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1. INTRODUCTION

Much of the modern theory of bargaining has its origins in a series of papers
by John Nash (1950, 1951, 1953). In these papers, Nash presents cooperative and
noncooperative approaches to the two-person simple bargaining problem. His
cooperative (axiomatic) approach lists desirable characteristics for a solution, and asks
if any solution has these characteristics. His noncooperative approach sets out a
particular bargaining procedure (a demand game), and asks what outcomes would
result from rational, self-interested actions of individuals (i.e., as a "Nash" equilibri-
um). Nash showed that his axioms characterize a unique cooperative solution (the
Nash bargaining solution), and that this is an equilibrium outcome of the demand
game. Nash went on to argue, on the basis of equilibrium selection, that the coopera-
tive Nash bargaining solution is the "correct” equilibrium outcome.

Nash viewed the cooperative and noncooperative approaches as complementa-
ry. It is typically difficult to assess the reasonableness of the intuition (axioms)
underlying a cooperative solution, or the range of situations to which it applies,
without having a specific bargaining procedure in mind. A cooperative solution is in
serious doubt if it is not compatible with some sensible noncooperative bargaining
procedure. Conversely, a noncooperative bargaining procedure is not likely to be
sensible if its outcomes are not supported by the intuition of some cooperative
solution. The search for such mutually reinforcing cooperative and noncooperative
bargaining solutions has come to be called the "Nash program®.

The Nash program was advanced by Rubinstein (1982), who presented a
different noncooperative model for the two-person simple bargaining problem. In
Rubinstein’s model, the two players alternate making offers; the first accepted offer
ends the game, and the players obtain the agreed-upon payoffs. Making an offer
takes time, and players are impatient (and so discount future payoffs). Rubinstein
showed that this game has a unique subgame perfect equilibrium outcome. More-
over, if players discount future payoffs at the same rate, then as the discount factor
converges to 1, this outcome converges to the Nash bargaining solution.

This paper continues the Nash program by extending the Nash bargaining
solution and the Rubinstein alternating offer model to a class of three-player bargain-
ing problems that Binmore (1985) dubbed "three-player/three-cake" problems. In the
simple bargaining problem studied by Nash, a pair of players bargain over the
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division of a "cake"; i.e., the choice of a utility vector from a set of attainable utility
vectors. In the three-player problems we consider, each pair has a cake to divide, but
at most one of these three cakes can be divided.! Individuals acting alone, and the
coalition of all three players have no cake to divide, and no sidepayments of any kind
are possible from any pair to the third player. Since only two of the three players
will succeed in forming a coalition, we refer to these bargaining situations as "Odd
Man Out". These are the simplest bargaining problems in which each player’s
"outside option" is to bargain in another coalition. Our interest in these problems is
primarily as a first step in the analysis of the general bargaining problem with many
players and many coalitions. However, there are certainly real situations of interest
that can naturally be modeled as three-player/three-cake problems. For instance, after
an election when none of three contending parties obtains a majority of votes, and the
three parties together cannot agree on essential policies, the problem of forming a
government (deciding on policies, allocating ministries etc.) is of the type we study
here.

Our cooperative model views three-player/three-cake problems as a set of
interrelated two-player bargaining problems. Each pair of players faces a bargaining
problem: division of the cake they control. Within this bargaining problem, the role
of the third player is indirect: either player could threaten to abandon the current
negotiations and take up negotiation with the third player. We capture this threat by
an endogenously determined outside option vector; given this vector, we assume that
the division of the cake is that specified by the Nash bargaining solution.? A multi-
lateral Nash solution specifies a "division" of the cake for each potential coalition
that is consistent both with the bargaining within each coalition and with the evalua-
tion of each player’s outside option.

1 If, for instance, participation in a coalition is a full-time occupation then at
most one coalition can form.

2 We caution the reader that we use "outside option vector" in the sense of
Binmore (1985) rather than the usual "disagreement point" or "threat point" in the
sense of Nash (1950), and that we use the Nash bargaining solution corresponding to
the disagreement point (0,0), constrained by the outside option vector. See Section
3 for details.



A solution specifies a division of each cake, but in general some of the
specified divisions may not be feasible.® We interpret an infeasible division as a
prediction that a particular coalition will nor form. We use the term outcome to
describe a pair [ij] and a feasible division z of the cake V[ij]. An outcome is
consistent with a multilateral Nash solution if ZU is the prescribed division of VI[ij].
Thus, given a multilateral Nash solution, each conditional division which is feasible
corresponds to a particular outcome, while conditional divisions which are infeasible
correspond to the prediction that the particular coalition will not form.

A solution therefore provides answers to a pair of questions: Which coalitions
might form? If a given coalition forms, on what division will its members agree? In
general, there seems to be no basis on which to resolve the question of which
coalition will actually form.* Consider for example the simple majority game (with
transferable utility): each pair of players can divide $2 any way they choose, but no
sidepayments are possible (so no other coalitions yield positive value). The complete
symmetry of the situation suggests that, whatever cake is divided (i.e., whatever
coalition forms), the division of the cake should be a dollar to each player; symmetry
also suggests that any of the coalitions is as likely to form as any other. A solution
reflecting these considerations would be the triple {(1,1,-), (1,-,1), (-,1,1)} where
" indicates that the player does not belong to the coalition; i.e., if the coalition
[12] forms the payoffs to its members will be $1 each, and player 3 will obtam
nothing. And this triple is the unique multilateral Nash solution for this problem

We show that multilateral Nash solutions exist, and characterize them.
Three-player/three-cake bargaining problem fall into three classes, which we can
intuitively think of as corresponding to the number of "strong” coalitions. If there are
no strong coalitions, the tensions among them lead to a unique multilateral Nash
solution. If there is only one strong coalition, its members solve their bargaining
problem as if the other two coalitions did not exist; this again leads to a unique
multilateral Nash solution. If there are two strong coalitions, the "pivotal” player
who belongs to both of them can play off each of his potential partners against the

3 We show that at least one of the specified divisions is feasible.
4 Although this will be possible in some cases.

5 See Binmore (1985) for similar discussion.
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other to obtain a higher payoff; this leads to an interval of multilateral Nash solutions,
the multiplicity reflecting the effectiveness of the pivotal player. (In the case of one
seller and two idenrical buyers, for example, one extreme solution yields equal
division between the seller and one of the buyers; the other extreme solution yields
the seller all the gains from trade.) As part of our characterization, we show that
every multilateral Nash solution is determined by a triple of prices; if (p;,p;,p3) is
this triple of prices then the corresponding (conditional) agreements are (p;,p;,-)

(pla"p3) s (',stp3)-

Our noncooperative model is an extension of the alternating offer model to the,
three-player/three-cake context. At the beginning of the bargaining process, a player
(selected at random) is given the initiative. A player with the initiative has the right
to make a proposal, specifying a (feasible) division of a specific cake. His potential
partner may accept or reject the offer. If he accepts, the game is over and players
divide the cake as agreed (the third player obtaining nothing); if he rejects, he
obtains the initiative and play proceeds as above.® (Perpetual disagreement yields
zero payoff to all players.) It takes time to make an offer, and players discount the
utility of future agreements using a common discount factor. We are looking for the
outcomes of rational play; the notions of rationality we use are pure strategy
subgame perfect and stationary subgame perfect equilibria. For all discount rates,
subgame perfect equilibria exist. Bargaining problems with one or two "strong"
coalitions have essentially unique (up to an indeterminacy arising from indifference)
subgame perfect equilibria; bargaining problems with no strong coalitions have
multiple subgame perfect equilibria, but a unique stationary subgame perfect equilibri-
um. In each bargaining problem the "unique" equilibrium is characterized by a triple
of reservation prices: each player accepts all offers at least equal to his resérvation
price, rejects offers below his reservation price. and proposes divisions consistent
with his reservation price and the reservation prices of other players.7 In general, in

6 This proposal-making model incorporates discounting into the proposal-making
model of Bennett (1991a, 1991b), which in turn is an extension of the proposal-
making model of Selten (1981).

7 More precisely, each player accepts offers yielding at least the present value of
his reservation price obtained one period later (rejects anything less) and offers his
partner the present value of her reservation price obtained one period later.
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such a subgame perfect equilibrium, all initial offers are accepted;8 in particular, the
player with the first initiative obtains his reservation price.

Note that the outcome of play depends on the strategy of each player and also
on the random choice of the player with the first initiative. In general, each subgame
perfect equilibrium is consistent with three outcomes, each corresponding to the
choice of a particular player to have the first initiative.

As in Binmore, Rubinstein and Wolinsky (1986) we are primarily interested in
limit results. We show that the limit (as the discount factor tends to 1) of reservation
prices is the price vector of a multilateral Nash solution, and that the limit of the set
of associated outcomes is the set of outcomes of this multilateral Nash solution. For
bargaining problems with no strong coalition or only one strong coalition the limit
outcomes coincide with the outcomes of the unique multilateral Nash solution. For
bargaining problems with two strong coalitions, the limit outcomes coincide with the
outcomes of the multilateral Nash solution which is one endpoint of the interval of
multilateral Nash solutions.

Our analysis is parallel to that of Binmore (1985), who also presented mutually
reinforcing cooperative and noncooperative models. In Binmore’s noncooperative
("market demand") model, players announce demands (rather than making proposals);
the order of play is fixed. For each order of play and each discount factor sufficient-
ly close to 1, there is a unique subgame perfect equilibrium outcome. As the
discount factor tends to 1, the set of outcomes converges to the outcomes of a
multilateral Nash solution. For bargaining problems with no strong coalition, or only
one strong coalition the limit outcomes coincide with the outcomes of the urique
multilateral Nash solution. For bargaining problems with two strong coalitions, the
limit outcomes coincide with the outcomes of the multilateral Nash solution which is
the "opposite" endpoint of the interval of muitilateral Nash solutions.

To summarize these results (in the limit as the discount factor tends to 1): for
bargaining problems with no strong coalition or only one strong coalition the out-
comes of Binmore’s noncooperative model, our cooperative model and our noncoop-
erative model coincide; for bargaining problems with two strong coalitions, the

8 The exceptional case occurs when there is one strong coalition and the player
not in this coalition is selected to make the first proposal.
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outcomes of Binmore’s noncooperative model coincide with those of one endpoint of
the interval of cooperative solutions while the outcomes of our noncooperative model
coincides with those of the opposite endpoint of the interval of cooperative solutions.

After this Introduction, Section 2 gives a formal description and a classifica-
tion of three-player/three-cake bargaining problems. Section 3 discusses the coopera-
tive model and its multilateral Nash solution, and Section 4 discusses our noncooper-
ative model and its solutions. Section 5 discusses Binmore’s noncooperative solution.
Section 6 presents some examples, and Section 7 presents a discussion of related
literature. Finally, Section 8 presents conclusions and suggestions for further
research.



2. THREE-PLAYER/THREE CAKE BARGAINING PROBLEMS

In the situations we consider, there are three players, I = {1,2,3} . Each
pair [ij] of players owns a "cake" that they can divide - but only one cake can be
divided. Players individually, and the coalition of all three players, have no cake.

No sidepayments of any kind are possible. For each pair [ij] of players, we
describe their cake by the set V[ij] of utility pairs resulting from each possible
division of their cake. We assume that each V[ij] is a subset of Rf, that is
compact, convex and strongly comprehensive. (By strongly comprehensive we mean
that if x € V[ij],y < x and y # x then y belongs to the interior of VI[ij] .
Strong comprehensiveness guarantees that the weak and strong Pareto boundaries
coincide, so that, along the Pareto boundary of VI[ij] , any increase in the utility of
one player comes at the expense of the utility of the other player.) We also assume
that the problem is non-trivial, in the sense that V[ij] # {(0,0)} for at least one pair
[ij] and that utility of dividing no cake is 0. If x € V[ij], x; is its i-th component
and x; is its j-th component. In order to avoid a profusion of super- and sub- )
scripts, when XV isa vector in V[ij] then xY isits i-th componentand x”
is its j-th component.

Since VI[ij] is strongly comprehensive, we may describe its boundary by a
continuous function g : R, - R, which specifies player i’s maximum utility (in
the pair [ij] ) as a function of player j’s payoff; i.e.,

3 max {x | (x,t) € V[i]} if O,t) € V[ij]

giy =
0 otherwise

Following the convention above, gl specifies player j’s maximum utility (in [ij] ) as

a function of player i’s payoff. Over the range where both gl and gt are strictly

positive, they are inverses, and are strictly decreasing; convexity of V[ij] guaran-
tees that gY and g are concave (on this range).

The core plays a role in our classification and a central role in the classifica-
tion of the solutions of Binmore’s market demand model (Section 5). We say that Z"



(alternatively (2, 0)) is in the core® if zi € V[ij] and no pair can (feasibly) im-
prove upon its components of z = (zU, 0). Using the notation above, it is easy to
see that the coalition [ij] cannot improve upon!® 7 if zi = gi(@; [ik] cannot
improve upon Z if gi(z) = 0 and [jk] cannot improve upon 3 if gy = 0.
When ZY is in the core, we refer to [ij] as the core coalition.

The Nash bargaining solution for two-player/one-cake bargaining problems
plays a central role through out the paper. For the pair of players [ij] and the cake
V[ij] , we write NU for the Nash bargaining solution to the simple two-person
bargaining problem in which VI[ij] is the set of feasible utilities and (0,0) is the
disagreement vector. Following our earlier convention, NV is the i-th component of
NY . Thus, N¥ = (NU N is the vector that maximizes the Nash product x;x; over
x in VI[ij].

Our classification of bargaining problems is based on the notion of "Nash
stability" given below. Although we use this notion only to classify bargaining
problems, and not to justify any solution, it may be helpful to provide some intuition.
Consider a world in which the "standard of behavior” is for each coalition to agree on
its Nash payoffs. By this we mean that NU is the focal point for bargaining in each
coalition [ij] and hence is the anticipated agreement for each coalition in absence of
compelling reasons to change it. In which circumstances will this standard of
behavior be stable?

Consider first bargaining problems such that NU is in the core. Formation
of [ij] with NY would be stable because no alternative coalition could improve
upon these payoffs. In this case we call [ij] a Nash dominant coalition. It is easy to
see that if there is a Nash dominant coalition, it is unique.

Consider next bargaining problems such that NJ > Ni¥ and Nii > Nik,
Formation of [ij] with N¥ would be stable because each player prefers his Nash

® More formally, the vector z = (z;, Z;, z,) isin the core for the coalition
structure  {[ij], (k]} if (z;, z) € VI[ijl, z, € V[k] and no pair can (feasibly)
improve upon their components of z. Since {0} = V[k], the definition given above
is equivalent.

19 The strong comprehensiveness assumption is important here.
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payoff in [ij], to his (anticipated) Nash payoff with player k; this is the first alterna-
tive for Nash stability listed below. Clearly Nash dominant coalitions are also Nash
stable.

Notice that if no coalition satisfies this first type of Nash-stability then there is
a (re)numbering of the players such that N2> N3 N2 > N, N > N2
At the Nash payoffs player 1 prefers the coalition [12] , player 2 prefers the
coalition [23], and player 3 prefers the coalition [13]. The second type of Nash
stability for the coalition [ij] occurs when i prefers his Nash payoff in (ij] to his
Nash payoff in [ik] while j prefers her Nash payoff in [jk] but cannot obtain k’s
cooperation to form [jk]. For this to be the case it is necessary that k’s Nash payoff
with i, be larger than Kk’s Nash payoff with j, (so N > NKi), but this is not
sufficient since it leaves open the possibility that j could "bribe” k into forming
[jk] by offering more than N¥ (by accepting less than N) and still obtain more
than Nii. Player j will be satisfied with forming (ij] if she can foresee that she
can’t form a coalition with k because no feasible division of V[jk] which yields j
as much as her Nii would still yield k as much as forming [ik] and giving player '
i his NY,

The third type of Nash stability is identical to the second except the roles of i
and j are reversed.

Formally, we say that [ij] is Nash dominant (or simply dominant) if
Ni > gi¥(0) and N > gik(0). We say that [ij] is Nash stable if

1. Ni > Nk and N> NK or

2. Ni > Nk and Ni < NK° but  gMNY) = NN or
3. Ni > NK  and N < Nk but  ghni) > gh(Nd)
There can be multiple Nash stable coalitions: there may one, two or three

Nash stable pairs satisfying the first condition, or one Nash stable pair satisfying the
first condition and one satisfying either of the other two, but there cannot be two



Nash stable pairs failing to satisfy the first condition.!! We show (Theorem 2.1)

that three-player/three-cake problems with a nonempty core always have a Nash stable
coalition. The converse is not true; some three-player/three-cake problems with an
empty core can have a Nash stable coalition.

For some bargaining problems there are no Nash stable coalitions and the
Nash "standard of behavior" leads to instability. In this case not only is there a
(re)numbering of the players such that N2> NI3 ) N22 > N2U ) N3 > N2, but
also in each pair there is a player who could improve upon his payoff (with the
willing cooperation of the third player) by defecting. When this is the case the
cooperative and noncooperative solutions presented here prescribe a solution payoff
for each player in each coalition which is a compromise between his higher and his
lower Nash payoff.!2 Following Binmore (1985) will call such a set of payoffs a
"von Neumann-Morgenstern tuple”.

Formally we call a set of payoff vectors z = {z9} (one payoff vector for
each pair) a von Neumann Morgenstern tuple if

1. each zU belongs to the Pareto boundary of VI[ij] and
2. 7z = z¥ for each i

The first condition requires payoff vectors to be feasible and efficient for their
coalitions and the second requires each player to obtain the same payoff in the two
coalitions to which he belongs. It is easily verified that von Neumann Morgenstern
tuples, if they exist, are unique. In view of the second condition above, a von
Neumann Morgenstern tuple can always be represented by a single payoff for each
player, i.e., p;, = zi =z ; we call such a summary vector (p;, p,, P3) a von
Neumann Morgenstern vector.

Binmore (1985) shows that a von Neumann Morgenstern vector exists whenev-
er the core is empty. For our purpose the crucial point is that a von Neumann

11 See the proof of Proposition 4.1.4 for the argument.

12 One can intuitively think of these payoffs as resulting from an "equilibrium”
set of bribes.
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Morgenstern vector exists whenever there is no Nash stable coalition. In this event
(and only then) the components of the von Neumann Morgenstern vector represent
compromises between each player’s "higher" and "lower" Nash payoffs, i.e., if
(P;» P2, P3) is @ von Neumann Morgenstern vector then (renumbering as above)
N2 > p, > N3, N3 > p, > N2l N3 > py > N32 13

In the Introduction we spoke in an intuitive way about a classification of
bargaining problems according to the number of "strong” coalitions; the following
formalizes this classification using the notions of Nash stability and the core.
Bargaining problems with "one strong coalition” are those with a Nash dominant
coalition (Class I). Bargaining problems with no strong coalitions are those with no
Nash stable coalitions (Class III). In the next section we shall see that when there isa
Nash stable coalition but no dominant coalition (Class II), then there is a pivotal
player who may be able to play off his partners in "two strong" coalitions.

THEOREM 2.1: For each three player/three cake bargaining problem, exactly one
of the following holds:

L. Some coalition is Nash dominant and the core is non-empty.

II. Some coalition is Nash stable, no coalition is Nash dominant, and
IIA: the core is non-empty.
IIB: the core is empty and there is a von Neumann Morgenstern vector.

I1I. No coalition is Nash stable, the core is empty, and there is a von
Neumann Morgenstern vector.

PROOF: If the coalition [ij] is Nash dominant, it is easily seen that the vector
(Nij,Nii,O) is in the core. Binmore (1985) shows that if the core is empty then there
is a von Neumann Morgenstern vector. In view of the definitions and our previous
remarks, therefore, all that remains to be proved is that non-emptiness of the core
implies the existence of a Nash stable coalition. To this end, suppose that [1,2] is

13 For the proof of the this statement see the arguments for Propositions 4.1.6
and 4.1.8.
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the core coalition and z'2 is in the core. If g3'(N'%) and g*2(N?!) are both
strictly positive, one of the coalitions [13], [23] can block (z'2, 0) because no
movement from N'2 along the boundary of V(12) can decrease 3’s payoff‘to 0
in both [13] and [23]. Without loss, therefore, we may assume that g32(N21) = 0.
Note that g?2(N?) = N32 = 0 = g?%(N?!), sothat N?' = g¥(0) = N2 | If
g3(N12) = 0, the coalition [12] is Nash dominant, hence Nash stable. For the
remaining cases we have N2! = N2 | that BIN2) > 0 and g2 (N?) =0. If
N!Z > N3 then [12] is Nash stable. If N13 > N'2 and N3! = N°? then [13]
is Nash stable. Finally, if N3 = N'2 and N*! < N2, we assert that

g?2!(N13) = gZ(N®!) (and hence [13] is Nash stable. To see this, let t, be the
smallest value of t € R such that g3!(N!2 + t) = 0, and let t, be the largest
value of t € R such that g3%(g2!(N'2 + t)) = 0; note that t; < t, . Since
(N3,N31) € V[13], it follows that N'* < N!2 +t; < N'?> +t, , and hence that
g2l(N13) = g?I(N'2 + t,). Since, by definition, g32(g?{(N'2 + t,)) = 0,

g2I(N!12 + t,) = g®(0) and hence g2I(N13) > gB(0). Since N2 =0,

gB(N%2) < g3(0) and hence g?'(N) = g?(0) = gB (N3, Since

g2I(N13) = g(N?!), we conclude that [13] is Nash stable. This completes the
proof. §

It is worth noting that, although non-emptiness of the core entails the existence
of a Nash stable coalition, it does not entail that the core coalition itself is Nash
stable. Although this may seem strange, a little reflection reveals the intuition: the
Nash bargaining solution, and hence Nash stability, depends only on the payoffs at the
"middle" of the utility frontiers; the core, on the other hand, depends on how the
utility frontiers extend.

El

In Figures 1 - 4 we illustrate this classification of bargaining problems.
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3. MULTILATERAL NASH SOLUTIONS

We view each three-player/three-cake bargaining problem as a set of interre-
lated two-player bargaining problems. Each pair of players faces a bargaining
problem: division of the cake they control. Within this bargaining problem, the role
of the third player is indirect: either player could abandon the current negotiations
and take up negotiation with the third player. We capture the opportunity cost of this
alternative for each player in an endogenously determined outside option utility.
Given its players’ outside options we assume that the pair bargains to an agreement
and that the resulting division of the cake is that specified by the Nash bargaining
solution constrained by its players’ outside options. A multilateral Nash solution
specifies a division of each cake that is consistent both with the bargaining within
each coalition and with the evaluation of each player’s outside option.

How are outside option utilities determined? If the players in the coalition [ij]
fail to reach an agreement, one player or the other may enter into a coalition with the
third player k; the opportunity cost for player i is the utility of the (foregone)
partnership with k . This suggests that we use as i’s outside option utility (i.e., his
component of the pair’s outside option vector) the utility he would receive if he
entered into an agreement with k.14 Similarly, player j’s outside option is the
utility she would receive if she entered into an agreement with k.

What do such outside options mean? Although either i or j may enter into
a coalition with player k, it is not possible for both of them to do so. Thus, the
outside option vector determined in this way cannot be interpreted as the ourcome if

14 One might think that the "correct" outside option utility should allocate player
i only as much as his expected utility in his partnership with player k: player 1’s
utility in the partnership times the probability that [ik] forms plus 0 times the
probability that [jk] forms instead. This point of view is consistent with thinking of
first forming the coalition [ij] and then negotiating the payoff -- player i might then
accept as less than his agreement payoff with player k because there is a possibility
that k will not accept. However, as a model of endogenous coalition formation the
viewpoint is problematic: if player i anticipates receiving less with j than with k,
player i would prefer [ik] to [ij] and assuming j wants i’s cooperation, this
would lead to an instability in the payoffs in [ij}. Intuitively speaking, for a coalition
to remain competitive, i.e., have both players find the coalition desirable, the
coalition must offer at least as much as its players can obtain elsewhere.
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bargaining breaks down in the coalition [ij]. (Since this is the interpretation Nash
gave his "disagreement point"!3 it is clear that such an outside option should not be
interpreted as a disagreement point.) The interpretation we have in mind, rather, is
that i's outside option represents what he could obtain if he broke off bargaining in
the coalition [ij] and formed the coalition [ik] (in which case j would obtain 0).
Similarly, j’s outside option represents what she could obtain if she broke off
bargaining in the coalition [ij] and formed the coalition [jk] (in which case i
would obtain 0 ).

What utility would player i receive if he broke off negotiations with player j
and entered into an agreement with k ? If it were known that i and k would come
to a specific feasible agreement 7K | the answer would clearly be zX (or, equiva-
lently, g'X(z*!)). However, we envision that bargaining proceeds simultaneously in
all coalitions, so the agreement in [ik] will nor be known (in advance) either to i or
to j. On the other hand, the agreement in [ik] will be conjectured (at every stage)
by both i and j. In what follows, we assume that i and j make identical
conjectures about the agreement in [ik].16

When the outside option vector is feasible for a pair, we assume that each
player’s outside option acts as a lower bound on his agreement payoff and that each
pair of players bargains to an agreement which is the Nash bargaining solution over
the set of feasible utility vectors that give each players at least his outside option
utility.

If the outside option vector for the coalition [ij] is not feasible, players i
and j will not agree to any feasible division in [ij] (because for any feasible
division, at least one of them could do better by making an agreement with k ); in
this case, we simply assume that the cake [ij] will not be divided.!” It is conve-
nient however to adopt the convention that when the outside option vector is not

15 "Disagreement point" is the term in current usage; Nash used the term "threat
point".

16 We could allow for different conjectures without affecting the final solution,
since iat a solution conjectures will be correct, and therefore identical.

17 As we shall see, such situations are unavoidable.
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feasible then the "agreement” is the outside option vector -- with the understanding
that infeasible agreements are agreements not to divide the cake.

The possibility of infeasible agreements raises one final question. We intend
to use as i’s outside option (in bargaining with j ) the utility he would receive if he
entered into an agreement with k , but we allow for the possibility that i and k
would not come to a feasible agreement; what utility should we impute to player i
in this case? We impute to player i the maximum utility he could obtain in any
feasible agreement which yields k at least the utility she could otherwise obtain.
Since, by the convention given above, the "infeasible agreement” z'¥ in [ik] is
equal to its members outside options, the utility player k can obtain "elsewhere" is
z¢ = dKi, We impute to player i what remains for player i in [ik] i.e., g*(E").
Hence, g*(zX) is player i’s outside option in [ij].!8

Informally, a multilateral Nash solution for a three-player/three-cake
problem is a set of agreements (one for each coalition) which is consistent with the
bargaining within each coalition and with the formation of outside options. Since
agreements depend on outside options and outside options depend on (beliefs about)
agreements, a solution represents a consistent set of beliefs about the outcomes of
bargaining in each coalition with the property that, if players hold these beliefs about
the agreements in other coalitions, then the agreement they reach will be precisely the
agreement mandated for their coalition.

To make all of this precise we first formally define the constrained Nash
bargaining solution Ni(dl) for each outside option vector di € R2. If the outside
option vector dU is a feasible vector i.e., di € V(ij), then the value of the con-
strained Nash bargaining solution Ni(dV) is the unique vector x € V(ij) that
maximizes the Nash product x;x; over all vectors in V(j) such that x = di. If
the outside option vector di is nor a feasible vector, i.e., dJ & V(ij), then Ni(dY)
= dU, (Notice that only infeasible outside options lead to infeasible agreements, i.e.,
Nii(d¥) is feasible whenever di is feasible.)

18 For a more detailed justification for our outside option conventions see
Bennett (1986 revised 1992).
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To formalize the notion of outside options, we take as given a set z = {Z¥!}

of agreements (one for each coalition). For each pair [ij] . we define the outside
option vector dJ by

diGg) = g and  di@ = g

Although the outside option vector di depends only on the agreements in the
coalitions [ik] and [jk] but not on the agreement in [ij], it is notationally conve-
nient to view d as depending on the entire set of agreements.

Finally, we define a multilateral Nash solution to be a set z = {z"} of
agreements (one for each coalition) with the property that Nidiz) = 2V for each
pair [ij]. A multilateral Nash solution is thus a triple of conditional agreements.
We stress that some of these agreements may not be feasible (but show below that at
least one of them is always feasible). "Outcomes" correspond to the feasible agree-
ments and are the ultimate objects of interest. An outcome consists of a pair [ij]
and a feasible agreement XU € V(ij). The outcome ([ijl, XY) is an outcome of the
multilateral Nash solution {#%} if xU = 7. Notice that if the agreement 29 not
feasible for [ij] then ([ij], zU) is not an outcome of the multilateral Nash solution.

A multilateral Nash solution and its associated outcomes provides answers to a
pair of questions: Which coalitions might form? and If one of these coalitions
forms, on what division will its members agree?

Three simple examples may serve to illustrate multilateral Nash solutions and
outcomes. (1) For the simple majority game discussed in the Introduction,”in which
any pair may divide $2 , the unique multilateral Nash solution is {(1,1,-), (1,-,1),
(-,1,1)}.1° There are three outcomes of this solution: any of the three cakes might
be divided, but whatever cake is divided will be divided equally. (2) For the game
in which either [12] or [13] can divide $2 but [23] can divide $6 , the unique
multilateral Nash solution is {(0,3,-), (0,-,3), (-,3,3)}. Since the first two "divi-
sions" are infeasible, there is a unique outcome of this solution: the coalition [23]
forms and divides equally $6. (3) For the game in which either [13] or [23] can
divide $6 but [12] can divide $2, there is an interval of multilateral Nash solu-

19 Recall our convention that (1,1,-) represents a division of the cake V[12]
between the players 1 and 2, and that the "-" denotes the omission of player 3.
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tions: for each t € [0,2], the corresponding solution is {(1+t,1+t,-), (1+t,-,5-1),
(-,1+t,5-t)} . For t # 0, the division of V[12] is not feasible. In this case, there
are two outcomes of each solution in the interval: either [13] or [23] forms, player
3 obtains S5-t while his partner obtains 1+t.

Before going further, we make several observations. The first is that in a
multilateral Nash solution the two agreement payoffs for each player are equal. To
see this, let (zY) be a multilateral Nash solution, and suppose that z!2 > z13 .
Because d'2 < z!3 < z'2, we conclude that d'2 # z'? and hence that d!? and
712 are both feasible. In that case, d? > z12; since z13 > d¥ we conclude that
213 > 712 a contradiction. We conclude that z = z'¥ for every i, as asserted.
Hence we can summarize the set {2“} of agreements by a vector p = (Py,P2,P3) of
real numbers, where p; = z) = zX . We refer to p as the price vector of the
multilateral Nash solution {zU} , and say that {2} is generared by the price vector

P

The second observation is that no multilateral Nash agreement is Pareto
dominated and at least one of the agreements must be feasible and non-zero. To see
this let p = (p,,PP;) be the price vector of a multilateral Nash solution z = {z}.
By definition of Ni(@J), if d¥ € V(ij) then Nii(d@Y) is on the Pareto boundary of
V(ij) andif di & V(j) then Ni(@) = d¥ & V(ij). Hence Ni@l) & Int V(ij) so
no pair can improve upon its agreement and hence the agreement is not Pareto
dominated. To show that at least one of the agreements must be feasible and
non-zero, recall that by assumption there is at least one nontrivial cake and hence
p, > 0 for some player i. If p; > 0 then either (p;,p;) is feasible for [ij] or
(p;,py) is feasible for [jk]. To see this, suppose that p; > 0, (py,pp) € VI[12]
and (p,,p;) € VI[13] . Because feasible outside options lead to feasible agreements, it
follows that d'2 = z!2 = (p,,p,) and d'® = 2’ = (p;,py) . Because of the way in
which outside options are determined, this entails either p; = d2 =0 or d? <
/13 = 413 < 212 = 12 . However, the first set of equalities violates our assumption
that p, > O and the second set of inequalities is inconsistent, so we have reached a
contradiction. We conclude that either (p;,p;) € V[12] or (py,py) € VI13] . It
follows therefore that each multilateral Nash solution prescribes at least one feasible
division and has at least one consistent outcome.

Finally, every three-player/three-cake problem has a multilateral Nash
solution. The proof is a simple fixed point argument, for the details (in a much
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more general setting), we refer to Bennett (1992). Summarizing these observations,
we have the following result.

THEOREM 3.1: For every three-player/three-cake bargaining problem:
1) a muitilateral Nash solution exists;

(i)  for every multilateral Nash solution, no agreement is Pareto dominated
and at least one agreement is feasible and non-zero;

(iiiy  every multilateral Nash solution is generated by a vector of prices.

It is worth noting explicitly that a von Neumann Morgenstern vector (whenev-
er it exists) is the price vector of a multilateral Nash solution; we leave the easy
verification to the reader.

We now turn to the characterization of multilateral Nash solutions. Theorem
2.1 provided a three-way classification of three player/three-cake bargaining prob-
lems. In Class I and Class III there is a unique multilateral Nash solution; in Class II
we find a (possibly degenerate) curve of multilateral Nash solutions.

THEOREM 3.2: For every three-player/three-cake bargaining problem, exactly one
of the following holds: ’

I. Some pair, say [12], is Nash dominant. In this case there is a unique
multilateral Nash solution, and its price vector is (N'2, N2, 0).

II. Some pair is Nash stable but not Nash dominant; we may, without loss,
assume that N2 = N13, g3/(N'?) > 0, and g!(N'?) = g?2(N?}).
In this case the set of multilateral Nash solutions is a curve, and its
price vectors are given by q(t) = (N'2+t, g?!(N'2+v), g3I(N12+1)))
for t in an appropriate interval [0,T].

IIA. The core is nonempty. In this case q(T) is in the core.
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[IB. The core is empty. In this case q(T) is the von Neumann
Morgenstern vector.

[I. No pair is Nash stable. In this case the von Neumann Morgenstern
vector is the price vector of the unique multilateral Nash solution.
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4. THE PROPOSAL-MAKING MODEL

In this and the next section we discuss noncooperative bargaining models for
three player/three cake problems. Both models are extensions of the Rubinstein
alternating offer model to the three player/ three cake context. In this section we
analyze the proposal-making model; in the next section we discuss Binmore's market

demand model.

In the proposal-making model, players bargain by making, accepting, and
rejecting proposals. A proposal by player i specifies a coalition [ij] to which i
belongs (so that j € I and j # i) and a vector x € V[ij], representing a feasible
division of the cake V[ij] . Bargaining begins when a player (selected at random) is
given the initiative. A player with the initiative has the right to make a proposal. His
designated partner may then accept or reject the proposal. If he accepts, the game
ends and the players divide the cake as agreed (the third player obtaining nothing); if
he rejects, he obtains the initiative and play proceeds as above. (Infinite plays -
corresponding to perpetual disagreement - yield zero payoff to all players.)

We assume that it takes time to make proposals (but not to accept or reject
them), and that players are impatient, and so discount the utility of future payoffs.
Thus, in each time period t =0, 1,2, ..., there are two actions: a proposal
will be made and then accepted or rejected. We assume that all players discount the
utility of future agreements using the common discount factor 6 < 1.2° Since
payoffs are already denominated in utility, the utility of player i for the agreement
x reached at time period t is simply &';, if i is a party to the agreement, and 0
otherwise.

For k = 0, a k-history h is a sequence of k actions that follow the above
rules of play. Player i is acrive following the k-history h if according to the rules
of play, player i will have the next move (either to accept or reject the current
proposal, or to make a new proposal). Player i's strategy specifies his action

following every history for which he is active.?!

20 Different discount factors would lead to asymmetric Nash solutions.

21 we consider only pure strategies. It appears that allowing for mixed strate-
gies, while cumbersome, would not materially affect the conclusions.
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Nature

Figure 5: The Proposal-Making Model



The above specifications formalize the bargaining procedure as an extensive
form game of perfect information (with a random move of nature at the beginning,
selecting the first player to have the initiative); a sketch of the game tree is shown in
Figure 5. The solution concepts we employ are subgame perfect equilibrium strate-
gies (SPE) and stationary subgame perfect equilibrium strategies (SSP). (Subgame
perfection of a strategy profile requires it to be a Nash equilibrium in every subgame
while stationarity of a player’s strategy requires the player to make the same decision
in similar situations: as initiator the player must make the same proposal every time
he has the initiative and accepts/rejects every time the same proposal is made to him.

Our analysis has two goals. We first characterize the subgame perfect and the
stationary subgame perfect equilibria (depending on the case) of the proposal-making
model for each & < 1: we show that equilibria exist and are essentially unique.

We also show that at these equilibria, players behave as if they had reservation prices.
We then relate the proposal-making model to the cooperative model of Section 3 by
showing that, in the limit as & tends to 1, the vector of reservation prices converges
to the price vector of a multilateral Nash solution and, moreover, the sets of equilibri-
um converge to the outcomes of this multilateral Nash solution. (We say that ([ij],
(x;,X;)) 1is an equilibrium outcome if there is an equilibrium strategy profile ¢ such
that the outcome ([ij], (x;,X;)) occurs with positive probability22 when players

follow o. In order to make these statements precise, we need some additional
notions.

Central to our analysis are solutions to the following system of equations:

max { g'%(p,) , £"°(4p3) }

P1 =
& p, = max{g?@p).ePGpy}
py = max{g®p),g0p}

For reasons that will become clear shortly, we refer to any solution p(®) = (p1,P2,P3)
of this system as a reservation price vector. It is easy to see that there are two kinds

22 Although players are following pure strategies, nature randomly selects the
first player to have the initiative; and hence up to three outcomes can occur with
positive probability.
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of solutions to the system oo : either there is a pair [ij] of players so that the
maximum for player i occurs with player j and the maximum for player j occurs
with player i (we refer to such reservation price vectors as reflexive, and to [ij] as
the reflexive pair) or, for some renumbering, the maximum for player i occurs with
player j and not with player k , the maximum for player j occurs with player k
and not with player i, and the maximum for player k occurs with player i and not
with player j (we refer to such reservation price vectors as triangular).

Given a vector p = (p1,P2,P3) € Ri, we say that a strategy o; for player i
is a price strategy corresponding to p (and p is the price corresponding to the
strategy o, ) if:

(1)  player i always accepts any proposal ([ij], X) such that x; = 0 p; ,
and rejects any proposal ([ij], x) such that x; < op;s

(a) if p, > 0 and (p;,0p;) € VI[ij] but (p,0p) € VK], then player i
always proposes the partnership [ij] and the agreement (p;,6p;);

(2b) if p; > 0 and (pi,apj) € V[ij] and (p,dp,) € VIik] then player i
proposes either the partnership [ij] and the agreement (p;,0py) or the
partnership [ik] and the agreement (p;,py).

(f p; =0 orif (p;p) ¢ V[ij] and (p,,0p,) & VIik] , we make no restrictions as
to player i’s behavior because it is irrelevant to his own payoff; the reasoning is
explained below.) A strategy profile ¢ = (0,09,03) is a price strategy profile if
each strategy o, is a price strategy. Informally, ¢ is a price strategy profile if each
player proposes divisions which yield him his component of p and his partner the
present value of his partner’s component of p (obtained one period later), and each
player accepts proposals which yield him at least the present value of his component
of p (obtained one period later) and rejects all others. In particular, player i
behaves as if p; were his reservation price (hence the terminology). Notice also
that the outcomes of the price strategy o with price vector p are necessarily in the
set { ([ijl, (p;>P}) | PPy € V(ij) } and that every outcome in this set is the
outcome of some price strategy with price vector p.

Every solution p(8) to the system oo corresponds to at least one price
strategy profile; some solutions may correspond to multiple price strategy profiles.

22



This multiplicity may occur in either of two ways. If (p;,0p;) € V[ij] and

(p;,0p) € VIik] then player i is indifferent between his two partners, and our
requirements allow him to choose either (or to alternate between them, or ... ). For
6 < 1, price strategies which differ in this way may correspond to different sets of
outcomes. However, as é = 1 , these sets of outcomes have the same limit. If
(pi,épj) & VI[ij] and (p;,ép,) & VIik], we do not restrict player i's proposals: If
all players follow the price strategy profile o, player i cannot make any acceptable
proposals. Hence the only outcomes of ¢ involve formation of the coalition ([jk],
and yield player i a payoff of 0. When nature chooses player i to have the first
move, his behavior determines only the subsequent order of play, and hence whether
the division in [jk] will be (p;, épy) or (dp;, p). As & 1, these divisions
converge to the same limit. If p, = 0 we also do not restrict player i’s proposals,
if (0, op) € V(ij), player j can make an acceptable proposal, it yields player i
only a payoff of 0. Moreover, if (0, dp) € V(ij), then (0, &’p;) & V(ij) for

8’ > 0, soin the limitas & — 1, this situation reduces to the one above.

In view of these definitions and remarks, the following result asserts the
existence and essential uniqueness of equilibria.
THEOREM 4.1: Foreach 6 < 1,

(1) the system o has a unique solution p(8) (which is either reflexive or
triangular).

(2)  every price strategy corresponding to p(d) is subgame perfect.

(3) . if p(d) is reflexive then every subgame perfect equilibrium is a price
strategy corresponding to p(9).

(4)  if p(d) is triangular then every stationary subgame perfect equilibrium

is a price strategy corresponding to p(9).

The proof of this result is quite long, and is deferred to the Appendix.
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When p(8) is triangular, there is a unique stationary subgame perfect equilib-
rium (and it is a price strategy) but there may be many non-stationary subgame
perfect equilibria. In the Appendix (following the proof of Theorem 4. 1) we discuss-
es the range of outcomes associated with non-stationary subgame perfect equilibria.

We now ask about the behavior in the limit, as & = 1 , of these equilibrium
outcomes. In view of Theorem 4.1, the question revolves around the limit behavior
of the reservation price vector p(8) . In the following result, we refer to the
classification of three-player/three-cake problems given in Theorem 2.1 and the
description of multilateral Nash solutions given in Theorem 3.2

THEOREM 4.2: For every three-player/three-cake problem,

) The limit, limg,;p(6), exists and is the price vector of a multilateral
Nash solution.

(ii) If there is a dominant coalition or if there is no Nash stable coalition
(i.e., for problems of Class I or Class III), then limg_,,p(8) is the price
vector of the unique multilateral Nash solution.

(iii)  If there is a Nash stable coalition but no dominant coalition (i.e., for
Class II), then limg,,;p(8) is the price vector of the endpoint of the set
of multilateral Nash solutions corresponding to t = 0.

The proof of Theorem 4.2 is also given in the Appendix to this Section.

As we have pointed out there may be several price strategies corresponding to
the same price vector p(8) and different strategies may result in different outcomes.
However, as & approaches 1, the different payoff vectors for each coalition
converge; in the limit, there is at most one outcome corresponding to the formation of
each coalition.

We can recast the results of Theorem 4.2 into the language of outcomes; in
view of our earlier discussion, no proof is required. We refer to the set of limits of
outcomes of price strategies (as & - 1) as the set of limir outcomes of the proposal-
making model.
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THEOREM 4.2’: For each three-player/three-cake bargaining problem, exactly one
of the following holds:

II.

III.

Some pair is Nash dominant. In this case the set of limit outcomes of
the proposal-making model coincides with the set of outcomes of the
unique multilateral Nash solution.

Some pair is Nash stable but not Nash dominant. Without loss renum-
ber players as in II of Theorem 3.2. In this case the set of limit
outcomes of the proposal-making model coincides with the set of
outcomes of the extreme multilateral Nash solution whose price vector
is q(0).8

No pair is Nash stable. In this case the set of limit outcomes of the
proposal-making model coincides with the set of outcomes of the
unique multilateral Nash solution and the set of payoff vectors of these
outcomes is a von Neumann Morgenstern tuple.
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5. BINMORE’S MARKET DEMAND MODEL

As in the present paper, Binmore (1985) provides mutually reinforcing
cooperative and non-cooperative models of bargaining. In this section we give a brief
description of his non-cooperative model -- the market demand model -- and then use
our classification scheme to relate its solution to our those of our cooperative and
non-cooperative models. We refer the reader to Binmore (1985) for a detailed
description of his cooperative model.

In Binmore’s market demand model, players bargain by making demands; a -
demand of player i represents the willingness to form either coalition to which
player i belongs, provided that player i obtains at least that demand. Binmore
fixes the order of play (each choice leads to a distinct outcome --- see below); for
convenience, we assume the order of play is 1,2, 3. Player 1 begins by making
a demand. Player 2 may accept that demand, in which case the game ends, the
coalition [12] forms, player 1 obtains his demand, and player 2 obtains the
remainder. Alternatively, player 2 may reject the demand of player 1 and make a
demand of his own, in which case player 3 has the next move. Player 3 considers
the demands of players 1 and 2 in turn. If he accepts the demand of player 1,
the game ends, the coalition [13] forms, player 1 obtains his demand, and player 3
obtains the remainder. If player 3 rejects the demand of player 1, he may accept
the demand of player 2, in which case the game ends, the coalition [23] forms,
player 2 obtains his demand, and player 3 obtains the remainder. If player 3
rejects the demand of player 2 , then player 3 makes a demand of his own, and
player 1 has the next move. From this point on, each player considers in turn the
demands of the previous two players and, if he rejects both of them, makes-a new
demand of his own. Players discount the utility of future agreements, using the same
discount factor & < 1. The utility of player i for the agreement x reached at time
period®* t is o', , if i is a party to the agreement, and O otherwise. Infinite
plays - corresponding to perpetual disagreement - yield zero payoff to all players.

24 From Binmore’s paper it is not clear when a new period is to begin. He says
simply, "provided suitable assumptions are made about discounting and the timing of
offers" (p. 291). The following timing does work. For bargaining problems with
empty core: a new period begins after each rejection; for bargaining problems with a
nonempty core: a new period begins only after rejections by players in the core
coalition.
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The above specifications formalize the bargaining procedure as an extensive
form game of perfect information. The solution concept Binmore employs is subgame
perfect equilibrium in pure strategies. For each choice of the order of play and each
& sufficiently close to 1, Binmore establishes the existence of a unique subgame
perfect equilibrium outcome. Since there are 6 orders of play, this yields, 6
(potentially) different subgame perfect equilibrium outcomes -- two different payoff
vectors for each potential coalition. However, as & approaches 1, the different
payoff vectors for each coalition converge; in the limit, there is at most one outcome
corresponding to the formation of each coalition.?’ Since Binmore refers to his
non-cooperative model as a market model, we refer to this set of limiting outcomes as
the market solution.

To characterize the market solution, it is convenient to consider two cases
depending on whether or not the core is empty. Binmore showed that when the core
is empty, the market solution contains exactly three outcomes, and the set of payoff
vectors of these outcomes is a von Neumann Morgenstern tuple. For the case that the
core is nor empty, number the players so that [12] is the core coalition. In this case
all core payoffs yield player 3 a payoff of 0. For i = lor2 let v; for the
largest payoff player i can obtain with player 3, i.e., v; = g3(0) and set

b2 = (NZ(vy,vp), N¥(vy,vy)
b3 = (N2%(v,vy), 0
b23 = (NZI(VX ,V2) ’ O)

When [12] is a core coalition, ([12], b!2) is always an outcome of the market
solution. For i = 1 or2, if b € V[i3] then ([i3], b)) is also an outcome of
the market solution. (Note that the outcomes ([i3], bi3) are in a sense degenerate, in
that player 3 obtains O as his payoff.) Binmore showed that these and only these
are outcomes of the market solution.

25 This is not too surprising. Rubinstein’s alternating offer model has two
distinct payoff vectors (depending on which of the two player makes the first offer);
and these payoff vectors converge as 6 - 1.
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With this discussion in hand, we can relate the market solution to our
cooperative and non-cooperative solutions. For problems of Class I and Class III,
there is a unique multilateral Nash solution and its outcomes coincide with the market
solution and the outcomes of the proposal-making model. For problems of Class II
there is an interval of multilateral Nash solutions and the outcomes of the market
solution coincide with those of one extreme multilateral Nash solution while those of
the proposal-making model coincide with those of the other extreme multilateral Nash
solution. The following Theorem proves the results for the market solution.

THEOREM 5.1: For each three-player/three-cake bargaining problem, exactly one
of the following holds:

L. Some pair is Nash dominant. In this case the market solution coincides
with the set of outcomes of the unique multilateral Nash solution.

II. Some pair is Nash stable but not Nash dominant. Without loss renum-
ber players as in II of Theorem 3.2. In this case the market solution
coincides with the set of outcomes of the extreme multilateral Nash
solution whose price vector is q(T).%

I1I. No pair is Nash stable. In this case the market solution coincides with
the set of outcomes of the unique multilateral Nash solution and the set
of payoff vectors of these outcomes is a von Neumann Morgenstern
tuple.

PROOF: In the first two cases we consider (I and ITA) the core of the bargaining
problem is not empty. In each case it is sufficient to show that {bl} the are
agreements of the unique muitilateral Nash solution, because the ([ij], bY) is in the
market solution precisely when it is an outcome of the multilateral Nash solution, i.e.,
when bl € V(ij).

26 Recall that the limit outcomes of the proposal-making model coincides with
the set of outcomes of the multilateral Nash solution whose price vector is  q(0). See
Theorem 3.2 for the definition of q(t).
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() Let [12] be the Nash dominant coalition. As we noted in Theorem 2.1, a Nash
dominant coalition is necessarily also a core coalition so, in particular, the core is
nonempty. In this case the unique multilateral Nash solution has price vector
(N'2,N21,0) and hence the set of agreements are: (N'2, N2!) for the coalition [12],
(N12, 0) for the coalition [13], and (NZ!, 0) for the coalition [23]. Nash domi-
nance means that N!2 > g!2(0) = v; and N?! 2 g?'(0) = v,, s0 b'? = (N2,
N21), b!3 = (N!2,0) and b® = (N?!, 0). This completes the proof of (I).

(I) There are two cases of bargaining problems with a Nash stable but no Nash
dominant coalition to consider depending on whether or not the bargaining problem
has a nonempty core.

Case IIA: The bargaining problem has a nonempty core. Again it is sufficient to
show that {bU} the are agreements of the unique muitilateral Nash solution. After
renumbering players as in II of Theorem 3.2, one can show that the core coalition
must be either [12] or [13].

Suppose [12] is the core coalition. In this case the corresponding multilateral Nash
solution is the extreme multilateral Nash solution with price vector q(T) =

(N2 + T, g?!(N'2 + T), g*'(N'? + T)). The binding constraint that determines

T is g!(N!2 + T) = 0. The argument of Theorem 3.2 shows that (N2+T,0) €
V[13], and hence NI24+T = v,. Since v, = N2 and N!2 is feasible, we have
N2(v,,vy) = v, so N%(v;,vp) = N2+ T. Clearlly N*(v},v) = g2 (N2(vy,vp))
and hence NZl(v;,v,) = g?'(v)) = g?!(N'? + T). We may therefore write q(T) =
(le(vl,vz), N21(vl, v,), 0). From this it follows directly that {bU} are the agree-
ments of the extreme Nash solution.

Suppose instead [13] is the core coalition. In this case we must redefine the v; and
the bl. For i = 1or3 let ¥, for the largest payoff player i can obtain with
player 2, i.e., v, = g2(0) and set b'2 = (N3@,, ), 0), b = NP(¥,7y),
N31(V1,\73)), and 2 = (0, N31(\71,\73). Clearly, in this case the market solution
consists of the ([ij], b¥) for which bJ € V(ij). In this case we again show that
{bY} are the agreements of the multilateral Nash solution by showing that its price
vector is (N13(Vl,\73), 0, N3 1(Vl,\'/:‘)). For this case the corresponding multilateral
Nash solution has the price vector q(T) = (N'2 + T, g2I(N12 + T), 2I(N'2 + T)),
where T is determined by the binding constraint g21(N12 + T) = 0. The argument
of Theorem 3.2 shows that (N'2+T, 0) € V[12], so that NI24+T = v,. Since
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N2 > NP3 NB@,,7;) =7, . Hence N2 + T = NP@,73). Clearly
N3(9,,9;) = 2/(NB(@,,9y) and hence N>'(v),9;) = g2l@) = ZIN2 + 7).
We may therefore write q(T) = (N'3(¥,,7;), 0, N>!(¥!,73)). From this it follows
directly that {b!} are the agreements of this multilateral Nash solution. This com-
pletes the proof for Case IIA.

In the remaining two cases (IIB and III) the core is empty. Binmore showed
that in this case there are three outcomes in the market solution and its payoff vectors
form a von Neumann Morgenstern tuple. The von Neumann Morgenstern tuple,
when it exists, is unique and the von Neumann Morgenstern payoff vectors are
feasible for their coalitions. Hence to show that the market solution coincides with
the outcomes of the multilateral Nash solution, we need only show in each case that
the agreements of the multilateral Nash solution form a von Neumann Morgenstern
tuple.

Case IIB: The bargaining problem has an empty core. In this case the correspond-
ing multilateral Nash solution is the extreme multilateral solution whose price vector
is qT) = = (NI12 + T, g2!(N'2 + T), g’/(N'? + T)), and the binding constraint
is gB!(N!2 + T) = g?2(g?!(N'? + T)); the argument of Theorem 3.2 shows that
g31(N12 + T) > 0 (otherwise the core would not be empty) and hence (q;, q) €
V(12), (4, q3) € V(13) and (qy, q3) € V(13). Since each (g;, q;) is feasible, by
Theorem 3.1 (q;, q;) is on Pareto boundary of V(ij) and hence {(q;, qj)} is a von
Neumann Morgenstern tuple. This completes the proof of Case IIB and with it the
proof of (II).

(IID) This is immediate since III of Theorem 3.2 proved that the agreemenfs of the

unique multilateral Nash solution form a von Neumann Morgenstern tuple. This
establishes (ITI) and completes the proof of Theorem 5.1.§
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6. EXAMPLES

In this section we present a series of examples to illustrate the relationship
between the cooperative and noncooperative solutions for various classes of bargain-
ing problems. The simplest class of bargaining problems are those with transferable
utility: those problems in which each pair has a number of utils to divide. If r is the
total number of utils for the pair [ij] then the Nash agreements for the pair are
simply NU = r/2 and N = r/2. Moreover transferable utility bargaining problems
always have a Nash stable coalition: the coalition with the maximum number of utils
is Nash stable of the first type. To provide an example of Nash stability of the
second type and an example of a bargaining problem with no Nash stable coalition we
will have to consider bargaining problems with nontransferable utility.

EXAMPLE 6.1: For r in the interval [0,30] and s in the interval [0,20],
consider the transferable utility bargaining problems in which the feasible sets for the
coalitions are:

Vi12] = {(xpx) € R? | x; +x, <40}
V23] =  {(xpx) ERI| xp+x3=<r}
VI13] =  {(x,x) ERZ| x; +x3<5s}
V(iS) = {0} for all other coalitions S

For r = s = 0 we may think of the bargaining problem as representing bargaining
between one seller and one buyer. For r > 0, s = 0 we may think of the bargain-
ing problem as representing the bargaining when there is one seller and two buyers
(with different reservation values). For r > 0, s > 0 we may think of the
bargaining problem as representing the negotiations over the formation of a govern-
ment in a parliamentary system (when no party holds a majority of seats). We
distinguish three classes of bargaining problems (1), (ITIA) and (IIB), according to the
values of the parameters r and s.

(D If 0 <r <20 and s = 0, then the coalition [12] is Nash dominant
(Class I), so there is a unique multilateral Nash solution; its price vector is
(20, 20, 0). For each r < 20, ([12], (20, 20, -)) is the unique outcome of each of
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- T = 0, s=0 ® (20,20,0)

4+ r=20,5=0 (20,20,0)
lr=30,s=0 (20,20,10) (10,30,0)
1r=30s5=10 (20,20,10) (10,30,0)
1,=305=30 (20,20,10)

Figure 8: The set of multilateral Nash solutions of example 6.1.



the three models?’; for r = 20, ([23], (-, 20, 0)) is a second outcome of the
three models.

(ITA) If 20 < r < 30 and s = 0, the coalition [12] is Nash stable but
not Nash dominant, and the core is not empty. The price vectors of multilateral Nash
solutions form the interval {(20-t, 20+t, r-t) : 0 < t < r-20}. The endpoint
(20, 20, r-20) corresponds to the limit solution of the proposal-making model while
the endpoint (40-r, r, 0) corresponds to the market solution. For all three models
the outcomes correspond to the formation of either [12] or [23].

Notice that for the proposal-making model the division in [12] is unaffected
by the possibility of forming [23]; player 2 is unable to use his "outside option” to
obtain more favorable terms from player 1. For the market solution the division in
[12] is very sensitive to [23]; player 2 obtains the full value of [23] from player
1. Notice too that (40-r, r, 0) is in the core.

For 0 < s < 10, the multilateral solutions and the outcomes of all three
models remain unchanged: the coalition [13] is not sufficiently profitable to affect
the bargaining.

(IIB) If r =30 and 10 < s < 30, coalition [12] remains Nash stable but
not Nash dominant, the core becomes empty, and a von Neumann Morgenstern vector
appears. The price vectors of the multilateral Nash solutions form the interval
{(10+t, 30-t,t) : -S + s/2 <t < 10 }. The endpoint (20,20,10) corresponds to the
limit solution of the proposal—makmg model while the endpoint
(5+s/2, 35-s/2, -5+s5/2), corresponds to the market solution and is the von Neumann
Morgenstern vector. For s < 30 the outcomes of the proposal-making model
correspond to the formation of [12] and [23]; for s = 30 the coalition [13] is
also possible. For 10 < s < 30 formation of any of the three pairs is possible in
the market solution.

27 When we refer to "all three models" we mean the cooperative (multilateral
Nash solution), our noncooperative model (the proposal-making model) and Binmore’s
model (the market demand model).
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Notice that for the pair [12] the proposal-making model again ignores [23]
and [13] while the market solution does not. In the market model the possibility
that [13] will form places an upper limit on the maximum concession player 2 can
obtain from player 1 based on player 2's outside option.

Figure 6 gives a pictorial representation of the situation for the parameter
values discussed above.

As we have earlier pointed out, if there is no Nash stable coalition of type 1
then necessarily, (after renumbering) N'2 > N'3, N2 > N?!, and N3! > N32,
i.e., at the Nash payoffs player 1 wants to form a coalition with 2, player 2
wants to form a coalition with 3 and player 3 with 1. Itis easy to see that such
a situation cannot be created within a transferable utility bargaining problem. The
simplest bargaining problems with this structure are hyperplane games. We first
present an example of a hyperplane bargaining problem with a Nash stable coalition
of type 2 and follow it with a "similar" bargaining problem that has no Nash stable
coalition.

EXAMPLE 6.2: Consider the hyperplane bargaining problem in which the feasible
sets for the coalitions are:

vii2l = {Gpy) ERE | v+ 2y <40}
V23] = { (¥ ERL | Y+ 2y3 =30}
Vi3l = {Gpy) ERE | 2y + y3 <16}
V(iS) = {0} for all other coalitions S

From the intuition developed in transferable utility bargaining problems one might
expect that [12], the most "profitable” coalition, to be Nash stable, but as we will
see, this is not the case. The Nash bargaining solution for x; + 2x; =r is simply
Ni = /2 and NI = r/4. Hence N'2 = (20, 10), N? = (15, 7.5) and

N3 = (4,8 and N2> NB, N2 >N and N3' > N2,

The coalition [12] is not Nash stable because player 2 can obtain more than
N2! = 10 by offering player 3 even more than her higher Nash payoff N3l =38
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(proposing ([23], (12, 9)), for \instance). The coalition [23] is Nash stable, because
player 3 (who would prefer N3! = 8 to N2 = 7.5) cannot obtain player 1’s
cooperation because not only is N'2 > N'3, butalso g'*(N¥) = 10 > gB(N3?) =
4.25.

This bargaining problem is of Class IIB: There is a Nash stable coalition but
an empty core. The price vectors of multilateral Nash solutions form the interval
{(10-2t, 15+t, 7.5+.5t) | 0 < t < 23/9}. The endpoint (10, 15, 7.5) corresponds
to the limit solution of the proposal-making model while endpoint 4.8, 175, 62) --
the von Neumann Morgenstern vector-- corresponds to the market solution. Forma-
tion of the coalitions [12] and [23] is consistent with limit outcomes of the propos-
al-making model; while formation of any of the three pairs is consistent with the
market solution.

Notice that the two "strong" coalitions are [12] and [23] so that player 2
is the pivotal player. The proposal-making model gives player 2 his higher Nash
payoff N2 while (by playing off player 1 against 3) the market solution gives
player 2 an even higher payoff -- so high indeed that [13] can form without him.
Notice also that the components of the von Neumann Morgenstern vector do not
represent a compromise between a players higher and lower Nash payoffs; in particu-
lar 17.5 > NB > N2L

We next consider a Class III bargaining problem: a bargaining problem with
no Nash stable coalition.

EXAMPLE 6.3: Consider the hyperplane bargaining problem in which the"lfeasible
sets for the coalitions are: :

Vil = {(Gy) ERE | v+ 2yp <30}
V23] = {(yoys) € R} | y» + 2y; =30}
V[13] = {(ypy;) € RZ | 2y, + y; <30}
vVeS) = {0} for all other coalitions S
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For this bargaining problem N'? = (15, 7.5), N® = (15, 7.5) and

N3 = (15, 7.5) so N!2 > N3, N2 > N2l and N*!' > N32. The coalition
[12] is not Nash stable because player 2 can obtain more than N2l = 7.5 by
making player 3 the proposal ([23], (10,10)), for example. Player 3 accepts
(10,10) because, although lower than her higher Nash payoff, it is more than she
could obtain if she offered player 1 his N'2 i.e., g?l(N'%) =0 < 10 < g?2(N?!).
Similarly, no other pair is Nash stable.

This bargaining problem is of Class III; it has an empty core and no Nash
stable coalition. The unique multilateral Nash solution has as its price vector
(10, 10, 10) which is the von Neumann Morgenstern vector. Formation for any of
the three pairs with payoff division of (10,10) are the outcomes for all three models.
Notice that each component of the von Neumann Morgenstern vector is a compromise
between the player’s higher and lower Nash payoff, eg., N2 > 10 > N3,
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7. RELATED LITERATURE

The cooperative model presented here is a special case of the multilateral
bargaining model introduced in Bennett (1986, revised 1992). For a brief overview
of this approach see Bennett (1991a). The cooperative model introduced in Binmore
(1985) takes a similar approach to three-player/three-cake problems but uses a
selection criterion to guarantee a unique solution for each bargaining problem.

The proposal-making model was invented by Selten (1981). Selten used the
framework of recursive games (rather than extensive form games) to model bargain-
ing in multi-player games with transferable utility. The recursive framework requires
that players use stationary strategies and allows no discounting. This model has many
equilibrium outcomes; Selten provides arguments based on equilibrium selection to
choose among them. Bennett (1991a) recasts the proposal-making model as an
extensive form game, and uses it to model bargaining in multi-player games without
transferable utility. Bennett (1991b) examines the role of stationarity and discounting
in such models by showing that, in their absence, anything can happen: every '
individually rational outcome can be supported by a subgame perfect equilibrium.
Chatterjee et al.(1987) introduces discounting into the model, however, the analysis is
restricted to stationary strategies and transferable utility.

Binmore's noncooperative model differs from proposal-making models in a
fundamental way. In Binmore’s model each player in turn states a demand for his
coalitional participation and this demand "stays on the table” even if the next player
rejects the demand and states his own demand. In setting his demand each player
must therefore take into account the other demands "on the table"; this introduces a
note of competition into the demand-setting process. In proposal-making models the
proposal disappears when it is rejected; alternative proposals therefore only compete
implicitly. As a result, Binmore’s model is "more competitive”: in the one buyer
two seller case, for instance, the buyer can extract more of the gains from trade. So
far, however, this model has not been extended to more general bargaining situations.
Bennett and van Damme (1991) present a related model in which each player in turn
states a demand, however, once set, demands cannot be changed. Bennett and van
Damme use their model to analyze a class of multi-player games with transferable
utility (apex games).
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8. CONCLUDING REMARKS

In this paper, we have analyzed a class of three-player bargaining problems,
which we call "three-player/three-cake" problems. We have addressed the questions
of which coalitions might form, and what the agreements within such coalitions might
be, supposing that they do form. In the tradition of the Nash program, we have
presented cooperative and non-cooperative models, and show that they reinforce each
other. Our cooperative analysis is based on an extension of the Nash bargaining
solution; our non-cooperative model is based on extensions of the Rubinstein
alternating-offer model with discounting. For some problems, our cooperative
analysis yields a unique solution (i.e., a unique set of conditional agreements, one for
each coalition); for the remainder, our cooperative analysis yields an interval of
solutions. Our non-cooperative model yields, for each discount factor less than 1, a
unique solution; as the discount factor tends to 1, these conditional agreements
converge to the cooperative solution when it is unique, or to one endpoint of the
interval of cooperative solutions.

We have related our cooperative model to a noncooperative model of Binmore
(1985). When the cooperative solution is unique, Binmore’s solution coincides with
our cooperative and non-cooperative solutions; when the cooperative solution is an
interval, so that our non-cooperative solution is one endpoint of this interval,
Binmore’s solution is the other endpoint.

We regard this work as a step in the analysis of general multi-player bargain-
ing problems with many coalitions. We expect the insights obtained here to be of
value in more general situations. However, we have gotten a lot of mileage in our
noncooperative model from the fact that all relevant coalitions involve only two

players, so that we may apply the very sharp predictions of the Rubinstein
alternating-offer model. The general case will surely be much more difficult.
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APPENDIX

PROOF OF THEOREM 3.2: It is convenient to isolate one simple bit of reasoning,
which will be used repeatedly.

¢  Let z = {71} bea multilateral Nash solution and let {d} be the
corresponding set of disagreements. The definition of Ni(d) implies
that for each i and j , if d = 7U then both di and zV are
feasible for [ij]. Moreover, if zJ > NU then zi = d¥ and this
entails feasibility of z¥ for the pair [ik] (to see why notice that i’s
outside option d is computed from the pair [ik] and i's agreement
payoff must be the same both [ij] and [ik]).

(D As we noted in Section 2, a Nash dominant coalition must be unique. Write
p=(NZ, N2, 0) and z = { (N2, N, 0), N2, 0, 0), 0, N*',0) }

To see that z is indeed a solution, notice that dominance means that g3!(N'%) =
g32(N2!) = 0. Hence (0,0) is the outside option vector for [12], so N2 is its
agreement vector. (le, 0) is the outside option vector for [13] , but means that
this outside option vector is not in the interior of V(13) , whence the agreement is
also (le, 0). Similarly, (N21.0) is the agreement for {2,3]. This solution is
unique because no feasible agreement in any other coalition could cause [12] to
change its agreement from N!2_ This completes the proof of (I).

(I) It is easily verified that if some coalition is Nash-stable then there is & renum-
bering so that N'2 = N'3 and g3(N'%) = g>(N?!); for [12] nor to be Nash
dominant, necessarily g>!(N!'?) > 0. We nex{ show that q(0) = (N2 N2,
g31(N12)) is the price vector of a multilateral Nash solution. If g31(N12) =

g32(N21) this is evident because then q(0) is a von Neumann Morgenstern vector.
To see this when g2!(N'?) > g*2(N2!), we analyze the outside options and agree-
ments in each pair in turn. Note first that, in the pair [12], the outside option value
for player 1 is just N!2 (because (N2 g31(N12)) is a feasible agreement for [13]
) and that the outside option value for player 2 is strictly less than N2! (since (N?!,
g32(N(21)) is on the boundary of V(23) and g3 (NI > g32(N21). Hence the
agreement in [12] is (N2, N21). Similarly, in [23] the outside option vector is
(N2! g31(N'2)) , which is infeasible for [23] and hence the "agreement” is the
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outside option vector (N2!, g3'(N'2)). For the coalition [13] the outside option
vector is (N'2,g32(N2)) . Since g3'(N'?) > g¥%(N?!), this outside option vector is
in the interior of V[13], so the agreement will be the constrained Nash solution from
this outside option. Since N!2 = N'3, player 1's outside option N'? isa
binding constraint, and (N2, g31(N12)) is the agreement. Hence q(0) is indeed the
price vector of a multilateral Nash solution, as asserted.

Now for t = 0, we consider price vectors of the form
qt) = (N'2+t, g'(N'Z+p), g2'(N"+1).

The same reasoning as above shows that q(t) is the price vector of a multilateral
Nash solution provided that g2!(N'2+t) > 0, g?!(N'2+t) > 0 and ZINL2+t) >
g32(g2‘(N12+t)). These inequalities are satisfied for values of the parameter t in
some open interval [0,T) ; continuity implies that q(T) is also the price vector of a
multilateral Nash solution, so this yields the desired curve parameter by t in the
closed interval [0,T]. Notice that the interval [0,T] might be degenerate, and
indeed will be degenerate if g>'(N'?) = g3%(N2!). Moreover one can easily show
that: if g2‘(N12 + T) = 0 then q(T) is in the core with [13] as the core coalition;
if g3 (N2! + T) = 0 then q(T) is in the core with [12] as the core coalition; if
gI(N124T) = g3%(g?!(N!2+T)) is the only binding constraint (and hence
@2'(N12+T), 21(N'2+T)) € V(23)) then q(T) is a von Neumann Morgenstern
vector.

We claim that these are the only price vectors of multilateral Nash solutions.
To this end, let q = (q;,9,,93) be the price vector of a multilateral Nash solution;
we must show that q = q(t) for some t. The proof proceeds in a series of steps.

Step 1: We show first that q; = N'2. Suppose to the contrary that q; < NIz,
Since (q;,qs) is the agreement in  [13], it follows that q3 2 gl@q) > &£'N?).
By Case Il assumption g3!(N'?) > g32(N?!). Since N'2 is feasible for the pair
[12], and q, < N'2, we must have q, > N2! and hence g3%(q,) < g*(N2D).
Combining these expressions we have q; > g>!(N'?) = g*2(N?!) > g32(q2) and
hence (q,,q3) is not feasible for the pair [23] . Since g, > N2l we know gq, >
0 , it follows from Theorem 3.1 that (q,,q,) must be feasible for [12] . Since q,
< N2 and q, > N2!, reasoning as in # yields that d*' = g, . However, since
(q,q3) is not feasible for [23], reasoning as in ¢ also yields d?! = gP(qy) < q5 .
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a contradiction. We conclude that q; = N!2 | as asserted. Since [12] is Nash
stable, V[12] # {(0,0)} ; in particular, q; > 0.

Step 2: We show next that (q;,q,) is feasible for [12]. If not, Theorem 3.1 and
the fact that q; > O imply that (q;,q3) is feasible for [13]. Since (q;,qp) is not
feasible for [12] d'3 < q; and hence q; < N'3 --and 1 obtain as much as N3
only if q; < N31. By case assumption we have N'2 > N'3 and in Step I we
proved q, = N!2. Hence q, < N3 < N2 < q; and hence q; = N1z = NI3,
Since (q;,q,) is not feasible for [12] , we must have g, > N2! and in particular
that g, > 0. Hence Theorem 3.1 implies that (qp,q3) is feasible for [23]. We .
conclude that g32(q2) = q; = g31(q1) = g31(N12) 2 g32(N21). Since g32 is
decreasing in player 2’s payoff, we conclude that g, < N?!, which is a contradic-
tion. We conclude that (q;,q,) is feasible for [12], as asserted.

Step 3: We now show that (q;,q3) is feasible for [13]. Assume not, then it is not
the case that g31(q1) =q3; SO g31(q1) < q3. Reasoning as in @, since (q;,q3) is
not feasible for [13], player 1 can obtain no more than N!2 in [12]; this and Step
1 imply q; = N!2: since (q;,q,) is feasible for [12], we conclude that g, =
N2! . Since [12] is not Nash dominant, we must have q3 > 0, and hence (92,93)
must be feasible for [23]. Hence q; = g32(q2) = g32(N21) < g31(N12) = g31(q1)

< q; . Since this chain of inequalities is inconsistent, we conclude that (q;,q3) is
feasible for [13], as asserted.

Step 4: Weset t =q - N!2 | 5o that q = N!2 + t; feasibility of (q;,q;) for
[12] and (q;,q;) guarantees that g, = g?!(N'2+t) and g3 = g3l(N12+1) , so
q = q(t) , as desired.

This completes the proof of (II).
(IID)  If no coalition is Nash stable then, after a suitable renumbering,

*) le > NI3 N23 > N2! N3t > N32
It is convenient to first establish two claims.

CLAIM 1: If {29} isa multilateral solution then ZV = NU for every pair [ij] .
To see this suppose that z!2 = N'2 (and hence that z'? is feasible for [12]). Let
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q be the price vector of {zU} . Then (q;,q,) = N'2; since N'2 > N'3 and
N23 > N!3 and agreements lie on the Pareto boundary, it follows that q; > N32,
whence (by @) q; = d32 = 23! and z!? is feasible for the pair [13]. Hence
q; = 2°'(q)) = g>!(N'?). The definition of d*? yields that q; > g3%(q,) and
hence q; = g32(N2Y). Combining inequalities yields gl(N1?) > g32(N21). This,
together with (*), implies that [12] is Nash stable, a contradiction; this establishes
CLAIM 1.

CLAIM 2: No player obtains more than his higher Nash payoff in any agreement of
a multilateral Nash solution. Assume not then there is a player, say player 1, who
obtains more than max {N!2)N13} at the multilateral solution {zV}. Let
q = (q,,9,,q3) be the price vector of {zU}. Clearly q; > max {N!2N13} (i.e.,
player 1 must obtain more than his higher Nash in his agreement in both coalitions so
2 > N2 and z!3 > N13). Reasoning asin ¢ we know that z!2 and z!3
must be feasible for their coalitions. Let Z be the set of multilateral so'stions {z4}
with the property that z'2 and z'3 are feasible and z!? > N!2 and z*? > NU3,
It is evident that Z is a compact set, so there is a multilateral solution {Slij} € Z
for which y'? is minimized. In view of CLAIM 1, y'2 > N2 and y!3 > NI3,
Hence, if € > 0 is small enough, y'?-& > N!2 and y!3-¢ > N3, One can
then easily verify that the vector (y'? - &, g?l(y!? - &), g3l(y!? - ¢)) is the price
vector of a multilateral Nash solution belonging to Z , which is a contradiction. This
proves CLAIM 2.

CLAIM 3: Every multilateral Nash solution is a von Neumann Morgenstern tuple.
To this end, let {zU} be a multilateral Nash solution, and let q = (q;,9,,93) be its
price vector. At least one of the agreements, say z!2, is feasible. In view of
CLAIM 1, there are two possibilities to con51der either q; < N2 and q > N2L
or q >N12 and q < N21,

If q; < N'?2 and g, > N2!, it follows from @ that z> is feasible.
From CLAIM 1 it follows that z>* s NZ and from CLAIM 2 it follows that
q, < N2 and hence that q; > N2 . Another application of # yields that Z
feasible. If q; > N2 and q; < N!2 | the argument is exactly the same, except
that the roles of players 1 and 2 are reversed.

13 is
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In either case all three agreements are feasible (and hence, by Theorem 3.1,
on the Pareto boundaries for their coalitions, with zJ = z* forall i, j, k). We
conclude that {ZJ} is a von Neumann Morgenstern tuple. This proves CLAIM 3.

With these claims in hand, the remainder of the proof of (III) is simple.
Theorem 3.1 guarantees the existence of a multilateral Nash solution. Claim III
showed that every multilateral solution is a von Neumann Morgenstern tuple. As we
have already noted, if a von Neumann Morgenstern tuple exists it is unique. Hence
in this case there is a unique multilateral Nash solution whose price vector is a von
Neumann Morgenstern vector.

This completes the proof of (IID), and with it the proof of Theorem 3.2. §

PROOF OF THEOREM 4.1: It is convenient to break the proof of Theorem 4.1
into a series of lemmas and propositions. Before beginning, we define, for each 1,
the auxiliary function gi* : Rf_ - R, by setting gi*(xj,xk) = max { gij(xj) , gik(xk)
} . Note that g" is continuous and (weakly) decreasing. The first proposition
guarantees that the system o has at least one solution.

PROPOSITION 4.1.1: Forevery 6 < 1, the system ¢ has at least one solution.

PROOF: Choose M so large that, for each i,j, VI[ij] is contained in the square
[0,M]? . Define G : [0,M® - [O,M}® by

G(y,pypy) = (€ (8p2,0p5), g2°(3p1,0D5), £ (6P1,0PY)

It is easily seen that G is a continuous mapping of the cube into itself, and hence has
a fixed point; such a fixed point solves the system & . §

The argument that price vectors are unique makes use of a notion similar to
that of Nash stability (see Section 2), but deriving from the payoffs of the alternating
offer model. Write Al(8) for the payoff to player i in the alternating offer model
in which players i and j bargain over V[ij], with the common discount factor 0,
using the disagreement point (0,0) , and player i makes the first offer; note that
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p, = AU(8) and p; = AJ(9) is the unique solution to the pair of equations

p, = g‘J(cSpj) and pj = g''(6p,) . When the discount factor & is fixed (which will be
the case for the remainder of the proof of Theorem 4.1), we will avoid distraction by
writing AU instead of AU(8) .. We say that the pair [ij] is A-stable if either

1. AV > Akand Al > AKX, or
2. Al > Ak Al < Ak and 5gMisAT) = gM(Al) | or
3. Al < Ak Al > A% | and 6g9(8A)) = gM(AY)

In the first case (type 1 stability ), players i, j prefer their alternating offer
payoffs in the partnership [ij] to their payoffs in the partnership with player k. In
the second case and third cases (type 2 stability ), one of i, j would prefer to be
matched with player k , but cannot obtain k’s cooperation, because k would prefer
to wait a period and form a partnership with the other.

The crucial information we require about the alternating offer model is
embodied in the following lemma. The reader familiar with the alternating offer
model will recognize the argument.

LEMMA 4.1.2: Let p be a reservation price vector such that (dp;,p;) is on the
boundary of V[ij]. If p; < AV, then (p;,dp;) is in the interior of V[ij] ; if

p; = AY then (p;,dp;) is on the boundary of V(ij]; if p; > A" then (p-,,apj) is
outside VI[ij] .

PROOF: Write f(x) = gli(x) - 5gli(5x) ; we-assert that f is strictly decreasing over
the range 0 < x < x* (where x* is the largest value of x such that x,0) €
V[ij] ). To see this, consider first the case in which gji (and hence f) is continu-
ously differentiable. Since gl is decreasing and concave, its derivative gy is
negative and decreasing; thus f(x) = (gji)’(x) - 62(gji)’(6x) < 0, as desired. If gji
is not continuously differentiable, neither is f. However, g' is decreasing and
concave, so its subdifferential is negative (i.e., consists entirely of negative numbers)
and decreasing (in the sense that, if x > x’ then every element of the subdifferential
at x is smaller than every element of the subdifferential at x’ ). Arguing as above
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allows us to conclude that the subdifferential of f is negative, so that f is decreas-
ing, as desired. We also note that f(A"Y) = 0.

If p < AU | then f(p) > f(AY) = 0 and gji(pi) > 6gji(6pi) . Since (5pi,pj)
is on the boundary of V[ij] , it follows that p, = gji(épi) . Hence gji(pi) > op; , SO
(p;,opy) is in the interior of V[ij] .

If p, > AU | similar reasoning shows that gji(pi) < op; , so that (p;,0p;) s
not in VI[ij] .

Finally, if p; = AU then g/i(5AY) = Al so p; = A", and (3p;,p)) is on the
boundary of V[ij] . §

Our analysis of reservation price vectors proceeds by analyzing reflexive and
triangular reservation price vectors in turn. Our first task is to relate reflexive
reservation price vectors to A-stability.

PROPOSITION 4.1.3: The vector p = (A!2, A%L, g3*(A12, A2})) is a reservation
price vector if and only if [12] is an A-stable coalition.

PROOF: Suppose that p is a reservation price vector and that [12] is not
A-stable. Renumbering if necessary, we must have A'2 < A!> and 3g*%(8A%!) <
g31(A1%) | sothat p, < A'> and 8g°%(épy < g’'(py) . Since p3 = g (A2, A%
, there are two cases to consider. If py = g*!(dp,) then (8p;,ps) is on the bound-
ary of V[13]. Since p; < A1®, Lemma 4.1.2 implies that (p;,dp;) is in the
interior of V[13], contradicting the fact that p solves the system &% . On the
other hand, if py = g32(5p,) then g°%(8A%!) < g*}(A!?), so that g*'(p;) > ps .
Hence, p; < g!3(dps) , again contradicting the fact that p solves the system o .
We conclude that [12] is A-stable, as desired.

Conversely, suppose that [12] is A-stable; we show that p is a reservation
price vector. The definitions of the alternating offer payoffs and of the function g
mean that p; = g'2(6p,) , p» = g2'(6py) . and p; = max{g’'(8p,).g>*(6pp)} ; what
remains is to show that (p;,8ps) is not in the interior of V[13] and that (p2,0p3) 18
not in the interior of V[23] . We give the argument for (p;,0p;) ; the argument for

44



(p,,0p3) involves only reversing the roles of 1 and 2. There are two cases to
consider.

Case 1: p, = A3, If g'(ép;) = g’%(dp,) then py = g’!(ép,) . Hence (8p,.p3)
is on the boundary of V[13] and Lemma 4.1.2 shows that (p;,0p;) is not interior
to V[13]. On the other hand, if g’!(dp;) < g°%(6p,) then p3 = g**(ép,) >
g!(ép,) and (p,,0p;) does not belong to V[13] at all.

Case 2: p; < Al3. Since [12] is A-stable, 3g°%(8A%!) = g’/(A'?) so that
5g32(6p2) = g31(p1) . Since p; < A3 | it follows (from the proof of 4.1.2) that .
gl(p)) > 8g3'(dp;) so that g*%(8p,) > g°'(dp)), and hence p; = max { g*'(5p)),
5g31(9p,)} = 2°%(6p,). Since p; > g'(3p;) we again conclude that (p;,3p;) does
not belong to V[13] at all.

We conclude that p solves o , as desired. §

After one small lemma, we can now show that there is at most one reflexive
reservation price vector.

LEMMA 4.1.4: If [ij] is A-stable with Al > A and Al < A, then A >
NS

PROOF: Since Al > AK | it follows that 3g<(5AY) < sghi(8AKK) = sA% .
Similarly, from the fact that Al < A, we obtain g¥(al) > gh(al) = SAK
Stability requires ghi(All) < 6gki(6Aij) , and combining all three expressions yields
the desired result. §

PROPOSITION 4.1.5: The system o admits at most one reflexive reservation
price vector.

PROOF: Let p and q be reflexive reservation price vectors. If they are distinct,
we may renumber so that p = (A‘z,Azl,p3) and q = (ql,A23,A32) . Hence [12]
and [23] are A-stable; we distinguish three cases, according to the type of stability.
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Case 1: [12] and [23] are type 1 stable. Necessarily AlZ > A3 A2l = A2
A32 > A3 sothat gl(BA12) < gBl(A1) = A%l and g7%(5A%") = g%(A) =
A32 . Combining these yields g*%(6A%!) = g’!(6A'%), so that p; = g32(5A%Y) =
A32 = q; . Similar reasoning shows that g36A3) < AB < A!?2 = g12(5A%) and
thus q, = A2 =p, . Hence p =q.

Case 2: one coalition is type 1 stable and the other is type 2 stable. In light of
Lemma 4.1.4, [12] must be the type 1 stable coalition and [23] must be the type 2
stable coalition and moreover A3l > A32 | A!Z > A3 and A% = A2l | Stability
of [23] requires 6g12(5A23) > g13(A32) or equivalently (since A2 = A%l

SA1Z > g13(A32) or equivalently, g31(6A12) < A3, Now A¥Z = g32(5A23) and
hence g32(6A23) > g31(6A12) or equivalently (since AB = A%h

232l > BlBAL) so that py = max {g°16p)), (0P} = (A =
g32(3A%) = A% = q;. Similarly, g2(5A%) = g!3(5A%%) sothat q; = AlZ = p,.
Again, this forces p = q .

Case 3: both of [12] and [23] are type 2 stable. We show this leads to a contra-
diction; i.e., it is impossible for two coalitions to be A-stable of type 2. We may
assume that A2 > A3 and A2 > A?!; Lemma 4.1.4 implies that A3l > A,
Stability of [12] implies that 5g31(0A1?) = %A% ; since A%l < AB and
%A = 5A32 , this yields 3g>'(3A'%) > 5A32 | which in turn yields

sA12 = g13(g31(3A12)) < g'3(A%?) . On the other hand, we know that AZ > A2l
so that 8g'2(3A23) < 5g!2(5A%!) = SA'2. Combining these inequalities yields
5g'2(5A%%) < g'3(A%?) , which contradicts stability of [23].

This completes the proof of Case 3, and with it, the proof of Proposition 4:1.5. §

The analysis now turns to triangular rescrvation price vectors. It is convenient
to say that the triangular vector p is in standard form if (p;,0py) € VI12], (p,.0p3)
€ V[23] and (p3,0p)) € V[31]; P is in reverse form if (p;,0p;) € V[13],
(p2,0p;) € VI21] and (ps,0p;) € VI[32] . Every triangular vector is in one of these
two forms; note that permuting the numbering of players 1,2 converts standard
form to reverse form. In either case, since p solves the system & , it follows that
the respective vectors are on the boundaries of the respective sets. Our first task is to
obtain bounds for the components of any triangular reservation price vector.
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PROPOSITION 4.1.6: If p is a triangular reservation price vector in standard
form, then A3 < p, < A2, A2 < p, < AP and A%? < p; < A%,

PROOF: Suppose, to the contrary, that p; < A'> < A!?. Standard form implies
that (8p,, p3) is on the boundary of V[13]. Since p; < A | Lemma 4.1.2
implies that (p;,dps) is in the interior of V[13], contradicting the fact that p
solves the system o ; we conclude that p; = A13, a contradiction. The other
inequalities follow by similar reasoning. §

We can now show that triangular reservation price vectors are unique.

PROPOSITION 4.1.7: The system ¢ admits at most one triangular reservation
price vector.

PROOF: If p, q are triangular, renumber so that p is in standard form; by
definition, p, = g!2(5g>3(6g°!(dpy)) . If q is also in standard form, then q, =
g12(6g23(6g31(6q1))) . However, since the functions gij are decreasing, the equation
x = g!2(5gB(5g>'(8x))) can have at most one fixed point, whence p; = q; ; it
follows immediately that p, = q, and p; = q; . If q isin reverse form, Proposi-
tion 4.1.6 shows that Al < p, < A'2 and A'2 < q; < A" . Hence AB =p,
=q; = A2 : it again follows immediately that p, = q, and p; = 3, so the proof
is complete. §

E

PROPOSITION 4.1.8: The system o admits a unique reservation price vector.

PROOF: In view of our previous results, we need only show that the existence of a
reflexive vector p and a triangular vector q which is not reflexive leads to a
contradiction. Without loss, we may assume that p = (A12,A%! g3*(A12,A%1)) and
(permuting the numbering of players 1,2 if necessary) that q is in standard form.
According to Proposition 4.1.6, A'> < q, < A2, A?l < ¢, < A and A¥ <
q; < A3l ; because q is not reflexive, all of these inequalities must be strict: Al
<q < A2, A% < g, < AP and AP < g < A%
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The vector p is reflexive, so Proposition 4.1.3 guarantees that [12] is
A-stable. Since A2! < A2}, the pair [12] cannot be A-stable of type 1, so it must
be A-stable of type 2 (with i =1 and j = 2).

Since q; = g°'(3q)) , the vector (8q;,q;) is on the boundary of V[13],
whence 6q, = g'3(qy) ; similarly, 6q; = g’%(q,) . Thus q; =
(1/6)g13[(1/6)g32(q2)]. Triangularity implies that ¢, = A?l; applying g3? yields
2(qy) < g’2(A%') . Stability means that 5g°'(3A'%) = g°2(A2!) . Combining the
last two inequalities, multiplying through by 1/6 and reading the extremes yields
B1(5A12) = (1/8)g°%(q,) . Now applying g'* yields 8A'2 = gBg3l6Al?)] <
g13((1/6)g32(q2)) . Plugging into the expression for q; ,we obtain

q, = (/g (/g = (1/8)8A! = Al

However, the assumption that q is in standard form and is not reflexive means that
q; < A!Z; this is the contradiction we seek, and the proof is complete. §

The last Proposition establishes the uniqueness of reservation price vectors,
and completes the proof of the first part of Theorem 4.1.

We now turn to the second part of Theorem 4.1, concerning subgame perfect
equilibrium prices.

PROPOSITION 4.1.9: Every price strategy profile corresponding to p(d) consti-
tutes a subgame perfect equilibrium.

PROOF: Let o be a price strategy corresponding to p(d) . Consider a player i
who is to make a proposal following the history h . Playing according to ¢ will
lead i to make a proposal which is accepted and yields pi(8) . Since p(d) solves
& , no higher proposal will be accepted, and any lower proposal will yield less than
p;(8) (assuming other players follow o). Moreover, any proposal at a later period,
either made to i or made by i and accepted by another player, will yield less than
p;(8) (in present terms). Hence no unilateral deviation by i improves upon o; ;
i.e., o is subgame perfect. §
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The remaining two parts of Theorem 4.1 characterize the SPE and SSP
equilibria. The next proposition provides an upper bound on subgame perfect
equilibrium payoffs of each player. Consider the set of all subgame perfect equilib-
ria, and, for each of these subgame perfect equilibria, the payoffs obtained by player
i in subgames in which he has the initiative; let M, be the supremum and m; the
infimum of these payoffs. For simplicity let p denote the (unique) reservation price
vector p(d) of the bargaining game. We first argue that no player can obtain a
payoff higher than his "larger" alternating offer payoff.

PROPOSITION 4.1.10: For each é < 1 and each player i, if x; is the payoff
to player i in a subgame perfect outcome then x; < max {A Ak}, in particular
M, < max {Al Ak},

PROOF: Subgame perfection requires that player i accept any offer exceeding
8M; ; thus, subgame perfection also requires that neither j nor k ever off - player
i more than 6M;; hence x; < M;. The only way player i can obtain as much as
M; is if he proposes it and his proposal is accepted. Suppose, contrary to hypothesis,
that M; > max {AY,A}. To obtain this payoff suppose that i proposes (z,6z) to
player j with z; 2 M;. Since M; > AY, Lemma 4.1.2 guarantees that (3z;, z) is
in the interior of V(ij). Hence there is a Z € V(ij) with Z > > z such that player

j prefers Z; one period from now (after rejecting the proposal) to accepting 9z,
now and player i prefers 6Z; one period from now to z; two periods from now
(after rejecting Z). Hence player j will reject the offer. Similar reasoning proves
that M; < AKX, Hence i cannot obtain more than max {A,AX}, as asserted.

This completes the proof of Proposition 4.1.10. §

PROPOSITION 4.1.11: If p(d) is reflexive and o is a subgame perfect equilibri-
um then ¢ is a price strategy corresponding to the reservation price vector p(d).

PROOF: We first show that m; = p; = M;. Renumber players so that
p = p(d) = (A2, A2 g31(A12)) . Proposition 4.1.3 shows that [12] is an A-stable
coalition; it is convenient to consider the two types of A-stability separately.

Case 1: [12] is A-stable of type 1. Then A!?2 = A3 and A?! = AZ . Since
player 1 obtains p, = A2 when all players follow a price strategy, M; = A!?,
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so our previous inequality guarantees that M, = A!2 . Similarly, M, = A%l . On
the other hand, if player 1 has the initiative, he can offer player 2 slightly more
than 6M, = 6A2! | and be sure that player 2 will accept. Hence m, = g'2(6A%!)
= A'2 | whence m =p = AlZ = M, . Similarly, m, =p, = A?l = M, .
When player 3 has the initiative, he can offer player 1 slightly more than &M, ,
which will certainly be accepted; however, any offer less than ém, will certainly be
rejected.  Since m; = M; = p, , this means that player 3 will obtain exactly
g>!(6A'?) = g*'(8p,) in any subgame in which he is initiator and proposes to player
1. By assumption, g’'(6A!%) = g’2(8A%'), so player 3 would do no better propos-
ing to player 2 . Hence m; = g3!(5A!%) = p; = Mj;, which completes the desired
conclusion for this case.

Case 2: [12] is A-stable of type 2. Without loss suppose that A2> > A2l ; then
necessarily A!2 > A3 and A3! > A32. Arguing as in Case 1, we see that

M, = A!2 and M, < AP . An offer by player 3 to player 1 will be accepted if it
yields player 1 more than M, = 8A!%2; hence m; = g’!(5A1?). Any proposal by
player 2 to player 3 that yields player 3 less than ém; will be rejected, so the most
player 2 can obtain from player 3 is g>3(6m;) < g2(5g°!(6A!%)) . Stability implies
that 8g°1(8A12) = g32(A2?)); substituting into the previous inequality yields

gB(ém;) < gB(g’%(A?Y)) = A2, Hence player 2 could obtain no more than A2!

by proposing to player 3.

We need to determine what player 2 can obtain by proposing to player 1; to
this end we first ask what offer player 1 would make to player 2. In the absence of
player 3, Rubinstein’s analysis tells us that player 1 would always offer (A!2,6A%1)
and that such an offer would be accepted. In the presence of player 3, such an offer
would be rejected only if player 2 could do better with player 3; as we have shown,
he cannot. So player 1 would offer (A!2,6A2!) , which player 2 would have to
accept. Finally, what will player 2 propose to player 1? Demanding more than AZ2!
will be rejected, since player 1 will do better by rejecting and making the
counterproposal (A!2,5A21) in the following period. Hence player 2 obtains no
more than A2! from player 1. Combining the analyses of this and the preceding
paragraph, we conclude that M, = A?! . We may now argue as in Case 1 to
conclude that m; = p, = A2 =M, , my =p, =A?' =M, ,and my = p; =
g31(3A!%) = M, , which is the desired result for this case,
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We next argue that every subgame perfect equilibrium strategy is a price
strategy. Player i will not accept any proposal that assigns her less than om; = op;
(since she can obtain at least m; one period later by the rejecting the proposal and
taking the initiative). Player i must accept any offer that assigns her at least oM; =
6p;. If p; > 0, as initiator player i must propose m; = M;= p, for herself and
(to make the offer acceptable) op; to a player j for which (p;, ép) € V().
Hence ¢ is a price strategy corresponding to p = p(d).§

This completes the proof of the third part of Theorem 4.1. The fourth and
final part of Theorem 4.1 asserts that if p(8) is triangular and o is a stationary
subgame perfect strategy then o is a price strategy corresponding to p(3). In fact
this is so whether or not p() is triangular.

PROPOSITION 4.1.12: If ¢ is stationary and subgame perfect then ¢ is a price
strategy corresponding to p(d).

PROOF: Since ¢ is stationary, each player i obtains the same payoff in every
subgame in which he has the initiative; call this common value q;. Player i must
accept any proposal yielding more than dq; (since that is the most i can obtain
following rejection): hence other players need never offer i more than &q;.
Similarly, i will never offer j more then dq; and j will accept no less. More-
over, i will never obtain q; unless he is the initiator. It follows that

q; = max {gij(bqj), g“‘(éqk)} for each i, sothat q = (q;, qp, q3) satisfies .
Hence q = p(6). Our reasoning above shows that o is a price strategy. § -

This completes the proof of Theorem 4.1.

Before turning to the proof of Theorem 4.2, we record some remarks about
the case of triangular reservation prices. As we have shown, if p(§) is triangular,
there is a unique stationary subgame perfect equilibrium; there may, however, be
many non-stationary subgame perfect equilibria. To describe the range of subgame
perfect outcomes in this case, fix a player i and suppose for the sake of definiteness
that Al < A, There is a subgame perfect equilibrium outcome in which player i
belongs to the coalition that forms and obtains the payoff x if and only if
3AY < x < AKX, For those bargaining problems for which p(3) remains triangular
as & - 1, the limit outcomes for player i span the range from Ni to NX. We note
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that such bargaining problems are exactly those of Class III (no Nash stable coali-
tion). (Details are available on request.)

We turn next to Theorem 4.2. Since discount factors are no longer fixed, we
resume writing AU(8) rather than AU,

PROOF OF THEOREM 4.2: It is convenient to first isolate two bits of reasoning.
Suppose first that {§,} is a sequence of discount factors tending to 1 and that the
corresponding reservation price vectors are triangular and converge to some vector p.
Continuity of the functions g implies that p is a von Neumann Morgenstern
vector, and convergence of the alternating offer solutions to the Nash solution implies
that each component of p lies between the corresponding components of the Nash
solution; i.e. Ni < p. < Nk,

Suppose next that {5} is a sequence of discount factors tending to 1 and
that the corresponding reservation price vectors are reflexive and converge to some
vector p ; renumbering and passing to a subsequence if necessary, assume that
P, = (A'2(5,),A%1(5,),8%(8,A'%(8,)) , and that the coalition [12] is A-stable of
type £ (¢ = 1or{ = 2). Rubinstein’s results on the alternating offer model imply
that A2(3)) -» N'2 and A2!(5,) = N2!, and continuity implies that g31(6,A12(5,))
- g?/(N'2) . It follows that the coalition [12] is Nash stable of type ¢ . It then
follows from Theorem 3.1 that p’ = q(0) = (N!2, N2!, g3!(N!2)) | which is the
price vector of a multilateral Nash solution (and corresponds to one endpoint for
problems of class II).

Now consider the entire family {p(8)} of reservation price vectors. “This is a
bounded subset of R?, so to prove that it converges it suffices to show that any two
convergent subsequences must have the same limits. To this end, suppose that {8} ,
{8,’} are sequences of discount factors tending to 1, that p(5,) > p and that
p(d,’) = p’ , with p = p’ . There are three cases to consider.

Case 1: If both sequences of reservation price vectors are triangular, the limits are
von Neumann Morgenstern vectors. Since von Neumann Morgenstern vectors are
unique (when they exist), we conclude in this case that p = p’ .

Case 2: If the first sequence is triangular and the second is reflexive, it follows that
p is a von Neumann Morgenstern vector and that some pair is Nash stable, so that
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the problem is of class II. In view of Theorem 3.1, the von Neumann Morgenstern
vector corresponds to the endpoint of the set of multilateral Nash solutions with
t = T . However, since each component of p lies between the corresponding
components of the Nash solution, this can only be the case when T = 0, so that p

=q0) =p .

Case 3: If both sequences are reflexive, both p and p’ are the price vectors of the
same endpoint of the set of multilateral Nash solutions, and so coincide.

We conclude that limg,;p(8) exists. The analysis above provides the
requisite information about the limit, so this completes the proof of Theorem 4.2. §
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