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Kernels of Replicated Market Games

LLOYD S. SHAPLEY'
UCLA

1 Introduction

Our subject is replicated TU economies and the kernels of the cooperative games
that they generate. The kernel is a multi-bilateral bargaining equilibrium,; it contains
the nucleolus and is contained in most bargaining sets. Two players are considered
to be in equilibrium if at the given outcome they split their combined payoff equally
between what they could claim on the basis of marginal worth to coalitions contain-
ing one but not the other. To qualify for the kernel, an outcome must have all pairs
of players in equilibrium simultaneously. It is somewhat remarkable that the kernel
is never empty.

The kernel has a special relationship to the core. Any core point is at the center
of a (possibly degenerate) “asterisk” of line segments in the core, radiating in all
directions of possible two-player transfers. A core point is a member of the kernel
if and only if it bisects all the line segments that make up its “asterisk.” Despite
the fact that the core provides at most n — 1 dimensions in which to satisfy up to

('2‘) conditions, there is always at least one point that does this, assuming of course

that the core is not empty.! Indeed, the nucleolus has this property. Unlike the
nucleolus, however, kernel points can also appear outside the core, even when the

core is not empty.

Although the kernel often turns out to contain just one point, it is generally a
formidable task to verify that there are no other points.? It is therefore pleasant
to be able to report here on a class of games that have played a historical role in
economic theory—the replicated market games—in which the kernels are easy to
work with and yet exhibit very interesting behavior.

OThis paper grew out of joint work with Martin Shubik, begun in the 1970’s and supported
then by both the National Science Foundation and the Office of Naval Research, but not heretofore
published. It was presented at an International Conference on Game Theory at SUNY Stony Brook
in July 1990.

1This bisection property also holds for any nonempty strong ¢-core; see Maschler, Peleg and
Shapley (1979).

TEven in the case of convez games, where most cooperative solutions shed their complexities
under the benign influence of an all-powerful core, the kernel remains a “hard nut” to crack.
Though it’s easily shown that the kernel of a convex game is in the core, the additional fact that
it is a single point requires a most elaborate argument (Maschler, Peleg, Shiaptey (1972)).
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Just as the nucleolus was first presented as a way of explaining the nonempti-
ness of the kernel, the kernel began as a way of proving the nonemptiness of a certain
bargaining set.> Our example in §6 of a nonconvergent kernel in a replication se-
quence of TU markets therefore serves as a counterexample to the convergence of
certain bargaining sets as well. The counterexample will be seen to depend on the
piecewise-linearity of the underlying utility functions and may be compared with
the more positive results that have been obtained for smooth utility functions.*

Recognizing that many readers will be unfamiliar with the kernel concept, we
have taken this opportunity to review many of its basic properties along the way.

2 Definitions and Notation

We shall follow, with a few exceptions, the terminology and notation of Maschler,
Peleg and Shapley (1979).

Let N be a finite set of size n = |N|, and let A stand for its power set 2N It
will be convenient to define®

N, =t {SeN:i€ S}, all{e N, and
Noj=: {SEN:i€S,j¢S) alli,jEN, i #;.

By a game® I’ we shall mean an ordered pair (N,v), where v is a function from N
to the real numbers R such that v(@) = 0. We call v (or ') monotonic if

SOT = v(S) 2 v(T), all $,T e N,
and 0-monotonic if vg is monotonic, where vg is the “0-normalization” of v :

w(8) = v(S) - Tiesv({i}), all § € N

We note that in the standard interpretation of the characteristic function v is auto-
matically superadditive, and hence 0-monotonic._As customary in this context, R¥
will denote the n-dimensional product space R™ with coordinates indexed by ¢ € N.
If z € RN, then “z” will be used both for the real vector (z; : 1€ N) and the additive

set function z(S) =: Les Zi-
Given I = (N,v), certain basic subsets of RN are

pX(T) = {z€ RN :z(N) = v(N)}, (the pre-imputations of T')

X(T) = {z€pX(T):z;2v({i}), all i€ N}, (the imputations of T')

C(I) =: {z € X(I):2(5) 2 v(S), all SeN}. (the core of T)

3Gee Schmeidler (1969) for the nucleolus; Maschler (1966), Maschler and Peleg (1966), and
Davis and Maschler (1965) for the kernel.

4Shapley and Shubik, in Shubik (1984; App. B); see also Mas-Colell (1989).

$The symbol “=" indicates a definition.

$More fully, a “cooperative TU game in characteristic-function form.”
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(The argument “I” will be omitted when there is no danger of confusion.)

We now introduce the sequence of concepts leading to the “multi-bilateral” equi-
librium. First the ezcess of S at z:

(2.1) e(S,z) =: v(S) - z(5), all SeN, z€ X;
then the surplus of i against j at z:

(2.2) 0,j(z) =: maxsew;,, &S, 2), alli,jEN, i#5;
then the pre-kernek

(2.3) K(T) = {z€ pX : 0(z)=0ji(z), all i, JEN, i#5 };

and finally, the kernel itself:

(2.4) K() = {:':EX: for each i,jEN, i#), ...

either o;i(z)=0,i(z),
or 0’,‘,’(2)(0'1'.‘(1) and I, = 0({3}),
or a.-,~(z)>d,-.~(-‘t) and z;1 = v({J}) }

The last definition—though historically correct—is needlessly complicated in the
standard interpretation, in view of Proposition 2 below. Indeed, (2.3) is increas-
ingly being used now as the definition of K, since for non 0-monotonic games the
consideration of “individual rationality” that motivates (2.4) has no particular ap-

peal.
The following results are basic to the theory of the kernel:’

Proposition 1. f X # @ then K # @ and K C X.
Proposition 2. If T is 0-monotonic, then K(T') = pK(T).
Proposition 8. If C # @ then CNK # 0.

The next proposition sets forth the “bisection” property, which is helpful in both
visualizing and calculating the kernel. Let z € C, and for any ¢ # j let L;j(z) be
the line that passes through z in the “i-j direction,” i.e., the line in p X along which
only z; and z; are allowed to vary.

Proposition 4. If z € C, then z € K if and only if = bisects the
segment CNL;;(z) for each ¢ # j. (If CNL;(z)isa single point,
then z is that point.)

Figure 1 shows a kernel point bisecting the “asterisk” of line segments that pass
through it in the six possible directions. No other core point in Figure 1 enjoys this

7See e.g. Maschler, Peleg and Shapley (1979).
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<— j-k direction —>

Figure 1. Illustrating the bisection property.

property, and indeed, as in all 3-person games, the kernel is a singleton. For larger
n, however, there can be many core points with the bisection property. Indeed, we
shall soon be dealing with a class of games in which all points in the core are multi-
bilateral bisectors, and there may be kernel points outside the core as well.

For those who may be puzzled by the bisection property’s success in imposing
up to (n?—n)/2 constraints on the kernel when the core itself is at most (n — 1)-
dimensional, the following remarks may provide some clues: (1) the constraints
are actually not linear but piecewise linear; (2) the boundary faces of the core are
severely restricted in the directions of their normals, since the coefficients of the
defining inequalities are all 0 or 1 (note the parallel faces in Figure 1); 3)ifn >4
and the dimension of the core is less than n — 2, it is quite possible for the core to
be skewed in such a way that none of the transfer lines L;; intersect it in more than
a point. Then all the asterisks are trivial, and we have K 2 C. We shall soon see
that this is a common occurrence in replicated market games.®

3 Symmetries, Types and Profilles

By a symmetry of a game, we shall mean any permutation of the players that leaves
the characteristic function unchanged. Thus, if [ = (N,v) and x : Neo Nisa
permutation of the players, then the symmetries of I' comprise the set

I =1 = {r:xv=1v},

where v is defined by (xv)(S) =: v(xS) =: v({=(i) : i€ S}). I is obviously a group
under composition: (x-p)v =: 7(pv).

While two players i,j will be called symmetric if x(i) = j for some x € II, the
stronger relationship of “perfect substitutes” is also important; it requires that the
simple transposition of i and j—ie., leaving the other players fixed—is itself an

8Gee Proposition 7.
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element of II. Both symmetry and substitutability are equivalence relations® and
therefore induce partitions of N; we shall call them symmetry classes and substitution
classes respectively, the latter being in general a refinement of the former.

For an example, let N = {1,2,3,4} and let v(S) be 1if S'is {1,2}, {2,3}, {3.4}
or {1,4}, 2if |S| = 3 or 4, and 0 otherwise. Then II(v) is the familiar group
of the square (with 1 and 3 sitting at opposite corners). All six pairs of players
are symmetric, but players 1 and 2, for example, are not substitutes. The unique
symmetry class is N, while the substitution classes are {1,3} and {2,4}.

Given T', we may distinguish two special classes of pre-imputations:

pXym = {z € pX : z; = z,; whenever i and j are symmetric in I'},

pX, . =t {z € pX:z; = z; whenever i and j are substitutes in T'}.

We observe that always pX = C pX, ., (In the example above, (1,0,1,0) is

in pX,,, but not pX__.) Of course if T' has no symmetries except the identity
permutation, then pX, = =pX,,, = pX. We shall write X,ym for XNpX_ = and

x.ub for XN pxn‘b..
The following is an easily proved but important property of the kernel:

Proposition 5. K(I') € X.ue(T)-

In other words, every kernel point gives “equal treatment” to all members of each
substitution class. This is not true in general for core points, nor is it generally
true that kernel points give equal treatment to players who are symmetric but not

substitutes.!®

We shall be dealing in the sequel with games whose players can be classified into
types, a type being any nonempty subset of a substitution class. We define a regular
type-partition of order k to be any refinement of the substitution partition with the
property that all types have size k. Thus, even though a game may have many
substitution classes of different sizes, it may not have any regular type-partitions
beyond the trivial k = 1. In fact, it is easily seen that the order of any regular
type-partition must be a common divisor of all the substitution-class sizes.

It would appear, then, that games with nontrivial regular type-partitions are
rare in practice. Nevertheless they are of much interest in economics because of
their connection with the procedure of “replication,” which traditionally has served
as an important point of entry into the study of large economies. The present note
continues that tradition.

9To verify the transitivity of substitution, let (ijk...m) denote the cyclic permutation in which
i takes j's seat, j takes k’s seat ..., and m takes i’s seat. Then (i§) =(ji) is just the transposition
of i and j. We must show that if (ij) and (jk) are in I then so is (ik). But (ij) - (jk) (read “(k),
then (ij)”) is (ikj), which is a symmetry but not a transposition. Another application of (7k) does
the trick, however, since (jk) - (ikj) = (ik).

108yt see Proposition 6 below. Of course, both the kernel and the core—as sets—enjoy the full
symmetry of the game. It follows that in the case of a one-point kernel or a one-point core, all
members of each symmetry class get equal treatment.
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Let {N, : t=1,...,m} be a partition of N into m types of size k. To each
S € N we associate an integer-valued m-vector 8 = (8,...,8m), called the profile
of S, where 8 = |SN Ny|. Because the members of a type are substitutes, the
characteristic function on coalitions can be replaced by a simpler, “characterizing”
function on profiles, defined by the identity

(3.1) v(S) = ¢(s).

The precise domain of ¢ is the cubic lattice of integer points 8 € R} with 0 < s <k,
where 0 denotes (0,0,...0) and k denotes (k,k,...k).

4 TU Markets and Market Games

Following Shapley and Shubik (1969, 1975), a TU market M = (T,G,a,u) is com-
posed of (1) a finite set T of traders, (2) a finite set G of commodities with the
associated consumption set RS, (3) a family a = {a*}ser C RS of initial bundles,
and (4) a family u = {u'}.er of utility functions, u' : RS — R(t), assumed to be
continuous, concave, and nondecreasing. (Here the R(t) are copies of R representing
the individual utility scales of the respective traders t.)

The “TU” designation means that utility is treated as an additional, money-
like good, valuable in itself and freely transferable, but serving also as a common
unit of measurement for the R(t). To obtain the final utility levels or “payoffs” of
the traders we take their utilities of consumption u!(z*), where 2 € R{ is t’s final
bundle, and add their net balances of transfered utility.n

The market M = (T, G, a,u) generates a cooperative TU game I' = (T, v)in a
very natural way. First, define an S-allocation to be any z5= {z' € R : i € S},
and call it feasible if
(4.1) Yo = ) d.

i€S i€S
Then, for each nonempty S C T define'?

(4.2) v(S) =: max {Z u'(z') : 2° is a feasible S-a.llocation} .
i€S
Finally, set v(@) = 0. It is easy to see that v is automatically superadditive.
By a TU market game we shall mean any I' = (T, v) that can be derived from a
TU market M = (T, G, a,u) in this way. These games have been widely studied, a

central result being that the TU market games are precisely those that are “totally
balanced,” a property which, among other things, assures a non-empty core.!?

11An early statement of the role of transferable utility in economic theory, applicable to the
present context, will be found in Shapley and Shubik (1966; pp. 807-808).

12Note that transfered utility does not enter into the definition. No help for S can be expected
from outside, and utility transfers among members of S do not affect the total.

13Ghapley and Shubik (1969, 1975); see also Shapley (1967), Scarf (1967), Billera (1970), Billera
and Bixby (1973) (who apply Rader’s (1972) “Principle of Equivalence” between production
economies and pure exchange economies), Mas-Colell (1975), Hart (1982), Qin (1991).
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A replicated TU market has a special structure. We may imagine constructing
one by starting with any TU market M, making k exact copies, arranging them
side by side on a map, then finally erasing all boundaries and barriers to create a
“common market,” denoted by *M. If we start with |T| = n traders in M then we end
up with [*T| = kn traders in *M; moreover *T will admit a regular type-partition
{Th,...,T,} of order k. Of course, this type-partition applies equally to the market
kM and the associated TU market game, which we denote by kp

It is not difficult to see that *I' = (*T, *v) is positively homogeneous in the
following, discrete sense: let S € *T, and let AS be any coalition in *T having
exactly h times as many traders of each type as S; then ky(AS) = h*u(S).

This suggests that in dealing with games of the form *T' we should speak of
profiles rather than coalitions, and introduce an alternative characterizing function
¢, as in (3.1), defined on the lattice of integer n-vectors between 0 and k, inclusive.
The homogeneity property then has a more familiar appearance:

(4.3) ¢(hs) = hé(s),

for all positive integers h such that 0 < hs < k.
Referring to (4.2), we see that ¢ is given by

(4.4 Ho) = max T sa(z"),
t€T

where z runs over n-dimensional space of the feasible type-symmetric allocations—
i.e., sets of bundles {z'}¢er such that Tier $12' = Lier 8:a°, since the concavity of
the u! ensures that the maximum over all allocations will be achieved at an equal-
treatment allocation. To see this, observe that if two members of S are of the same
type but receive different bundles, then the total utility to S will not be decreased
if they both are given the average of the two bundles.

We see also that the natural superadditivity of ky implies that ¢ is (discretely)
concave, in the sense that if pr + (1—p)s is an integer vector for any r < k,s <k
and 0 < p < 1, then ¢(pr + (1—p)s) 2 pé(r) + (£ ~p)4(s)-

We now state the well-known “equal treatment” property of core points in k-
replicated economies, k > 2. With its aid we shall establish an important fact about
the kernel in the TU case.

Proposition 6. Let z € C(*T), k > 2. Then if i and j are members
of the same type, we have z; = z;.

The proof consists in forming an n-player coalition S with profile s = (1,...,1) by
selecting a worst-treated player of each type. Then in the absence of equal treatment,

S can improve.

Proposition 7. If k > 2, then K(*T') 2 C(*I).

14We do not define the replication of games per se. Indeed, two TU markets that generate the
same game can easily have k-replications that generate different games.
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Proof. In defining the asterisk at any z € C(*T'), only two players can depart
from their z coordinates at the same time—one up and one down. Thus, the equal
treatment that exists at z by Proposition 6 is necessarily spoiled by any movement
away from z on a transfer line L;;(z). So all core points have trivial asterisks, and
the result follows at once by Proposition 4.

It will be convenient now to extend the domain of the “characterizing” function
é to a continuous, nondecreasing, concave, positively homogeneous function é on
the full positive orthant R}. We begin by releasing the h of (4.3) from its integer
constraint, thereby extending ¢ to all the rays in R} that hit lattice points in the
k-cube. If k is allowed to increase indefinitely these “rational rays” become dense
in R}, and an appeal to continuity completes the extension.

Proposition 8. Given a TU market M = (T, G,a,u) together with
its k-replications, k=2,3,..., there is a unique continuous function
¢ : R — R such that the characteristic function ty of *['(M) is
given by

ky(S) = 4(s), all Se*T;

moreover, ¢ is positively homogeneous, nondecreasing, and concave.

The converse is also of interest:

Proposition 9. Every continuous, concave, nondecreasing, posi-
tively homogeneous function ¢ : R} = R is represented by some
TU market M(T, G, a,u) together with its k-replications.

Proof. An easy way to set up an M(T,G,a,u) with the desired properties is to
take |T| = |G| = n and match trader types to commodities.!® Initially endow each
member of type ¢ with one unit of good t, and nothing else, so that a’ for i in type
t is just the ¢-th unit vector of RS§. The utility functions u! are then defined to be
equal to each other and to the given function ¢:

(4.5) w(21,... Ta) = w(Z1,... Za) = é(z1,..- Tn), allteT.

Under this set-up, the total bundle available to a coalition to distribute is exactly its
profile. Concavity of u° implies that total utility is maximized for any S is attained
by an equal split, each player turning in his endowment for the bundle 8/|S|. This
of course yields v(S) or *v(S) equal to 4(s), as in (4.4).

Of course with the positive homogeneity of (4.5), the maximum is attained by
by other, nonsymmetric distributions—for example, by giving the whole of s to one
player. But homogeneity of u® is not at all essential to the construction. It suffices
that u° be concave, continuous and nondecreasing, and agree with #+u°(0) on the
simplex formed by the convex hull of the unit vectors of RG. These remarks are

easily verified.

15CE. the direct markei of a game, utilized by Shapley and Shubik (1969, 1975).
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5 The Kernel for Two Types.

We now restrict ourselves to the case n = 2 and consider the sequence of 2k-person
games "I‘_ that derive from a fixed continuous, concave, positively homogeneous
function @ on R, restricted for each *T to the profiles s in the kxk-square0 < s < k.

Consider an equal-treatment imputation of *I:
(5.1) (a,...,a, b,...,b) or, forshort, (q; b).

where a > ¢(1,0), b > #(0,1) and a + b = ¢(1,1). The excess at (a; ) of any
coalition S C*T with profile s is given by!® :

(5.2) e(S,(a;0)) = &(s,(a,b)) =: 4(s1 +82) — (a3 + bs;)
(cf. (2.1)), and the surplus of any i € Ty against any j € T; is given by

(5:3) on(a,) = max{e(s,(a,b))}
where
(54) Du =: {8:1S81Sk andOSSQSE—l}

(cf. (2.2)), with corresponding expressions defining 021((a, b)) and Dy;. Of course,
if the two players are of the same type their surpluses against each other are auto-
matically equal, since the maximization problems they face are the same.

So in order for (a;b) to be in the kernel, it is necessary and sufficient that

(5.5) o12((a,0)) = on((a,d)),

by (5.3), (2.3) and Proposition 2. Our problem therefore reduces to maximizing ¢
over the two finite domains D;; and D, and comparing the results (Figure 2).
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Figure 2. Dlustrating the squares D,; and Dy.

16Note that “(a;b)” denotes a point in R?*, “(a,})” a point in R32.
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If we extend ¢ and ¢ to functions d;, ¢ on the full k x k-square by replacing s,
and s, by real variables s, and s; in [0, k], we see that £ is just another continuous,
concave, positively homogeneous function for each (a, b), resembling ¢ but with the
added property that it is 0 along the diagonal s, = s,.

Figure 3 below shows the positive and negative regions of a typical ¢ for k = 6.
Because of the concavity there can be at most one “+” sector; moreover, there can
be no “0” sector of positive area if a “+” sector exists. If there is no “4+" sector,
the maximum of &(8, (a, b)) is 0 in both Dy, and Dy and so (a;b) is in the core and

the kernel.”

o
Figure 8. An excess function in the kxk-square.

Attempting to construct kernel points (a; ) outside the core, we choose (a, b) so
that the “4" sector of &(8, (a,b)) contains at least one lattice point, like (k—1,k)
in Figure 3, say. Then max e(s) 8 is positive in D21\D12 but negative in Di12\Da.
So the only way that (5.5) can hold is if maxe(s) over s € D,;,UD;, is attained at
somer € Dlann.

Let p > 0 be that maximum, and let it be attained at a lattice point r with
r, < rz < k=1, like (3,4) in Figure 3. Extend the ray Or to the boundary of the
square at I’ = (r k/ry, k). By homogeneity, é(r') = ku/r2 > p. So r k/r; cannot be
an integer. Indeed, there must be no lattice points on the segment rr’ other than
r itself. But note that since ry < r, there is at least one boundary lattice point
strictly between r and the corner k = (k, k), namely r" =: (k= (rs—r1), k). So
concavity of £ entails that

k-r} ry - r)
2" > 1 200 111 200,
é(r") 2 7 e(l')+-—-——k_r,l é(k")
Observing that the triangles rr'r” and Or’k are similar, we have at once
oot rpkp k-rao
(5.6) é(r") 2 k—r+ & 0=u

17Indeed, (a;b) is a CE payoff of the underlying market. A sharper condition for core membership
is that the “+” sector contain no lattice points. Thus, as k increases we get a glimpse of how and
why the core is generally larger than the CE set but closes in on it as k — co. (The “shrinkage”

takes place in R?, however, not R?*.)
18We shall suppress the argument (a, b) until it is needed again.
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Since  is the maximum on lattice points, equality holds in (5.6), and it follows that
the triangle Okr’ represents a “flat” sector of £ (i.e., linear, not level). Hence ¢ is
identically s along the line rr” which runs parallel to the diagonal.

In short, a lattice point in Dy3NDy; that is maximal in Dy3UD;; can be con-
structed, but only just barely, by making a considerable portion of é linear.

What more is demanded of ¢ (and hence @) to ensure that (a;5) has the kernel
property? Not much. To the right of the “flat” sector, concavity keeps £ safely
negative. To the left, however, £ must drop off rather quickly, so as not to exceed u
at any lattice point. But apart from this condition, which is easily fulfilled, there is
nothing more to assume. Indeed, other than the need for a flat region adjacent to the
diagonal Ok, the existence of kernel points outside the core is a robust phenomenon.
Let us make two further observations:

(1) The kernel is readily seen to be convex. If the (a; ) of Figure 3 is thought
of as a plane in R? that contains the line Ok in R?, then consider decreasing a and
increasing b by the same amount.’® This will tilt it to the right, and so by (5.2)
cause the graph of £ to tilt to the left, turning on the Ok hinge, until the “flat”
becomes level and the “+” sector disappears. This means that (a;b) has entered
the core. But throughout the tilting process the point r continues to maximize £(8)
on both D,; and Dy, even as g4 — 0. So the kernel extends all the way from the
original (a;b) to the core.

(2) Due to the absence of requirements on & on the negative side of Ok, there is
nothing to prevent a similar construction in that region as well, resulting in another
segment of the kernel protruding from the core in the opposite direction. If the two
“fats”are given the same slope then the core will be a single point in the interior of
K. But if they are given different slopes there will be a “crease” along Ok, and the
core will be a closed line segment interior to K, representing the family of planes
that support ¢(s) along the crease.

We expect that the situation described for n = 2 carries over in most respects
to larger n. The core, at least, is always convex and generically (n—1)-dimensional,
and it appears that the kernel too will be convex.

6 A Nonconvergent Example

We now apply the analysis of §5 to a special case. The characterizing function,
¢ : R2 — R is deceptively simple:

(6.1) #(s) = min{sy, asz},

where a is a parameter > 1; @ is of course also the utility function for all traders
in the two-commodity “direct market” that represents ¢.2° This piecewise linear
function has two flat sectors joined along a ray R whose slope is 1/a, as depicted

19Recall that a + b is a constant.
30Gee the proof of Proposition 9.
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in Figure 4(a) for a = 2. (The small numbers are the values of ¢ on the L-shaped
contours.) By (5.2), we have

&(s, (a,b)) = min{s,—as;—bs;, asz—as,—bsz}

= bs; — bs; + min{0, —s; + asy},

(eliminating a by the identity a+ b = £(1,1) = 1). Figure 4(b) indicates the signed
sectors of £ for (a,b) = (.2,.8) with a = 2; the shading is parallel to the contours.

At X2 ,'
o ”” /
6 2 4 ’o‘
’ 6 R
P s R
4} A /
l”, 6
1" /
2 A 4 /
"’ : /
o | L o | | 0 —
o 2 4 6 s O 0 o
(a) (®)

Figure 4. The extended functions ¢ and &.

We note that the type-symmetric imputations form a line segment in R":
Xem = [(1;0),(0;1)] = {(a;0):0<a=1- b<1},
while the core C consists of the single point (1; 0), which is situated at one end

of X,ym- As we saw in §5, K is a closed line segment (or point) containing C and
contained in X,y

We now fix a = 2 and determine K for all values of k. Figure 5 (next page)
graphically tabulates the ¢(s) values at lattice points in the critical region around
(k,k/2). The parity of k now becomes critical.

If k happens to be even, then £(s) takes its maximum in Dy, at (k, k/2) and—if
b > 0—nowhere else in D;3. This means that we can never equate the two surpluses:
013 =07 unless (a; b) is the core point (1; 0). So, by Proposition 7, K = C.

If k is odd, however, the situation is quite different. From Figure 5(b) we see
that (s) is maximized at both (k,(k+1)/2) and (k-1,(k-1)/2). So o13=0m
throughout the entire range, and we have K = X,ym.

2 Note that in the present example, the type partition is the symmetry partition.
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Figure 5. Excesses in the neighborhood of (k,k/2).

To summarize: The kernel flips in and out of the core according to whether
the replication number is even or odd. Viewed in the “type” space (i.e., R?), the
oscillation is exact:

[(1,0), (0,1)] for k =1,3,5,..., {(1,0)} for k =2,4,6,....

Viewed in the payoff space, or rather, the increasing sequence of payoff spaces of
dimension kn—1, the even-odd oscillation is at least as bad. Indeed, depending on
the metric or sequence of metrics employed, the diameter of the “odd” kernels may
even grow without bound—e.g., like V% if the Euclidean norm is used. Certainly in
this case the kernel cannot be said to “shrink” to the core.?

It is worth remarking that a = 2 is not a special case. In fact, any real number
a > 1 will yield double maxima as in Figure 5(b) for infinitely many k. If a is
rational, the ray R will pass through a lattice point at regular intervals, and a
periodic pattern of C kernels and X,ym kernels will result. If a is irrational, the
ray will not hit any lattice points and the oscillation will be irregular. Nevertheless,
infinitely many kernels of each kind will occur.
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