kakutani’s fixed-point theorem and assert that
there is a ¢ € A such that ¢ € ¥(q).

Claim: For the fixed-point ¢, pz; = 0 for all i, where p = p, and z = z(q).

To verify, observe that if pz; > 0 then ¢; = 0, hence v;(2;) = 0; i.e., by monotonic-
ity, vi(z:;) < vi(2) for all 2} € RfH. But if pz; > 0 then for some € > 0, pee < pz;
where e is the unit vector in R, yet v;(ee) > v;(z); contradicting p € K2. (The -
details are p € K7 implies pK; < 0; hence p ¥ cone S;(z;) > 0, or p- cone Si(z;) > 0
for each i (recall zero is in each S;(z;) set). But Si(z;) C cone S;(z), hence pSi(z;) > 0
or pz; < p[Si(2:) + {2i}].) We conclude that pz; < 0 for all i. Hence, since 3 z; = 0,
pz; = 0 for all ¢, as claimed.

In view of (PCE.4), the claim immediately implies that there exists a perfectly
competitive equilibrium for E, as was to be shown.

To translate the Existence Theorem into a statement involving only conditions
on individual characteristics, we place restrictions on each v; which imply that in the
aggregate (F) will be satisfied. Since there may be only one type in the economy,
there is little opportunity to exploit the smoothing effects of aggregation and the
hypothesis for each v; will have to be essentially the same as (F).

By Corollary 4.4, the flatness of K} is equivalent to the uniqueness of efficiency
prices (up to a normalization). Hence, if at least one type i has C! preferences and
any z € Zya N Zg gives ¢ an allocation z; in the interior of Z;, then (F) will hold.
That is, if Si(2;) has a unique support for one type i then ¥ S;(z;) will have a unique
support, hence Kz will have a unique support. This suggests the following individual

-smoothness/differentiability condition.

(S) for some type i, v; is C* on the interior of Z; and satisfies the boundary condition
vi(y') > vi(y) whenever ¢ € int Z; and y € bdry Z;.

2We have written Z here instead of Z since the Arrow and Hahn proof is for a finite economy
£, not a continuum economy E. But this difference is inconsequential given the assumption of
equal-treatment.
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The boundary condition ensures that z; will be in the interior of Z; for any individually
rational allocation (recall w; > 0). It may be interpreted as an indispensability
condition, that some amount of each good is required for subsistence. While quite
restrictive, it is not central to the theory being developed. (For applications, other
boundary conditions could be substituted.)

Corollary 5.4 (Sufficiency condition for existence) Assume (S). Then E sat-
isfies (F) and there exists a perfectly competitive equilibrium.

6. EXTENSION OF THE MODEL

In this section we extend the model, characterizations, and existence results of
the previous sections to exchange economies in which (1) there may be more than a
finite number of types and (2) individuals do not necessarily have convex preferences.

Let V be a set of functions v : R — R U {00} satisfying (A.1-3) but not
necessarily the quasi-concavity assumption (A.4). Instead of describing a type as v;, _
where i € I, a type is a v € V. Consistent with the change, define Z, = R — {w,} -
as the feasible trading set for an individual of type v.

We assume
e V is a compact metric space.

Specifically, we metrize V in the usual way: For any v € V let v/ represent that type’s
preferences over consumption bundles rather than over net trades; i.e., v’ : Rf,, —=R
is defined by v/(w, + 2) = v(z). Then, v, — v means w,, — w, and v}, — v/ uniformly
on compacta (see Mas-Colell {1985]).

To allow for a continuum of possible types, instead of E, now describe an economy
by a (Borel measurable) function v : [0,1] — V, where [0,1] is the set of traders in
the economy.

A feasible allocation for this economy is a (Borel measurable) function z : [0,1} —
R satisfying z(t) € Z; = Zy(y) for a.e. t and [ z(t) dA(t) = 0, where ) is the Lebesgue
measure, the population measure on the set of traders. Henceforth we will typically
write v, and z, for v(t) and z(t), respectively.

Call a pair (v,2) € V x R? a subtype. Notice z need not involve equal-treatment:
vy = vy P 2z = 2p; i.e., t and ' may be of different subtypes. The distribution of

subtypes implied by z is given by the product measure
pz=Aov!ixAoz!

on the Borel subsets of V x R‘. The number uz(A x'B) gives the mass of individuals
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having types v € A and allocations z € B. Denote by supp uz the support of sz,
i.e., the smallest closed subset of V' x R¢ with unit mass; and call ¢ representative if

(vt,2¢) € supp pg.
To describe each trader’s arbitrage opportunities if the status quo is z, let G be

any finite group of individuals selected from [0,1], with the proviso that t € G only if
(vt, z:) € supp ugz; G denotes the set of all such G. Then,

Kz ={y: forsome GEG y=) y and —y, € S(z) for each t}.
teG

The definition of arbitrage equilibrium is unaltered, modulo the extension of K.

DEFINITION: The allocation z is an arbitrage equilibrium for v if for each represen-
tative ¢ '
'Ut(Zt) > 'Ut(Z:) for all Z: € Kz U Kz + {Zg}.

6.1 EXTENSION OF THE CHARACTERIZATIONS -

‘The following extension of the Arbitrage Lemma shows that if V only includes
types with convex preferences then the closure of K remains a convex cone—whether
or not there are a continuum of types in v (property (ii) below). But if V includes
types with nonconvex preferences then K, may be neither convex nor a cone, whether
or not supp yj is finite. Nevertheless, whenever K is not a convex cone, its structure
will be related to such a cone. Specifically, define the reduction of K, as

Kz =cl{y:y = ay for some y € Ky and some a € [0,1]}.

f{z is the smallest closed set that contains both K, and all the ‘scaled down’ elements
of K;. Note if cl K3 is a convex cone, Kz= cl K. But even when the latter is not a
convex cone, the former will be (property (i) below).

6.1 Extended Arbitrage Lemma

(i) Kz=cl (cone K3) = —cl (Ugeg [Tieq cone Si(z:)]), a convez cone containing the
. . 3
origin.

Further,

(ii) Kz =cl Ky ifallv €V are quasi-concave.

3When there are a finite number of subtypes, i.e., when supp pg is finite, then the third equality
reduces to —cl [Ycone S;(z)], where the sum is taken over all ¢ such that (vy, z;) € supp ug.
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Proof: See Appendix A. O

Some further useful properties of K, can be deduced as a corollary. Let k; =
{p : pKz < 0}, the polar of Kz. Also recall that for any set S with 0 € S, N(S)
denotes the normal cone to S at zero, i.e., N(S) = {p : pS < 0}. As in the finite
types model, denote the aggregate at-least-as-good-as z set by S; = [ S,(z;) dA(t).
(See Hildenbrand [1974] for the integral of a correspondence.)

Corollary 6.2

(i) KzNRY, =0 if and only if K, NRL, = 0.
(i) N(Kz) = K3 = —N(Sz).
(iii) Kz = —cl(cone Sz).*

Proof: See Appendix A. O

Now reconsider the alternatives (A) or (NA). Define no arbitrage allocations as -
before; and to accommodate the possibility that K; may not be a cone, define a no
arbitrage price vector as a p € N(Kz)\{0} = K2\{0} (by (ii) of Corollary 6.2). As
in the finite types model we have:

Corollary 6.3 (Existence of no arbitrage prices) K # {0} if and only if
z € Zna.

Proof: This follows immediately from (i) of Corollary 6.2 and the basic separation
theorem for convex cones. O

The characterization of no arbitrage allocations also remains intact. Call z weakly
Pareto efficient if there is no other feasible allocation 2’ such that v,(2}) > v(2,) for
a.e. t.

6.4 Extension of No Arbitrage/Efficiency Lemma z € Zy, if and only if z is
weakly Pareto efficient.

Proof: If z is weakly efficient then 0 € bdry S;. Hence there is a p > 0 such that
pSz > 0. We conclude, by (ii) of Corollary 6.2, that pKz < 0; i.e., KzNR:Y, = 0.
Conversely, Kz N RfH, = () implies there is a p > 0 such that pKz < 0. So pSz > 0,
again by (ii) of Corollary 6.2. That is, 0 € bdry Sz; hence z is weakly efficient. O

*To emphasize the symmetry with (i) of the Extended Arbitrage Lemma, it can also be shown
that cl f cone S¢(z;)dA(t) = cl(cone Sg).
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Our primary interest continues to be economies for which K is flat—i.e., the
boundary of K3 is a hyperplane—for z € Zya because, as in the finite types case, in
such economies any individual arbitrager has a linear opportunity set or, equivalently,
faces perfectly elastic demands and supplies at prices p, where p € N(Kz)\{0}. Thus
it is important to observe that even if preferences are not quasi-concave, Kz will often
be flat. Just a little smoothness on the individual level will suffice. The analogue of
the individual smoothness/differentiability condition in the finite types model is

(S) for some representative individual ¢, v, is C! on the interior of Z; and satisfies
the boundary condition v:(y’) > v,(y) whenever ¥ € int Z, and y € bdry Z,.

Lemma 6.5 (Extended sufficiency condition for flatness) Let z be any alloca-
tion for v satisfying (S). The z € Zyna N Zig implies Ky is flat.

Proof: Since z € Zna, Corollary 6.3 and (ii) of Corollary 6.2 imply there is a
p € N(Kz)\{0}. Hence it suffices to show that for any y such that py = 0, y € cl Kg;
that is, bdry Kz = H,. By (ii) of Corollary 6.2, 0 < pS;. Hence for all representative -
individuals ¢, 0 < pS,(z:). Specifically, for the t satisfying (S), p must be colinear -
with the gradient dv,(z;) since z € Zg implies 2; € int Z,. This permits the following
construction. For any § > 0 let y(6) = y — de. Since py = 0, p(—y(8)) > 0. Hence, by
Taylor’s formula, for the t satisfying (S) there is a sufficiently large positive integer n
such that

| vz — %y(é)) > vy(z).

Further, there is an € > 0 such that for all subtypes (v, z) € B(v:, 2;)

v(z - %y(é)) > v(z).

Since t is representative implies that z includes a nonnull set of subtypes in this e-ball,
we conclude that n(1y(6)) = y(6) € Kj for all § > 0. Letting 6§ — 0 shows y € cl K.
a

The intuition for the proposition is that if z € Zys N Zg then any p € N(K3)\{0}
supports z. Specifically, for the ¢ satisfying (S), his at-least-as-good-as set Sy(z;) is
tangent to the hyperplane H,; hence it must be locally smooth and convex for trades
in a neighborhood of the origin (even if it globally exhibits nonconvexities). This
suffices to yield a flat arbitrage cone, much like in the finite types case, since there
are many subtypes (v, z) close to (v, 2). Essentially, the closure of K; becomes
—cone Sy(z,) (see Figure 4).

If K, is flat then, as in the quasi-concave case covered by the Extended Arbitrage
Lemma 6.1, the closure of Kz just equals its reduction.
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cone S (z )
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Figure 4: Sy(z,) is smooth and convex around the origin. Hence cone Si(2;) is flat.

Lemma 6.6 (Consequences of flatness) If K, is flat thencl Kz = Kz = {y :
py < 0} for any nonzero price vector p in the polar of K.

Proof: If K, is flat then bdry Kz;= {y : py = 0} for any p € N(K3)\{0}. Since
by (ii) of Corollary 6.2, pSz > 0, monotonicity implies p > 0. Hence since R®. C K,
cl Kz = {y : py < 0}. The latter is a closed convex cone; hence, by the construction
of the reduction, Kz =cl K;. O

The characterization of perfectly competitive equilibria and Walrasian equilibria
remain basically unaltered. The definition of Walrasian equilibrium needs the obvious
modification:

DEFINITION: A Walrasian equilibrium for v is a pair (p,z) such that z; € Dy(p) for
every representative t.

Let Ly be the smallest linear space containing {2 : (v, z) € supp pz}. Then

Theorem 6.7 (Extended characterization of perfectly competitive equilib-
rium) The following are equivalent:

(PCE.1) z is a perfectly competitive equilibrium for v
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(PCE.2) (p,2) is a Walrasian equilibrium for every p € N(K;)\{0}, where Ky is flat
(PCE.3) Lz C bdry K5, a hyperplane
(PCE.4) N(Kz)\{0} L Ly, where Kz is flat.

Compared to the finite types characterization, the only modifications are that N (Kgz)
has replaced K; and “Kj is flat” has replaced “dim K2 = 1”. Regarding the lat-
ter change note that, since K need not be convex in the absence of quasi-concave
preferences, the requirement dim N(Kz) = 1 would not suffice to guarantee Ky is
flat.

Proof: The proof that (PCE.1 and 2) are equivalent is basically unchanged from
the proof in the finite types case, with a representative individual ¢ now playing the
role that an individual of type i played before. Further, the equivalence of (PCE.3
and 4) follows readily from Lemma 6.6.

To show the equivalence between (PCE.2 and 4), it suffices to prove that (p,z) is
Walrasian if and only if p L Ly and p € N(K3)\{0}. If (p, z) is Walrasian then clearly .
p L Lg. Further, pS; > 0; hence, by (ii) of 6.2, pKz < 0. That is, p € N(K;)\{0}.-
Conversely, pKz < 0 implies pSz > 0, again by (ii) of Corollary 6.2. Hence pSi(z;) > 0
for all representative . Now proceed as in the finite types proof to show that (p, z)
is Walrasian. O

Theorem 6.8 (Extended characterization of Walrasian equilibrium) The
following are equivalent:

(WE.1) (p,z) is a Walrasian equilibrium for v
(WE.2) p L Lj for some p € N(Kz)\{0}.

Proof: See proof of equivalence between (PCE.2 and 4) above. O

Again the contrast between the two concepts of equilbrium is revealed in compar-
ing (PCE.4) and (WE.2).

6.2 EXTENSION OF THE EXISTENCE THEOREM

Let V represent the set of all possible economies, i.e., the set of all (Borel measur-
able) functions v : [0,1] — V. To extend the existence theorem to economies with
a continuum of types, we endow V with a concept of nearness (i.e., a topology). For
any given economy v € V, the measure

py =Aov!
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on the Borel sets of V describes the distribution of types in v. We say that v, — v
if

o uy, — py weakly, and

e supp pv, — supp pv (in the Hausdorf distance).

Under this topology, the set of finite economies (i.e., the ones in which the support
of uy is finite) is dense in V. (See Mas-Colell [1985], E.3.3 and Chapter 5.8.)

Let TI(v) denote the set of Walrasian equilibrium prices for v normalized so that
||  ll= 1. This price mapping is often closed, i.e.,

(C) Ifv,v, €V, p, € II(vy,), v, = v, and p, — p then p € II(v).

Sufficient conditions for closedness are given at the end of this section. With the aid
of (C), we first extend the finite type existence result to economies with a continuum
of types, maintaining the assumption that individuals have quasi-concave preferences.

Assume all economies in V are perfectly competitive in the sense of satisfying the
flatness condition (F):

(F’) For any given economy v € V, if z € Zya N Zir then Ky is flat.

Theorem 6.9 (Extended existence with quasi-concavity)
Assume (F'), (C), and that every v € V is quasi-concave. Then for any economy v
in Y, there exists a perfectly competitive equilibrium.

Proof: Suppose first that supp uy is finite and py(v) is a rational number for all
v € supp pv. Then there is a positive integer m such that muy(v) is an integer for
each v € supp pv. Hence there is a finite types economy E = {v; - 1}i=1,..,m such that
#{i : vi = v} = mp(v) for each v € supp py. Clearly, the existence of a perfectly
competitive equilibrium for E (ensured by Theorem 5.1) implies the existence of a
perfectly competitive equilibrium for v.

Now if supp pv has a continuum of types, observe that the economies with finite
support and a rational number of each type are dense on all economies v : [0,1] — V.
Hence there is a sequence v, — v with p, € II(v,). Let p, — p on a subsequence.
Then, by (C), p € TI(v); i.e., v has a perfectly competitive equilibrium.O

To extend the finite existence theorem to economies with nonconvex preferences,
a difficulty must be solved. Economies E have equal treatment built in, more specif-
ically, equal-trade treatment: individuals of the same type are given the same alloca-
tion. But with nonconvexities, such equal treatment may be inconsistent with effi-
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ciency (e.g., imagine a two good, one type economy in which all individuals have quar-
ter circular indifference curves and endowments along the 45° line). Consequently,
such equal treatment may be inconsistent with arbitrage equilibrium since the ar-
bitrager may want to take advantage of the convexifying effects of large numbers to
generate middleman profits. Note however that any arbitrage equilibrium will still sat-
isfy equal-utility treatment, i.e., individuals of the same type will obtain equal utilities
in equilibrium. This follows from their facing the same linear arbitrage possibilities.

To solve the difficulty, it will suffice to restrict our attention to allocations without
‘too much’ unequal trade treatment. By Carathéodory’s Theorem (Rockafeller [1970,
Theorem 17.1}) for any allocation satisfying

(1) weak Pareto efficiency and

(2) equal-utility treatment,
we can find another feasible, utility-equivalent allocation satisfying (1), (2), and
(3) different individuals of any given type engage in at most £ + 1 different trades.

The restriction to trades satisfying (3) suffices to completely ‘convexify preferences’.

With this background, our method of proving existence with nonconvexities is to
replace v by an economy with convexified preferences. Then we show a perfectly
competitive equilibrium for the latter implies a perfectly competitive equilibrium
for the former. We convexify preferences in the usual way (e.g., see Arrow and Hahn
[1971], Chapter 7); but for our method of proof, we require a numerical representation
of these convexified preferences. The Representation Theorem proved below, which
is of some independent interest, first will be formalized in consumption space. Then,
as a corollary, we translate it to trade space.

Let u : R — R be any continuous and weakly monotone (but not quasi-concave)
utility funtion.’ For any z € R, let A(z) represent the at-least-as-good-as r set for
preferences u, i.e., A(z) = {z’ : u(z’) > u(z)}. The function u*, defined below, gives
a numerical representation of the convexified preferences. For any r € Rf,_ let

R(z) = {reR,:r € conv A(re)},
r, = supR(r), and
u*(z) = u(re)
where e is the unit vector in R’ (see Figure 5). For any r € RY, let A*(z) denote

the at-least-as-good-as r set for preferences u*; and let A’ be the ¢-dimensional unit
simplex.

5Note that ‘u’ was used in a different sense in Section 5.
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Figure 5: The convexified preferences. Notice that r is a convex combination of z,
and .

6.10 Representation Theorem for convexified preferences u*:R, — R is
a well-defined (i.e., sup R(z) < oo for all x), quasi-concave, weakly monotone and
continuous function, with u*(0) = u(0). Specifically, for any z € R, : -

A*(z) = conv A(r.e€)

and
+1
uw(z)= max {u(z):u(@)=...=u(T1), T=3 oxzk &a €A}
(Ti)k=1,....041 k=1 ‘

Proof: See Appendix B. O

The result says that u* inherits the continuity and monotonicity properties of u.
Further, it suggests an interpretation for the representation: If there is a unit mass
of type u individuals consuming r each, u*(z) is the largest (equal-utility) utility
level they can achieve by re-trading z - 1 among themselves: each fraction ay of the
group could obtain the allocation z; and hence utility u(z;). We remark that u* is
a convexified version of the numerical representation of preferences used by Kannai
[1970] (without his strong monotonicity assumption).

To translate into trade space, for any type v let S,(z) represent the at-least-as-
good-as set for type v with respect to changes from z, i.e., S,(2) = {y : v(z +¥y) 2
v(z)}. Consequently, Sy(z) + {z} represents the set of trades that are at-least-as-
good-as z for v.

Corollary 6.11 Assume v:R¢ — RU {—o0} satisfies (A.1-3). Then there ezists a
function v* : R* = R U {—o0} satisfying (A.1-4), with Z,» = Z,. The function v* is
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a numerical representation of the converzification of the preferences in v. Specifically,
for any z € Z,., there are (2 )k=1,. 441 C Z, such that

.....

(i) 2 = T arzr for some (o) € A,
(i) v(z1) = ... = v(2e41) 2 v*(2), and

(iii) Sy+(2) + {z} = conv Sy(2) + {zx} (for any k).

Proof: See Appendix B. O

Thus v*, the convexified version of v, satisfies (A.1-4) and has the same effective
domain as v. Specifically, (iii) gives the relationship between the at-least-as-good-as
sets for v* and v. With the aid of the Corollary, we now provide a full extension of
the finite types existence theorem.

6.12 Extended Existence Theorem Assume (F') and (C). Then for any economy
v in V, there exists a perfectly competitive equilibrium.

Proof: As in the proof of Theorem 6.9, assume first that supp uy is finite and
pv(v) is a rational number for all v € supp py. Define E = {v; - 1}i=),...m as in 6.9,
and let E* = {v} - 1};=1,..m, where v is the convexification of v;. To verify that E*
has a perfectly competitive equilibrium, it suffices to show that E* satisfies (F). (Note
that some v} may not be in V, hence this does not follow immediately from (F’).)

Accordingly, let z* be in Zya N Zjg for the economy E*. By Lemmas 3.2 and 4.3,
there exist prices p (p # 0) such that
0 < pSaz-

where Sz is the aggregate at-least-as-good-as z* set for E*, i.e., Sz. = ¥ Sy (2]) - 1.
Since 0 is in each Sy (2]) set, this may be strengthened to

0 < pSyx(2;) for each .
Or, using (iii) of Corollary 6.11, for each ¢ and any i

p(zi — 2,) < pSui(z,)

where 2z} = Y5 @i, z;,, @4, 20, Thai, =1, and v7(2}) < vi(z,).

Let z = z(z*) be such that pg(v,2) = 2 T, st.vp=ve Lkat.z, =z %), for each subtype
(v, z), where v* is the convexification of v. By construction, z is a feasible allocation
for v. Further, since z* € Zig for E*, z € Z;g for v (recall for each i and k,
vi,(2,) 2 vi(2]) 2 0). Now observe that S; = = ¥; &, oy, conv S,,(2;,). Hence,
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p(zF = z;,) < pSy,(z:,) for each i implies 0 < pS;. So, z € Zy, for the economy v
and, furthermore, '
0 < pSz- implies 0 < pS;.

We conclude from (F’) and (ii) of Corollary 6.2 that dim N(Sz) = 1; hence dim
N(Sz+) = 1. That is, E* satisfies (F); so it possesses a perfectly competitive equilib-
rium.

Now let z* be a perfectly competitive equilibrium for E* supported by p (i.e.,
p € K3. for E*). We will show that z = z(z*) is a perfectly competitive equilibrium
for v with prices p. Since p(z} — 2;,) < pSy,(2i,) for each i, it suffices to show that
pz;, = 0 for each it. Observe that pz;, > pz! = 0 for all i since (z*, p) is Walrasian
for E* and z;, € S,:(2]) + {2]}. Hence ¥ pa;, zi, > pz; = 0. Since the left hand side
just equals pz}, we conclude pz;, = pz] = 0 for each i, as required.

To extend the existence result to economies v for which supp uy has a continuum
of types, now proceed as in the proof of Theorem 6.9. O

To translate the Existence Theorem into a statement only involving conditions on
individual characteristics, we give sufficient conditions for (F’) and (C). -

From Lemma 6.5, if every utility function v in V is C! on the interior of Z, and
satisfies the boundary condition

(B) v(y') > v(y) whenever ¢ € int Z, and y € bdry Z,

then (F') will hold.® To also ensure (C), assume preferences v are strictly monotone
on the interior of Z,, i.e., for any z € int Z,, 2’ > 2z implies v(2') > v(z).

Lemma 6.13 If every v € V is strictly monotone on the interior of Z, and satisfies
the boundary condition (B), then (C) holds.

(For a proof see Hildenbrand [1974], Proposition 4, Chapter 2.2.7) Combining these
observations yields:

Theorem 6.14 (Extended sufficiency condition for existence) Assume every
utility function v € V is C?, strictly monotone on the interior of Z,, and satisfies
the boundary condition (B). Then (F') and (C) hold; hence, for any economy v € V,
there ezists a perfectly competitive equilibrium.

61t should again be mentioned that while (B) is convenient, it is also restrictive. In applications,
other boundary conditions can be substituted that assure the flatness of Kz.

"Hildenbrand assumes preferences are strictly monotone everywhere, even on the boundary, which
would be inconsistent with the convenient indispensability condition (B). But this difference is of no
consequence since, given (B), any Walrasian equilibrium will be interior.
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7. HISTORICAL AND CONCLUDING REMARKS

The purpose of this section is to call attention to an historical precedent for
the arbitrage approach to competitive equilibrium in the work of Jevons {1879]; to
emphasize the Jevonian connection to Edgeworth [1881]; and, to contrast Jevons’
formulation with Edgeworth’s (the core) and with the arbitrage approach adopted
here. It will be argued that our version is a blend of the others and that this blend
provides another perspective on the meaning of ‘marginalism’ and its relation to
competitive equilibrium.

Jevons employed a simple and clever argument to derive equilibrium from ar-
bitrage, although his treatment was somewhat casual. A key limitation of Jevons’
presentation is the (still) standard one that arbitrage prices could be established in-
dependent of utility considerations. Edgeworth responded with a deeper and more
ambitious formulation.® It was deeper in its examination of the process by which
bargains are struck: Edgeworth’s was a utility-based form of arbitrage. It also was
more ambitious in describing a process that could operates in both competitive and
non-competitive environments.®

As a utility-based argument for getting at the Law of One Price, our derivation
resembles Edgeworth’s; but in avoiding any possible implications for imperfect com-
petition and in emphasizing individualistic behavior, it resembles Jevons’. Of course,
a single theory applicable to all environments would be superior to one that applies
only under perfect competition. But, the implications of the core—notably that a
core allocation is always Pareto optimal—call into question its domain of applica-
bility for imperfectly competitive environments. If, however, the core is regarded as
an equilibrium condition more appropriate to a competitive setting, then the ver-
sion of arbitrage adopted in this paper may be interpreted as simply a different tack
from the one Edgeworth took for elaborating an arbitrage foundation for competitive
equilibrium.

JEVONS’ FORMULATION OF EQUILIBRIUM IN EXCHANGE

An important construction in Jevons’ theory, as well as a principal source of
confusion, is his construction of a ‘trading body’.

By a trading body I mean, in the most general manner, any body of buyers

8For the writing of Mathematical Psychics, Edgeworth’s personal contact with Jevons (they were
neighbors) as well as Jevons’ then recently published second edition [1879] were evidently very
influential. See Creedy {1986]. On Jevons, see Schabas [1990].

94The advantage of this general method is that it is applicable to the particular cases of imperfect
competition; where the conception of demand and supply at a price are no longer appropriate.” (p.
31, original italics)
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or sellers. The trading body may be a single individual in one case; it
may be the whole inhabitants of a continent in another; it may be the
individuals of a trade diffused through a country in a third. (p. 88, italics
in original)

Commentators such as Stigler [1941, p.17, fn.4], Blaug [1985, p.310], and an anony-
mous contemporary of Jevons who reviewed his work!? interpret the two trading
bodies in Jevons’ theory of exchange as two isolated individuals, but there is consid-
erable evidence that this is not what he intended. (See, below.) Edgeworth [1881]
devotes an extensive appendix to Jevons’ theory and he pointedly objects to this
reading of Jevons as unwarranted.!?

A brief outline of Jevons’ theory is: In a perfect market there are two trading
bodies A and B and two commodities 1 and 2. The trading body A has a stock
a of the first commodity and B has a stock b of the second commodity. Let = be
the quantity of the first commodity given up by A and y the quantity of the second
commodity given up by B. Ambiguity arises from interpretating z and y (and a and
b) as total or as per capita quantities—is x supplied by A or by a member of A? -
Of course, if each trading body were to consist of one individual, there would be no"
distinction. In our reading, Jevons makes them stand both for total and per capita
quantities as needed and, as a result, there is the inevitable confusion of ‘the many
in the one’.

The first step in Jevons’ description of equilibrium in exchange is to demonstrate
that arbitrage leads to uniform market prices. He expressed this Law of Indifference
as the equality

dy _y
(Lol) iz 1’
where dy/dz is the rate of exchange between infinitesimal units of the commodities.
The Law of Indifference (“there cannot be two prices for the same kind of article”,
p. 92) was well-accepted in Classical economics and was certainly not the point
of departure for his new theory; in particular, although he tries to give it a utility
underpinning by referring to ‘Indifference’, his argument for the Law does not rely on
more than a trivial application of utility.'?

10 Saturday Review, 1871.

14Tt must be carefully remembered that Prof. Jevons’ Formule of Exchange apply not to bare
individuals, an isolated couple, but (as he himself sufficiently indicates, p. 98), to individuals clothed
with the properties of a market, a typical couple (see Appendix V.).” Edgeworth [1881, p. 31, fn.
1). See also Edgeworth, p. 109 and p. 115.

12«The principle above expressed is a general law of the utmost importance in Economics, and

I propose to call it the Law of Indifference, meaning that, when two objects or commodities are
subject to no important difference as the regards the purpose in view, they will either of them by
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Jevons put the Law in calculus terminology to prepare the way for what deter-
mined the ratio y/z. An individual A will trade until!3

MU a - z) _dy
MUF(y)  dz’
while B will trade until
MUB(z) _dy
MUB(b—y) dz’
Invoking the Law of Indifference, Jevons obtains his two “equations of exchange”,
vy _ MUé(a - z) _ MUf(z)

*) r= MUNG) C MUEG-g)

to solve for the two unknowns z and y.

We now reformulate Jevons’ equations in terms of our framework. Using a nota-
tion adopted above to emphasize the distinction between total and per capita quan-
tities, write z = (24 - 1,2p - 1), where z4 = (—z,y) = —zp and 1 is the mass of
each (collective) trading body. Then by Lemma 3.1, the no arbitrage cone is Kz = _
—[cone SA(zA) + cone Sp(zp)] with boundary H, = {(dx,dy) : pidx + p,dy = 0}.
Hence, represents the terms of trade facing any individual. In place of Jevons’
(Lol), we rephrase the no-arbitrage condition in Jevons’ setting as,

(NA) dy MUf(a-2z) = MUP(z)

= ‘1= .1
dx  MU3(y) MUZ (b - y)

The MRS’s on the right hand side are multiplied by 1 since each MRS equals ¢ dy

an infinitesimal quantity relative to any individual’s total trade; while dx = dz - 1
and dy = dy-1 are of the same order of magnitude as r and y (although infinitesimal
relative to economy-wide trading). The formula (NA) thus reflects the message of
Figure 2: the boundary of the arbitrage cone, %, is determined by the arbitrager
making tiny trades with many indviduals at terms reflecting each one’s MRS; that is,
trades leaving each of the arbitrager’s trading partners indifferent between making or
not making the trade.

Now by the ability to individually recontract, everyone has the option of with-
drawing from the economy and starting over. An individual will take advantage of
this option whenever he is losing money at the available terms of trade, i.e., whenever

taken instead of the other with perfect indifference by a purchaser. Every such act of indifferent
choice gives rise to an equation of degrees of utility, so that in this principle of indifference we have
one of the central pivots of the theory.” (p. 92-93.)

13Marginal utilities are functions of only one variable because Jevons used a separable utility
function of the form u(z,y) = f(z) + g(y). Throughout this section we follow Jevons’ notation,
ezcept that we use MU, and MU; in place of his ¢; and v».
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y/z # dy/dx a member of trading body A or B is losing money. Therefore besides
(NA), the remaining condition for equilibrium is that trade be a value-preserving

activity,
vy
Tz dx’
Putting these equations together, our formulae for exchange equilibrium are:

(%%) y_dy _MUle-2) ~ _ MUMz)

Tdx T MUj(y) ~ MUZ(b-y)

The similarities between (*) and (*x) are evident, but there are also the following
important differences:

o The term ‘Law of Indifference’ is a more accurate description of (NA) than of
Jevons (Lol) since (NA) relies on the marginal utility concept of indifference
whereas (Lol) ignores such matters.

e Jevons uses only one margin of analysis in his equations (the infinitesimal mar- _
gin for the individual, dy/dz) whereas the approach adopted here exploits two-
margins (the infinitesimal margin for the individual, dy/dz, and the infinites-
imal margin for the economy as a whole, %, whose magnitude is of the same
order as the total quantities traded by an individual).

To build an argument for arbitrage rather than tdtonnement as the equilibrating
mechanism for competitive equilibrium, we shall argue below that it is essential to
incorporate both of these departures from Jevons. Here, however, we want to point
out that our attention to scale considerations—the second of the above two departures
from Jevons, was not foreign to him. Rather our reformulation is a clarification to
avoid the confusion of the ‘many in the one’. Think of dy/dx as the terms of trade
available to an individual about to enter the economy, i.e., the individual C in the
excerpt from Jevons below. Keep in mind our emphasis that the entering individual
would be able to trade y for z at the rate dy/dx because the members of the economy
would be indifferent between making or not making such a trade.

We may;, firstly, express the conditions of a great market where vast quan-
tities of some stock are available, so that any one small trader will not
appreciably affect the ratio of exchange. This ratio is, then approximately
a fixed number, and each trader exchanges just so much as suits him.
These circumstances may be represented by supposing A to be a trading
body possessing two very large stocks of commodities, a and b. Let C
be a person who possesses a comparatively small quantity c of the second
commodity, and gives a portion of it, y, which is very small compared
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with b. Then, after exchange, we find A in possession of the quantities
a—z and b+ y, and C in possession of z and ¢ — y. These equations
become

MUfa-z) y  MUf(z)

MUZ(b+y) 2z MUF(c-y)
Suppose a — z and b+ y, by supposition, do not appreciably differ from a
and b, we may substitute the latter quantities, and we have, for the first

equation, approximately,

=m.

MU{(a) _y
MUs(b) =

[p.112]
Except for the difference in boldface notation, the similarities between Jevons’ de-

scription and our version of the equilibrium position of the individual arbitrager are
evident.

[}

EDGEWORTH’S FORMULATION OF EQUILIBRIUM IN EXCHANGE

"The point of departure for Edgeworth’s contribution was a more explicit descrip-
tion of the trading body. By postulating that the economy consisted of a definite and
finite number of individuals, he eliminated the confusion of the ‘many in the one’.
The finiteness assumption had the express purpose of allowing Edgeworth “to study
how far contract is determinate in the case of imperfect competition”.

Our notation x stands for a trading body with members of infinitesimal size. With
n individuals in each trading body, we would set [z;]® = z; - n~! to distinguish the
many from the one, where z; is the quantity sold by a member of A and n~! is the
size of the individual relative to the trading body; so that for any n the size of the
trading body is unity. In contrast, Edgeworth set [z;]* = z; so that the size of each
trading body is n.

Edgeworth showed that what we now call core bargaining would lead to

Y _ Y q MUfa—z;)  MU¥(z:)

n oz ° MUF(%)  MUP(b-g)

The first equality is the well-known equal treatment property (assuming an equal
number of each type) and the second is the efficiency condition. With small numbers
of each type, Edgeworth emphasized that there was nothing to tie the two sets of
equalities together and he rejected (*) saying that bargaining was indeterminate. He
then argued that as the number of traders increased, contracting and recontracting
among groups of individuals would cause the two sets of inequalities to merge, i.e.,
only then would Jevons’ equations of exchange be established.
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REMARK 4: Edgeworth used his well known Master-Servant Example [1881, p. 46]
to illustrate an exception to his overall conclusion that Jevons’ equations would be
confirmed as the number of traders grows. The example is similar to Example 1 above
(except that, for Edgeworth, the source of non- differentiability was indivisibility). It
illustrates that even with a large number of individuals there still may remain room
for bargaining over the terms of trade: “higgling dodges and designing obstinancy,
and other incalculable and often disreputable accidents” (p. 46). Rephrased in our
terms, even with a continuum of individuals, the arbitrage cone need not be flat.

The Master-Servant example exposes a certain conflict between Edgeworth’s view
of the relation between competition and large numbers and the modern core equiva-
lence theorem. For the latter, flatness of the arbitrage cone is an unnecessary restric-
tion. However, in the Master-Servant example and other models of the assignment
type, the equivalence does not occur because the core shrinks, but because the core
expands to fill out the set of Walrasian equilibria. (See Gretsky, Ostroy and Zame
[1992].) Edgeworth objected to this form of core equivalence because it violated
his position that perfect competition requires determinacy. Given this context, the
‘emergence of a flat arbitrage cone’, as opposed to merely the ‘emergence of prices’ _
(core equivalence), seems to capture more of what we mean by perfect competition. -

COMPARISONS: THE PLACE OF MARGINAL UTILITY IN THE THEORY
OF VALUE

The key contrast between Jevons’ description of arbitrage (his LoI) and the one
we have adopted (NA) is that arbitrage is utility-based. Since Jevons’ usage is more
or less the standard, call it ‘arbitrage’ in contrast to ‘entrepreneurial arbitrage’, the
kind we rely on. Arbitrage has the appeal that whatever its implications, they are
independent of the tastes and endowments of the economy. And it is exactly for this
reason that arbitrage is an insufficient foundation for the theory of value since it is the
details of tastes and endowments which determine competitive prices. Entrepreneurial
arbitrage fills the gap by taking the arbitrage activity one step further: instead of
limiting the search for profit opportunities to those based on existing market prices
(and the knowledge that everyone prefers more to less), the entrepreneur-arbitrager
also searches for opportunities by determining what individuals would be willing
to pay for ‘innovations’, i.e., changes to the status quo. It is this extra step which
leads, in a competitive environment, to the arbitrage cone of competitively determined
prices.

We now consider the implications of entrepreneurial arbitrage for a marginalist
derivation of competitive equilibrium. Marginal utility was, and is still regarded as,
the key ingredient of the marginalist revolution: wherever marginal utility enters into
the description of equilibrium, that it where attention will be focused. To elaborate
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on this claim, distinguish between (1) price-taking behavior and (2) entrepreneurial
arbitrage behavior. The Walrasian description of equilibrium clearly points to (1) as
the building block for equilibrium through the following: (a) Marginal utility is the
key to the formation of (price-taking) individual demand and supply schedules which
naturally leads to (b) the description of equilibrium as the equality of aggregate
demand and supply and to (c) the tdtonnement view of the equilibration process.
Parts (b) and (c) represent a unified construction driven by (a).

In contrast to this Walrasian scheme, Jevons’ description of equilibrium is more
ambiguous. For example, although he had a clear enough conception of the con-
sequences of price-taking behavior—i.e., individual demand and supply schedules,
Jevons does not employ them in his description of equilibrium, thereby suggesting
that arbitrage might be an essential component of equilibration. But, because Jevons
limits himself to a utility-free description of arbitrage and only highlights the role of
marginal utility as it appears in price-taking behavior, he has been read as a pre-
cursor reaching only the foothills of the mountain scaled by Walras. Even if Jevons
were trying to tell a non-tdtonnement story, there seems to be no way, other than the
price-taking path that Walras took, to go from his utility-free conception of arbitrage
to the equilibration of competitive markets.

From our point of view, Edgeworth’s contribution was pioneering because he
showed that arbitrage could incorporate preferences. This is the basic feature that
entrepreneurial arbitrage has in common with the core. Not surprisingly, therefore,
both the core and entrepreneurial arbitrage make no use of tditonnement.

The connection that Walras established between marginal utility and competitive
equilibrium is one way to proceed, but it is not the only way. Walras exploited only the
marginal utility underpinnings of the consequences of perfect competition (i.e., price-
taking behavior) rather than the marginal utility underpinnings of perfect competition
itself. Although the two margins are not the same, ‘marginal utility’ underlies both
the maximizing behavior of a price-taker and also the maximizing behavior of an
entrepreneur arbitrager. From the individual’s point of view, the marginal utility
underlying price-taking behavior is his own (i.e., MU, /MU,, involving infinitesimal
quantities dy/dz), whereas the marginal utility underlying arbitrage behavior is that
of the rest of the market (i.e., the boundary of K3 = MU, /MU,-1, involving quantities
dy/dx that are infinitesimal with respect to the economy as a whole, but not to the
individual arbitrager).

The standard interpretation of marginalism identifies it with price-taking behav-
ior; i.e., in standard marginalism, price-taking is ‘where the action is’. This reinforces
the tdtonnement view of equilibration as apparently the logical path from marginalism
to competitive equilibrium. The entrepreneurial arbitrage approach suggests a reap-
praisal of the locus of marginal utility which highlights another form of marginalism.
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The (relocated) significance of marginal utility for the theory of value is: it is others’
MRS’s that determine the boundary of anyone’s arbitrage cone. This placement serves
to make entrepreneurial arbitrage an alternative logical link between marginalism and
competitive equilibrium.!4

The reader will perhaps have already recognized that in our proposal to replace
tatonnement by arbitrage as the equilibration story behind competitive equilibrium,
one is led to the following conclusion: while demand and supply functions (individual
and aggregate) may be essentials of partial equilibrium theory, they are dispensable
elements of competitive general equilibrium theory. It is interesting to observe that
Walras’ ideas on general equilibrium followed a more or less contrary path. Even
before he saw how to make marginal utility the engine of his general equilibrium
system, Walras had already formulated his conception of general equilibrium in terms
of the equality of demand and supply schedules.! In this respect, therefore, we
may say that the arbitrage approach represents a ‘non-Walrasian’ formulation of
competitive equilibrium in which marginal utility figures even more prominently.

Finally, the fact remains that an arbitrage equilibrium is (modulo the flat cone
condition) a Walrasian equilibrium that is explicitly situated in a thick markets envi-
ronment, where it has historically been understood to belong. Does this coincidence
mean that there are no practical distinctions to be drawn between the arbitrage and
Walrasian versions of competitive equilibrium? In our view, there is an important
difference which goes back to the first paragraph of this paper on the way we think
about competitive behavior. The Walrasian tradition of price-taking reinforces the
view that the perfect competitor responds passively to his environment whereas in the
arbitrage approach the perfect competitor is actively opportunistic. The difference in
‘psychology’ between the competitor-as-price-taker vs. the competitor-as-arbitrager
are alternative perspectives which significantly influence the way one interprets mar-
ket behavior.

'4At a deeper level, the importance of marginal utility for the competitive theory of value is il-
lustrative rather than absolutely basic. For example, when commodities are indivisible (or, more
generally, when choices are on the boundary of the feasible trading set so that derivatives are not
so clearly defined), the principles of perfect competition continue to be represented by an arbitrage
cone, but one that is not necessarily defined by marginal utilities. In modern versions of Walrasian
equilibrium (e.g., Debreu [1959]), differentiability properties of individual utility /production func-
tions are also eliminated, but for different reasons; they are not required for the existence of the
price-taking definition of equilibrium.

'*For this development of Walras’ ideas, see Jaffe [1976] (reprinted in Walker [1983]), where he
concludes: “Instead of climbing up from marginal utility to the level of his general equilibrium
system, Walras actually climbed down from that level to marginal utility.”
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APPENDIX

A. PROOF OF THE EXTENDED ARBITRAGE LEMMA AND ITS COROLLARY
6.1 Extended Arbitrage Lemma

(i) Kz=cl (cone K;) = -l (Ugeg [E:eq cone Si(21)]), a convex cone containing the
origin.

Further,

(ii) Kz =cl Kz if allv € V are quasi-concave.

Proof: The proof is divided into a series of steps. Steps (1)-(2) are preliminary;
(3)-4) prove the first claim of the Lemma,; (5) proves the second claim.

(1) y € K; implies ny € ¢l Kz for any integer n > 1.

Proof: By assumption, y = Y,eq ¥, Where —y; € Si(z) and (v, 2;) € supp pgz. -
For any t € G, monotonicity of preferences implies that for each § > 0 there is an
€ > 0 such that :
v(—y + 6e) > v(z) forall (v,2) € B(vy, ),

where e denotes the unit vector and B, denotes an open e-ball around the given
point. Since (v, z;) € supp gz, z has a nonnull set of subtypes in B(v;,2). Hence
n(y: — 6e) € Ky for any 6§ > 0 and each t € G. Letting § — 0, we conclude that
ny€cl Kz. O

(2) y € cone K; implies that for any € > 0 there is a y such that || y — ¢/ ||[< €
and ny’ € cl K; for some integer n > 1.

Proof: Since cone K= ray (conv K3), by Carathéodory’s Theorem y = Zf;ll oYk,
where a € R, yi € K. If all the a; are rational numbers then there is an integer
n > 0 such that ny = ¥ nogye with each no, an integer. Hence, by (2) above,
naiyr € cl Ky and, therefore, ny = ¥ nogyx € cl K;. If instead some of the oy are
irrational then for all € > 0 there is an o’ close to a such that all the o/, are rational
and || y—9' ||<e¢, where ¥ = T a}yi. Then, as above, ny € cl Kz for some integer
n>0.0

(3) Kz= cl (cone K3)

Proof: By (2), y € cone Ky implies ny’ € cl K; for some 3 arbitrarily close to
y and n > 1. By construction of Kz, nyy € Kj, and thus ¢ = iny) € K for
y arbitrarily close to y. Since Ky is closed, we conclude that y € Ky; ie., cone
Kz C K. Or, since Ky is closed, cl (cone Kz) C K.
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Conversely, y € Ky implies there is a sequence y, — y, where y,, = any, for
some y,, € Kz and a,, € [0,1]. Since each y,, € cone K;, y € cl (cone K3); i.e.,
Ky C cl(cone K3). O

(4) cone Kz = — Ugeg L1 cone Sy(z)

Proof: y € Ky implies —y = T, —¥t € Tseq cone Sy(z;) for some G € G. That

is,
Kz C —Ugeg Y cone Si(z;) = — Ugeg Ca,
teG

where Cg = Y ;¢ cone Sy(2:). Since the sum of convex cones is a convex cone, each
Cg is a convex cone. And since the union of cones is a cone, UgegCyq is a cone. To
verify it is convex, let it contain y; and y,. Hence, y; € Cg, and y, € Cg, for some
Gy, Gy € G. Note Gy UG, € G, 50 C3 = T1eq,u6, cone Si(z:) C UgegCq. Further,
C3 contains both C) and C; (since 0 € cone S(2,) for all t € G; U G3); in particular,
Y1 and y are in C3. Hence, ay; + (1 — @)y, € Cj for all a € [0, 1], since Cj is convex.
So, ay1 + (1 — a)ya € UgegCq. We conclude that cone Ky C — Ugeg Cg since the
latter is a convex cone. .

Conversely, observe that —Sy(z;) C Kj for all ¢ such that (v, z;) € supp pz. Also,”
—2tec St(z) C K3 for all G € G. Hence, -cone T, Si(2) = — Tieq cone Si(z) =
—Cg C cone Kj for all G € G. So, — Ugeg Cg C cone K. O

(5) Kz = cl K, if all v € V are quasi-concave

Proof: Clearly cl K3 C K, so it will suffice to show that the latter is a subset of
the former. If ¥’ € Kz then ¥ = T,ccyr, —y: € Si(2:). Hence, since ay = Tyec ay:
and each —oy, € Sy(2) by convexity, ay’ € Kj for any « € [0,1]. Now y € K implies
there is a sequence y, — y, where y, = a,y, for some g}, € K; and a, € [0,1]. By
the above, each y, € Ky; hence, y € cl K. We conclude that Kz C cl K, as was to
be shown. O

a

Corollary 6.2

(i) KzNRL, =0 if and only if KN RS, = 0.
(i) N(Kz) = f{z° = —N(S3).

(iii) Kz = —cl(cone Sy).

Proof: (i): Since Kz C Kj, the “if” direction is immediate. For the converse,
suppose y € Kz and y > 0. Then there is a sequence y,. — y, where y, = a,y/, for
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some ¥, € Kz and a, € [0,1]. Since y > 0, ¥, >> 0 for n sufficiently large.

(ii): First we show N(K;) = f(;. Since Kz C Kj, clearly pKz < 0 implies
pK; < 0. Conversely, pKz < 0 implies p - cl (cone Kz) < 0 since cl (cone Kj) C
{y : py < 0}, another closed convex cone. Hence, by (i) of the Extended Arbitrage
Lemma, pK; < 0.

To show N(K3z) = —N(S3), suppose first that pS; > 0. Then, by a standard
argument, pS,(z;) > 0 for all t € G and all G € G; hence p - cone Sy(z,;) > 0 for all
t € G and all G € G. That is, cone Sy(2:) C {y:py >0} forall t € G and all G € G;
hence ¥, cone Sy(z:) C {y : py > 0} for all G € G or Ugeg Theg cone Sy(z:) C {y :
py > 0}. But by (i) of the Extended Arbitrage Lemma, the latter just equals -Kj;
hence pK; < 0.

Conversely, pK; < 0 implies p[Ugeg 31 cone Si(2;)] > 0. Hence

pY_cone Si(z) >0
teG

forall G € G or p-cone Sy(2;) > O forallt € G and all G € G since 0 € cone Sy(z) for _
all t. We conclude that pS(z;) > 0 for all representative t. Hence p [ Sy(z,)d A(t) > 0,-
i.e. pSz > 0.

(iii): Since for any convex cone §, (5°)° = cl S, (iii) now follows readily from (ii).
a

B. PROOF OF THE REPRESENTATION THEOREM AND ITS COROLLARY

6.10 Representation Theorem for Convexified Preferences u* : R4 — R is
a well-defined (i.e., sup R(z) < oo for all ), quasi-concave, weakly monotone and
continuous function, wtih u*(0) = u(0). Specifically, for any z € R, :

A*(z) = conv A(r.e)

and
t+1
ul(e)= max {u(z1):u(z)=...=u(tm), =) oxmi & a € AY).
(Z&)k=1,..., 241 =1 -

Proof: The proof is divided into a series of 6 steps. Step (1) establishes that u* is
well-defined; (2) is preliminary to proving (3), that u* is quasi-concave, in particular
it satisfies the next to last property of the theorem; (4) establishes weak monotonicity
and that u*(0) = u(0); (5) proves continuity; finally, (6) proves the last property of
u” in the theorem.
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(1) For all z, sup R(r) < oo.

Proof: Suppose the contrary. By monotonicity, the sets A(er) are nested, i.e.,
r' > r implies A(r'e) C A(re). Hence, sup R(z) = oo implies z € conv A(re) for all
r. So, there is a sequence " — oo with

£+1
=) opzry foreachn,
k=1

where u(z}) > u(r"e) and o" € A’ Let k(n) = argmax {a} : k = 1,... {+ 1}
note af,) > 7. Since r* — oo, {z},)} is not bounded. Hence {0Rn)Tkn)} is DOt
bounded. But for all n and all k, z} is bounded from below by 0. This contradicts

Hlarzt =z foralln. O

(2) For all z, z € bdry (conv A(r.e))

Proof: If z € int (conv A(r.e)) then a contradiction of r; = sup R(x) would
result. To show z € conv A(r.e), observe that, by definition of ., there is a sequence
r* — r, from below with

+1
z=) apzp foreachn,
k=1

where u(z}) > u(r"e) and a® € A’. Let a® — « on a subsequence; and let k;
(respectively, ko) index the k for which ax > 0 (ax = 0). Then for each k;, there
is an zy, such that z}, — zi, on a subsequence (otherwise r = T, afz} for alln
would be contradicted). Similarly, there is an z, > 0 such that 3, of ¢ — z, on
a subsequence. So, z = ¥4, @k, Tk, + To. Since To > 0, there is an Ty, 2 z, such
that £ = ¥4, ax,Tr,. Now r* — r, implies that for each k; u(Ty,) = u(rze), ie.,

Tr, € A(rze). Thus, since ¥y, ax, =1, £ € conv A(r;e). O

(3) For all z, A*(z) = conv A(r;e).

Proof: By (2), if u*(z') > u*(z) then ' € conv A(r'e), r’ > r.. Hence 1’ €
conv A(rze). Conversely, if 2’ € conv A(r.e) then u*(z') > u(r.e) = u*(z) O

(4) u* is weakly monotone, with u*(0) = u(0).

Proof: Let ' > z. By (2),

I = Z QT
k=1

with u(zr) > u(rze), oe >0, Lo, ar = 1. Let y =2’ —z > 0, and let z}, = i + ary.
By construction ' = ¥ a;x}; and by monotonicity, for each k, u(z}) > u(rze), with

strict inequality of =’ 3> z. Hence =’ € conv A(r.e); and z’ € conv A(r'e) for some
r > ry if ' > z. That is, u*(z') > u*(z); and u*(2') > u*(z) if ' > =.
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To show u"(0) = u(0), observe that by monotonicity R(0) = {0}. Hence the
conclusion follows. O

(5) u* is continuous.
Proof: Assume 1™ — z but u*(z") 4 u*(z). We show a contradiction.

Since for all n sufficiently large z* < z+e, monotonicity implies for all n sufficiently
large {u*(z")} is bounded. Hence there is a @ such that u*(z") — 7 on a subsequence,
say s(n), with T # u*(z).

Let 7* = r,» and let ¥ = limr*(® (hence @ = u(Te)). By (2), for all n

t+1
" =) afzp
k=1

with u(z}) > u(r"e) and o" € A’. As in the proof of (2), there are numbers a, z,,
and zo such that

a” — a € A’ on a subsequence of s(n),
Tk, — Tk, on a subsequence of s(n) (for each k;), and
Y ap zk — 7o > 0 on a subsequence of s(n).

ko

Further, since z = limz®,

=) o Tk, + To
ky

or

=) KTk
ky

for some (Zy, ) C A(Te). (Note each zi, € A(Te) since u(z,) > u(r"e) and r*™ — 7.)
Hence u*(z) > u(Te) = 7.

To complete the proof, it suffices to show that u*(z) ¥ 7. By (2),
m
L EDNA
k=1

with u(yk) > u*(z), B > 0, Tiv, Bk = 1. Without loss of generality, we can suppose
b1 £ B2 £ ... £ PBm. For each commodity h (h =1,...,¢), let

h_ . :¢.h
2h(e) = {:v -¢ ifzx 2.6
0 otherwise,

Since z" — r, monotonicity implies that for all € > 0 there is an integer N(e) such
that
u*(z(e)) < u*(z") for all n > N(e).
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Adjust the yi's downward so that the adjusted yi's, say y(€), satisfy

z(€) Y Beui(e),
k=1
ve(€) > 0 for all k, and
€e
lye(e) —wmell < |l 3 | for all k.

(The worst case is that T — z(€) = ee and that the k with the smallest 3 (i.e., k = 1)
takes all the adjustment, which results in the above bound.)

As e — 0, each ye(€) — yi. Hence u*(z(e)) — u*(z). Since u*(z(¢)) < u*(z")
for all n sufficiently large, we conclude that limu*(z*™) = T > u*(z), as was to be
shown. O

(6) For all z, u‘(x) = MaX(z4)sa:,..., t+x{u($1) : u(xl) = . = u(x¢+1), T =
Sl & a € AYL

Proof: It will suffice to show that for all z, z = Y it axzi where u(zi) = u(r:e)
for each k and a € A’ (If there exists an (Fi) such that u(F;) > u*(r) with
wT)=... = w(Tes1), =L WTr, and A € AY, then there would be a contradiction
of u*(z) = u(r.e) where r, = sup R(z).)

By (2), r = Y p-, axTi where u(zi) > u(rze), op >0, i ae =1, n < €0+ 1.
Let i (respectively, j') index those k for which u(zi) = u(rz€) (u(zx) > u(rz€)); and
let #i and #;' represent the number of i’s and j'’s, respectively. If #¢ = 0 then
r. = sup R(z) would be contradicted; so we can take #: > 0.

Suppose #j' > 0. Pick a j', say j, and consider taking (1 — 3)z; from j and giving
each i some additional goods along the ray Bz; (8 > 0). Let 8; = inf {8 € [0,1] :
u((1 = B)z;) = u(rze)}; hence u((1 - B;)z;) = u(rze). Let §; = sup{B € [0,00) :
u(z; + fz;) = u(rze)}.

There are two possibilities, either (i) ¥ ;8 > a;8; or (ii) L a:f; < ;5. If (i),
then there exists (z) such that z} = x for all j’ # j; 2} = (1 — B;)z;; and } =
z; + fBiz; for each i, where ¥ a;f3! = a;f;. Hence, by construction, - axzj = z and
#k such that u(z}) > u(r.e) has been reduced to #j' — 1. If instead (ii) holds, then
there exist (z}) such that z}, = z; for all j' # j; } = (1 — f})z;; and 7} = z; + Biz;
for each i; where §; < G;, B; > fi, and ¥ oif; = a;0;. By construction, 3 QT =T
and ug(z}) > u(r.e) for all k, contradicting r, = sup R(z). Hence (i) must hold. That
‘is, we can construct an (z},) that reduced #j' by 1.

Repeating the construction starting from (z}) instead of from (zx), will reduce
#7' by 2. Hence, after a finite number of repetitions, we will arrive at an (Z;) such
that ¥ ax T, = = and u(Ty) = u(r.e) for all k, as required. O

0
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Corollary 6.11 Assume v : R —» RU {—o00} satisfies (A.1-3). Then there exists a
function v* : R¢ - RU {—o0} satisfying (A.1-4), with Z,. = Z,. The function v* is
a numerical representation of the convezification of the preferences in v. Specifically,
for any z € Z,., there are (2 )k=1,.. 441 C Z, such that

(i) z = T arze for some (o) € AL,
(ii) v(z1) = ... = v(2e41) 2 v*(2), and

(iii) S,+(2) + {2z} = conv Sy(z) + {2k} (for anyk) .

Proof: Define u : RY — R by u(z) = v(z — w,). Hence, u is continuous and
weakly monotone. Now define v§ : R — R U {—o0} by v}(2) = u*(z + w,) for all
z € Z,, v3(z) = —oo for all z ¢ Z,. By construction Zy; = Zy; and, by Theorem 6.10,
vp satisfies (A.1-4)—except vy may not equal 0. To verify that vj also satisfies (i)-(iii),
observe that for any given trade z € Z,;, the corresponding consumption is z = z+w,,.
By Theorem 6.10, this z = Zi;'ll axTi, where u*(z) = u(z)) = ... = u(Ze41), @ € A,
and A*(z) = conv A(zy) (for any k). Letting 2z = x4 — wy, it immediately follows -
that (zx) C Z, and satisfies (i)-(iii) ((ii) with equality). )

Thus, if v5(0) = 0 then vg satisfies all the requirements of the Corollary. If not,
re-normalize. That is, let v* = v5 — v5(0). Since v3(0) = u*(wy) > u(w,) = v(0) = 0,
v* satisfies all the requirements, including (ii). O
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