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1. INTRODUCTION

The primary purpose of this paper is to suggest a notion of equilibrium
and pseudo-equilibrium for infinite horizon economies with incomplete asset
markets, and to establish the existence of such a pseudo-equilibrium when
assets are short-lived and denominated in general commodity bundles. When
assets are denominated solely in a single numeraire commodity, or in units
of account, we establish the existence of a true equilibrium.

The crucial issue that divides the infinite horizon setting from the fi-
nite horizon setting is the nature of debt constraints. In the finite horizon
setting, the constraint that there be no debt following the terminal date,
together with the budget constraint, imply limits on debt at earlier dates. In
the infinite horizon setting, this terminal debt constraint — and the implied
debt constraints at earlier dates — are absent. If no additional debt con-
staints were imposed, no equilibrium could possibly exist: all traders would
attempt to finance unbounded levels of consumption by unbounded levels
of borrowing without repayment. When markets are complete, such Ponzi
schemes may be ruled out by the simple requirement that debt never grow
so large that it cannot be repaid. Completeness of markets guarantees that
this is an unambiguous requirement, and it is sufficient to guarantee that an
equilibrium exists.! ?

The most straightforward way to repay present debt is to convert all
future endowments into present wealth; when markets are complete, it is
possible to accomplish this directly. When markets are incomplete, however,
future endowments cannot be exchanged direct: . for present wealth; the opti-
mal strategy for converting future endowments into wealth today may involve
borrowing at many future date events. Thus there is no unambiguous way
to require that present debt can be repaid without simultaneously specifying
debt constraints at all subsequent date events.

This suggests the point of view we take here: We should view debt

1Provided, of course, that we make suitable assumptions about preferences and endow-
ments; see Bewley (1972) for instance.

2Note that, even in the complete markets setting, debt may not be entirely repaid in
finite time, but the present value of debt will tend to zero.



constraints as an entire system, and specify debt constraints simultanta-
neously at all date events, rather than individually at each date event.
Moreover, these debt constraints should be incorporated into the definition of
equilibrium.? Thus an equilibrium consists of a list of asset prices, commodity
prices, consumption plans, portfolio plans, and a system of debt constraints,
such that the plans satisfy the usual market clearing conditions and budget
constraints and the given debt constraints, and are utility optimal among all
such plans.

In addition to debt constraints, there is an additional difficulty that we
must face because we treat real assets: the dividend matrix may fail to
have constant rank.* In this paper, we content ourselves to follow Duffie
and Shafer (1985, 1986) and establish the existence of a pseudo-equilibrium.
We conjecture that, as in the finite horizon setting, pseudo-equilibria will
generically be equilibria, but the precise notion of genericity required here
seems to be a subtle one.

We are primarily interested in systems of debt constraints that satisfy
two conditions. Roughly speaking, a system of debt constraints is loose if
liabilities which satisfy tomorrow’s debt constraints can be acquired today.
A system of debt constraints is consistent if liabilities that do not exceed
today’s debt constraint can be satisfied (paid off) without exceeding tomor-
row’s debt constraints. To say that a system of debt constraints is both
loose and consistent is to say that the debt constraint at each date event
reflects an accurate summary of relevant information about future debt con-
straints. In the finite horizon setting, the implicit debt constraints are loose
and consistent, and are the only such debt constraints. Thus, the notion
of (pseudo-)equilibrium we propose reduces- to the usual one in the finite
horizon setting.

Because our main purpose here is to emphasize the role of debt con-
straints, we restrict ourselves to the case of short-lived assets.® Given our

3We formulate the debt constraint at each node as a value of the portfolios that a trader
may acquire at the preceding node.

“In this regard, the infinite horizon setting is no different from the finite horizon setting.
See Hart (1975).

SThere would be only notational difficulties in allowing for long-lived assets, provided
that they pay off in finite time; infinitely-lived assets — including consols — present more



notion of debt constraints, establishing the existence of pseudo-equilibrium is
rather straightforward (following Levine (1989)). Every suitable finite trun-
cation of the economy has a pseudo-equilibrium (with no debt constraints
other than those implied by the constraint that there be no liabilities fol-
lowing the terminal date). The limit of these finite horizon pseudo-equilibria
provides a pseudo-equilibrium for the infinite horizon economy, in which the
debt constraints are taken to be the limit of the implicit debt constraints for
the finite horizon truncations.

For short-lived numeraire assets (that is, assets denominated in a single
commodity), pseudo-equilibria are necessarily equilibria, so in this case we
obtain the existence of an equilibrium.® Since the case of short-lived financial
assets (that is, assets denominated in units of account) can be reduced to
the case of numeraire assets, we obtain an equilibrium in this case as well.”

Our approach to debt constraints is certainly not the only one possible,
and two recent papers dealing with infinite horizon economies with incom-
plete asset markets treat debt constraints in quite a different way. Hernandez
and Santos (1991) require that the present value of debt never exceed the
present value of future endowments. Magill and Quinzii (forthcoming) re-
quire that it be possible to pay off debt in a (given) finite amount of time.

Our attention here is on infinite horizon economies populated by (a finite
number of) infinitely lived traders. In an infinite horizon economy populated
by finitely-lived traders — for example, an overlapping generations economy
— the issue of debt constraints can be resolved exactly as in the finite horizon
setting: Each individual faces the constraint that he cannot have liabilities
after the terminal period of his life; debt at other dates is constrained im-
plicitly by this requirement and by the budget constraints. For the existence
of equilibrium in an overlapping generations economy (with purely financial
assets), see Schmachtenburg (1989).

serious complications.

6The restriction to short-lived assets is important here; the rank difficulty identified by
Hart can occur even for numeraire assets that are long-lived.

TWe do not consider economies with long-lived financial assets, but the existence of
equilibrium for such economies should be not problematical.
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2. INFINITE HORIZON ECONOMIES

Time and uncertainty are represented by a (countably) infinite tree S. A
node s € S represents a finite history of exogenous events; we denote by ¢(s)
the length of that history. The root of the tree is denoted by s = 0; thus
t(0) = 0. The node immediately preceding s is denoted by s —1, and the set
of nodes immediately following s is denoted by s*.

There are L commodities 1,..., L available at each node. Write p, € éRi
for the vector of commodity spot prices at the node s, py for the price of
commodity [ at s, and p: S — RE for the function which assigns commodity
spot prices at each node. It is convenient to normalize so that p, lies on the
unit simplex in R%. ® A consumption plan is a bounded functionz : § — RL;
so the consumption set (for each trader) is X = (I?)L.® Write z, for the
vector of consumption at node s, and z, for consumption of commodity .

There are I traders 1,...,I characterized by endowments w' € X and
utility functions U* : X — R. We assume that endowments and utility
functions satisfy the following assumptions.

Assumption 1 Utility functions U* are concave, monotonically increasing,
and continuous in the product topology.'®

Assumption 2 Endowments are strictly positive and commensurable, in the
sense that there is a constant p > 0 such that w > pw} for each node s and
each pair of traders 1, .

8We emphasize that p, is a vector of spot prices, not present value prices.

9The restriction to bounded consumption plans is innocuous; after a re-scaling, we may
always assume that the social endowment is bounded, whence all feasible consumption
plans are bounded. Of course, traders do not take social feasibility into account when
they choose optimal plans. However, under extremely mild conditions, if a trader finds
that a given bounded consumption plan is dominated by an unbounded consumption plan
(satisfying appropriate constraints), it will also be dominated by a bounded consumption
plan (satisfying the same constraints). See Bewley (1972) for a similar discussion.

10Tt would suffice to assume that utility functions are continuous on the set of feasi-
ble consumption plans. Without the restriction to bounded consumption plans, such an
assumption would be more natural.



Monotonicity and concavity are standard assumptions. Continuity in the
product topology is an assumption about time preference: additional con-
sumption today is more desirable than additional consumption in the distant
future.!! The assumption that endowments are strictly positive and commen-
surable is strong. As we shall see, it serves three functions: It guarantees
that some short selling is always possible (independent of prices), that in-
come is strictly positive, and that debt constraints for different traders are
commensurable (in the same sense that endowments are commensurable).

Intertemporal transactions and insurance are carried out through the
trade of short-lived (one period) assets. For convenience, we assume that
the number of assets available at each node is a constant M 12 We write
gs € RM for the vector of asset prices at node s, ¢ym for the price of asset
m at s, and g : S — RM for the function which assigns asset prices to nodes.
The portfolio of assets held by trader i at node s is denoted by y:. A portfolio
plan y: S — RM assigns a portfolio choice at each node s.

We treat real assets, so that each asset purchased at node s returns a
vector of commodities at each node o € s*. We write R, for the returns
operator at node ; thus, if y, is the portfolio held at the end of the node
s preceding o, then Ry, is the commodity bundle promised by the port-
folio y, at the node 0. For convenience, we assume that asset returns are
non-negative, so the returns operator R, is non-negative. However, since
portfolios may have negative components, the yield of a portfolio may have
any combination of signs.

We make two assumptions about asset returns.

Assumption 3 (Positive Returns) For each node s there is a portfolio
ys > 0 such that Ryy, > 0 and R,y, # 0 for each node o € st.

Assumption 4 (No Redundant Assets) For each node s and each port-
folio y, # 0, there is a node o € s* such that R,y, #0.

11Gee Brown and Lewis (1981) for a detailed discussion.
12There would be no difficulty in allowing for a different number of assets at each node.



Given commodity spot prices p,, the portfolio y, yields a dividend of
Po * Roy, (units of account) at the node 0. It is convenient to write V,(p) for
the dividend operator which maps portfolios at the node s to the vector of
dividends at nodes in s*;

(V.(p)y,)(a) =po * Ryy,

Since there are M assets, the dividend operator has rank at most M, but it
may have lower rank for some prices. However, since there are no redundant
assets, there is a closed subset E C (RM )** of measure 0 such that the
dividend operator has rank precisely M for spot prices {p,} ¢ E.

No production or intertemporal storage is possible, and assets are in zero
net supply, so the social feasibility conditions for the economy are

;zis;wi

>y =0

Initial holdings of securities are zero. When s = 0, it is convenient to write
yi_, = 0. Thus the budget constraint facing trader : at the node s may be
written _ _ . .

Ds - (:I:: - w:) +4,- y; < Ds - Ray;-l
(Note that this inequality is homogeneous in (p,,q,), so that we are indeed
free to normalize so that p, lies in the unit simplex.)

A system of debt constraints for trader i is a function D* : § — (—o0,0].
Given commodity prices p, the portfolio y, € RM satisfies the debt constraint
at o € st if

VO(P)yo =p, - Roy, 2 D,
Write Y, C R®M for the set of portfolios y, that satisfy the debt constraint at
each node o € s*.13

13Note that the debt constraint is automatically satisfied at the initial node, since there
are no initial portfolios.



The role of debt constraints is to rule out Ponzi schemes in the infinite
horizon economy. Notice that the debt limits are non-positive — that is,
traders cannot be forced to save.

To motivate these constraints, it is useful to see how they are connected
to the usual finite horizon incomplete markets model. In that model, debt
cannot be held at the end of the terminal period. Implicitly, this gives rise
to debt constraints at earlier nodes as well. The budget constraint forces
repayment by the terminal date, so the debt limit at any node s is the
greatest amount of debt that the trader could hold, entering node s, and
still be able to repay by the terminal date. Qur approach is to make these
implicit constraints explicit, because in the infinite horizon model there is no
terminal constraint.

Notice that debt constraints are defined in terms of the value of the
portfolio held at the beginning of the period, rather than at the end of the
period. To understand why, consider again the implicit debt constraints in
the finite horizon model. With incomplete markets, the amount of debt that
can be held at the end of the period depends on the form in which it is held.
If a trader is short in securities which promise repayment in future states in
which his endowment is large, then a substantial debt can be repaid; if he
is short in securities which promise repayment in future states in which his
endowment is small, then he can repay very little. If debt were defined in
terms of end-of-period holdings, it would be necessary to distinguish various
portfolios of debt. Our definition in terms of beginning-of-period holdings is
therefore convenient because it enables us to work entirely in terms of value.

Given endowments w'*, prices p, ¢, and debt constraints D', the consump-
tion/portfolio plan (z',y’) belongs to the budget set Bi(w',p,q,D') for
trader ¢ at the node s if:

o the budget constraint is satisfied at s; i.e.,
py - (zh —w) + s ¥} < Po- Rebloy
e the debt constraint is satisfied at s; i.e.,
V,(p)¥s-1 = Py - Roys-1 2 D,
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In this circumstance, we frequently say that the portfolio plan y* finances
the consumption plan z'.

Ariwecjuilibrium consists of prices p,q, consumption plans (z*), portfolio
plans (y*), and systems of debt constraints (D*) such that

e consumption and portfolio plans are socially feasible

e for each trader i, z* maximizes trader ¢’s utility over all plans belonging
to the budget set Bi(w',p,q, D’) at every node s

Unfortunately, the assumptions we have made will not in general suffice to
guarantee the existence of a sensible equilibrium. As noted in the Introduc-
tion, the difficulty is that, for some prices p, the dividend operator V,(p) may
have rank less than M. To deal with this difficulty, we shall follow Duffie and
Shafer (1985, 1986) and introduce the notion of a pseudo-equilibrium. We
find it convenient to formulate this notion in a different — albeit equivalent
— way.

For each node s, we consider an M-dimensional subspace K, C R of
income transfers, and a pricing functional @, : K, — ®. An income trans-
fer plan is a family of vectors k, € K,. For ¢ € s*, write k,(0) for the
o-component of k,. Given commodity prices p, the consumption/income
transfer plan (z*, k') satisfies the budget constraint at s if

Ps (z'. - w:) +Q, k< ka-l(s)

Similarly, the consumption/income transfer plan (z', k') satisfies the debt

constraint at s if .

k,_l(S) Z D;
Finally, (z', k) belongs to the budget set Bi(w',p, K,Q, D*) for trader i at
the node s if it satisfies the budget and debt constraints. Again, in this

circumstance we frequently say that the income transfer plan k* finances the
consumption plan z'.

A pseudo-equilibrium consists of prices p, a family K of subspaces of in-
come transfers, pricing functionals @, consumption plans (z'), income trans-
fer plans (k‘), and systems of debt constraints (D) such that

8



e consumption plans are socially feasible
e income transfer plans are socially feasible (i.e., 3 ki = 0 for each s)

o for each trader i, the plan (z*, k') maximizes trader 1’s utility over all
plans belonging to the budget set Bj(w',p, K., @, D*) at every node s

o for each s, the range of the dividend operator V,(p) is a subspace of K,

A pseudo-equilibrium is proper if, for each s, the range of the dividend
operator V,(p) is equal to K.

If trader ¢ acquires the portfolio y, at the node s, he will effect the in-
come transfers V,(p)y, at nodes o € s*. Since the definition of pseudo-
equilibrium requires that the range of the dividend operator V,(p) be a sub-
space of the space K, of income transfers, allowing income transfers to lie
in K, expands the possibilites for each trader. Thus, the notion of pseudo-
equilibrium is more general than the notion of equilibrium. Moreover, proper
pseudo-equilibria are actually equilibria. More precisely, if

{p. K, Q. ("), (¥), (DY)

is a proper pseudo-equilibrium, then there are asset prices ¢ and portfolio
plans (y') such that

(p.0r (=), (¥), (DY)
is an equilibrium. To see this, we need only note that the pricing functional
Q, defines prices g, for asset portfolios by the rule

qs - Ys = Qs : ‘/s(p)
and that the income transfer plans k' define portfolio plans y* by the rule
Vi(p)yi = k.
It is straightforward to verify that the equilibrium conditions are satisfied.

To this point, we have placed no restrictions on debt constraints, but it
should be clear that some debt constraints are less interesting than others.
We shall restrict attention to debt constraints that satisfy two conditions.

9



The first is a consistency condition: if debt can be acquired (that is, satisfies
the current debt limit), then it can be repaid (while satisfying future debt
limits). The second is a condition that debt is not overly restricted: if debt
can be repaid, then it can be acquired.

The internal consistency condition we use is that, if the current debt limit
is satisfied, then there is a plan that meets today’s liabilities and satisfies
tomorrow’s debt constraints. Formally, the debt constraint D* is consistent
at node s if for every income transfer plan ki_, € K,_; that meets the debt
constraint at s — that is, ki_,(s) > D! — there is an income transfer plan
k! € K, such that .

ki—l(‘s) +psw,—Q, -k 20
and ki(o) > D} for each o € s*. Since the only requirement on the income
transfer plan k_, is that it meet the debt constraint at the node s, and it
is always possible to find such a ki_, such that ki_,(s) = D, an alternative
formulation of consistency is: there is a plan ki € K, such that

Di+pa'w:—Qo'k:ZO

and ki(c) > D} for each o € s*. That is, it is possible to meet a liability
equal to or greater than today’s debt constraint by consuming nothing today
and acquiring an income transfer (that is, borrowing) that meets tomorrow’s
debt constraints. The system D' of debt constraints is consistent if it is
consistent at each node.

Note that consistency of the entire system expresses the idea desired: If
debt satisfies the limit at a particular node, and debt constraints are consis-
tent at that node, then debt can be rolled over to satisfy the constraints next
period. If the entire system of debt constraints is consistent, this process can
be repeated, so constraints can be satisfied at every future node. In other
words, the current constraint correctly summarizes future constraints.

-The requirement that the system of debt constraints be consistent is im-
portant, but not limiting in itself: any given system of debt constraints —
consistent or not — can be modified to a system that is consistent and yields
exactly the same budget sets. (Recall that the definition of budget sets in-
volves both budget constraints and debt constraints.)

10



Merely to establish the existence of equilibrium with some system of debt
constraints — even some consistent system of debt constraints — does not
seem very satisfactory. There is, for example, an equilibrium in which D = 0
for every i, s, in which there is no intertemporal trade or insurance. (Zero
debt constraints are clearly consistent.) In the finite horizon model, the usual
(implicit) assumption is that, if debt can be repaid then it can be acquired.
We wish to make a similar requirement in the infinite horizon model as well.
To formalize this requirement, consider an income transfer plan k!_, € K,_1,
and the liability ki_ (s) it creates at the node s. This liability can be repaid
satisfying next period’s debt limits if there is a plan k! € K, such that

k:—1(3)+ps 'w: —Qa k; 20

and ki(c) > Di for every o € s*. If debt that can be repaid can also be
acquired, it must be the case that k;_(s) > Di. Since this must hold for all
such choices, it reduces to saying that if k € K, and kj(o) 2 D for each
node o € s, then

Di+p-w,—Qu Kk <0
and we take this as the formal definition of loose at the node s. The system
D' is loose if it is loose at every node.

In the finite horizon setting, it is easy to see that the implicit debt con-
straints at each node (that is, debt at each node is constrained to the level
that can be repaid by the terminal period) are both loose and consistent.
Moreover, the implicit debt constraints are the only debt constraints that are
both loose and consistent. In the infinite horizon setting, the debt constraint
of 0 is consistent, and the debt constraint of —oo is loose — independently
of prices.!* However, some price systems do not support any finite debt con-
straints that are both loose and consistent. Indeed, it is not at all apparent
that there exist any price systems supporting finite debt constraints that are
both loose and consistent. In particular, the debt constraint of 0 is not loose
if endowments are positive; it will always be possible to sustain some debt
at the beginning of each node.

It may be useful to turn this last remark around: if debt constraints are
loose, it will always be possible to hold today a level of debt that can be

140f course, the debt constraint of —oo is not consistent with any equilibrium.
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repaid from tomorrow’s endowments. More generally, for any given 7, it will
always be possible to hold today a level of debt that can be repaid from
endowments in the next 7 periods. This notion of repayment in finite time is
one used by Magill and Quinzii (forthcoming). Note however, that we allow
for debt that cannot be repaid in finite time. This should not be a surprise.
If markets are complete, the usual infinite horizon budget constraint allows
for such debt, and it is indeed quite easy to construct examples of complete
markets, infinite horizon equilbria in which some trader never exactly repays
a debt, but rather makes interest payments forever.

Similarly, note that, because we work entirely with spot prices, we do not
require that debt constraints be uniformly bounded below — nor is there any
reason we should do so. Even in the complete markets setting, for which we
might want to insist that the date 0 present value of debt tends to 0, the
spot price of debt might well be unbounded below. We shall return to this
point in Section 3.

Our debt constraints are based on what a trader could repay, not on his
wealth (that is, the present value of future endowment). A simple example,
adapted from Hernandez and Santos (1991), may illustrate why this is an
important distinction. Consider a tree S that has two branches at each
node, so that each node s has two successors; write st = {so,$1}. Assume
that there is a single commodity available for consumption at each node, and
a single one-period asset, which promises delivery of one unit of consumption
at each successor node. Consider a trader i whose endowment w' is given
by w'(0) = 0 and w'(se) = 0, w'(s,) = 1 for each node s*. If prices are
strictly positive, this trader’s wealth (that is, the present value of his future
endowment) is strictly positive at each node. However, the debt constraints
that are identically 0 at each node are loose and consistent; with such debt
constraints, no borrowing is possible at any node. Zero debt constraints
are perfectly sensible here: in any finite horizon truncation of this tree, it
will be impossible for this trader to borrow at any node, since it might be
impossible for him to repay his debt by the terminal node. The implicit debt
constraints in these finite horizon truncations are therefore identically zero
at each node. Zero debt constraints in the infinite horizon setting therefore

12



correctly capture the finite horizon limit.'®

15We do not assert that a sensible theory of debt constraints cannot be based on present
values, only that our theory is not, and that the distinction is a real one.
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3. EXISTENCE OF PSEUDO-EQUILIBRIUM

Our basic result is the following.

Theorem 1 The infinite horizon economy admits a pseudo-equilibrium
(p. K,Q, (=), (¥), (D))
for which each D* is a loose, consistent system of debt constraints.
Before beginning the proof proper, it will be useful to isolate a technical
point that will be used repeatedly. We first introduce some notation. Let z

and y be consumption plans, ¢ a real number, and s a node. By the splice
(z,c¢,y|s) we mean the consumption plan defined by

cl=(1,...,1) ifr=s
(z,c,yl8)r = { ¥r if 7 follows s

z, otherwise

Lemma 2 For each trader i, feasible consumption plan z', and node s, there
are real numbers ¢,6 with ¢ > 0 and 0 < § < 1, such that the consumption
plan (1 — 8)z* + 8(z%, c,w'|s) is preferred to T

Proof: Concavity implies that U’ has right-hand directional derivatives at
z' in every direction. We claim that, for ¢ sufficiently large, the right-hand
derivative (call it B.) of U* at z* in the direction (z,c,w'|s) — &' is strictly
positive. Assuming this claim, the remainder of the argument is simple. For
6 > 0, the definition of the right-hand derivative yields:

Ui (1 - 8)2° + §(z*,c,w'ls)) = Uiz + 8[{z', ¢, w'|s) — 2'])
= U'(z') + Beb + o(8)
where 0(6)/6 — 0 as § — 0. Since B. > 0, we conclude that
Ui((1 - 6)z* + (2, c,w'ls)) > U'(')

14



provided that § is sufficiently small, as asserted.

It remains to establish the claim. Write z* = (z,0,w'|s) — ' and z =
(0,1,0[s), so that (z',c,w'|s) — z' = z* + cz. Concavity implies that the
right-hand derivatives are at least as large as the difference quotients:
> Ui(z' + ez* + ¢c2]) - U'(z")

- €

Be

for each € > 0. Setting € = 1/c and expanding yields

Ui(z' + (1/¢)[z* + c2]) = U(')
B. 2 e

= Ui+ (1/c)z" + 2) = U'())]

Since U’ is monotonically increasing and is continuous at z*, it follows that
Ui(z' + (1/¢)z* + z) — U'(a') > 0 if ¢ is sufficiently large, so that

B, > U + (1/c)z" + 2) - Ui(z')) = oo

as ¢ — oco. In particular, 8. > 0 for c sufficiently large. O

Proof of Theorem 1: We construct a pseudo-equilibrium for our infinite-
horizon economy as a limit of pseudo-equilibria for appropriate finite-horizon
truncations. To this end, fix a time horizon T and consider the finite-horizon
economy &(7) obtained in the following way:

o time and uncertainty are described by the tree S(T') consisting of all
nodes s € S for which t(s) <T

e the commodities and assets available for trade at each node of S(T)
are the same as at the corresponding node of S, except that no assets
are available at terminal nodes of S(T')

o there are I traders; endowments at each node of S(T') are the same as
at the corresponding node of S

e trader i's utility U-;(:r") for the consumption plan z : S(T) — R% is set
equal to his utility for the plan z* which coincides with z at each node
s € S(T) and with w} at each node s ¢ S(T)

15



According to Geanakoplos and Shafer (1990), the finite-horizon economy
£(T) has a pseudo-equilibrium

E(T) = {p(T), K(T), Q(T), (='(T)), (¥'(]))
with no debt constraints (other than the terminal ones).*®

We would like to let T — oo and pass to a convergent subsequence. In
order to do this, we must first verify that the various components of the
pseudo-equilibrium E(T') all lie in compact sets. For some of these compo-
nents, this is a triviality:

¢ Commodity prices p,(7T) lie in the unit simplex

e Subspaces K,(T) of income transfers lie in the compact Grassman man-
ifold of M-dimensional subspaces of R

e Consumption vectors z4(T’) are non-negative and bounded by aggregate
endowments

Passing to a subsequence if necessary, write p, for the limit commodity spot
prices, K, for the limit subspaces of income transfers, and * for the limit
consumption vectors.

e Income transfers ki(T) are bounded above. For, if not, we could find a
node o € s* for which ki(T)(o) is unbounded above. For real numbers
¢, 8, consider the consumption plans ', 2'(T) defined by

2= (1= &)z’ +68(z,c,w'|s)

16 Geanakoplos and Shafer formulate pseudo-equilibrium in terms of present value prices,
rather than spot prices, but the notions are equivalent for finite horizon economies. They
also assume that the indifference surface through any interior consumption plan is a closed
subset of the strictly positive orthant, an assumption that we have not made. However, this
assumption is unnecessary. To see this, let T be any quasi-concave utility function having
the desired indifference surfaces; for each € > 0, consider utility functions Ui=U'+eU.
Evidently, the utility functions U! also have the desired indifference surfaces. Write £,(T)
for the economy obtained by substituting these utility functions. Applying the result of
Geanakoplos and Shafer, we conclude that £.(T) has a pseudo-equilibrium. Letting ¢ — 0,
and passing to the limit (of a subsequence, if necessary) we obtain a pseudo-equilibrium
for the economy &(T).
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A(T) = (1 - 6)(T) + 8(z*(T), ¢, w'ls)

According to Lemma 2, we can choose c,§ so that ' is preferred to z'.
Continuity of utility functions in the product topology entails that

Ui((T)) - V()

Hence, z*(T) is preferred to z*(T') for T sufficiently large. Since k(T (o)
is unbounded above, the consumption plan (z*(T),c,w'|s) is budget
feasible if T is sufficiently large.!” Hence z*(T) is a convex combination
of budget feasible plans, and therefore is itself budget feasible for T
sufficiently large. This is a contradiction, so we conclude that income
transfers are indeed bounded above.

o Income transfers ki(T) are bounded below, since they are bounded
above, and the sum of income transfers of all traders is identically 0.

e Prices Q,(T) are non-negative and bounded above. Non-negativity
is clear, since preferences are increasing. If the prices Q,(T’) are not
bounded above, we may choose, for each T, a trader i(T') such that
k:(_T,)(T)(s) > 0; for notational convenience, we henceforward suppress

the dependence of i on T. As before, we can use Lemma 2 to choose

real numbers ¢, § with ¢ > 0,0 < § < 1 and define a consumption plan
2 =(1-68)z' +6(z',c,w'|s)

so that z* is preferred to z*. For 0 < r < 1, set
Zi=(1=8) +68(z',c,rw'ls)

Continuity of preferences guarantees that Z* is preferred to ', provided
that r is sufficiently close to 1. Set:

Z(T) = (1 - 8)2'(T) + §(z*(T), ¢, rw'|s)

Continuity again guarantees that Z*(T) is preferred to z*(T), provided
that T is sufficiently large. However, if T is sufficiently large, the

17That is, this is the consumption part of a consumption/income transfer plan in the
budget set at each node.
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consumption plan (z*(T),c,rw'|s) is budget feasible. (To see this, note
first that, since only a finite number of assets A are available at s, their
payoffs at nodes in s* are bounded by some multiple of the consumption
vector 1 = (1,...,1); say A(¢) < al, for each asset A. Endowments
are strictly positive, so w' > 81 for some 8 > 0. Choose a real number
¢ with 0 < € < (1 —r)B/a. We have supposed that prices Q,(T)
are unbounded above, so, for T sufficiently large, there is an asset A*
whose price is at least cL/e. The consumption plan (z*(T),c,rw'|s)
can then be financed by the following plan of income transfers: at the
node s, sell € units of the asset A* at the node s (this yields income
sufficient to purchase c1); do nothing at nodes following s (liabilities
at ¢ € s* arising from the sale of A* at s can be covered by the
fraction of endowment (1 — r)w! ), and follow the income transfer plan
ki(T) at every other node 7. Thus, the consumption plan ZYT) is
the convex combination of budget feasible plans, and therefore is itself
budget feasible if T is sufficiently large. This is a contradiction, so we
conclude that prices Q,(T) are bounded above, as asserted.

Having established that the components of the equilibria E(T') lie in com-
pact sets, we may extract a subsequence converging to

E = (p,K,Q,(a"), (k")

The next step is to construct suitable debt constraints, as limits of implicit
debt constraints for each of the economies £(T). To this end, fix a trader ¢,
a node s and an index T > t(s). Define the implicit debt constraint D}(T)

for the economy &(T) as:
D(T) = inf{-p,- (& - w)) - Q.- F.}
where the infimum is taken over all consumption and income transfer plans

(7, F) which meet the budget constraints (relative to commodity prices p(T)
and pricing functionals @Q(7')) at s and at every node 7 following s.18

o The implicit debt constraints Di(T') are bounded below (at each node).
If not, suppose that trader ¢’s implicit debt constraints are not bounded

18We make no restrictions on (?,F) at other nodes.
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below at the node s. For each T, choose a trader j such that kJ_,(T)(s) >
0. (We suppress the dependence of j on T') According to Assumption
2, there is a real number p > 0 such that w] > pw; for each trader
j. Arguing as before, we may find real numbers ¢, §,r with ¢ > 0,
0<é<1, 0<r <1 sothat the consumption plan

Zi=(1-68)z' +6(z?,c,ru|s)
is preferred to z7/. Continuity implies that
Zi(T)=(1-8z((T)+ §(z'(T), c,rw’ |s)

is preferred to z/(T) if T is sufficiently large. We assert that ZX(T) is
budget feasible if T is sufficiently large. To establish this, it is suffi-
cient to show that (z7(T), ¢, rw’|s) is budget feasible if T is sufficiently
large (since Z7(T) is a convex combination of (z7(T), c,rw’|s) and the
equilibrium consumption z?(T')). By definition of the implicit debt
constraint D!(T), there is an income transfer plan hi(T) for trader i
that, beginning at the node s, repays the debt Di(T) (provided that
trader i consumes nothing at subsequent nodes). In other words, the
plan A‘(T) yields the income —Di(T) at the node s, and involves no
liabilities at the nodes at time T. By Assumption 2, the endowments
of trader  and trader j are commensurable: w’ > pw'. Hence, by
following the plan ph*(T), beginning at the node s, trader j can obtain
the income —pD’(T) at the node s, and still meet all his liabilities
at subsequent nodes (provided he consumes nothing). And if trader
j follows the plan A# = (1 — r)ph*(T), beginning at the node s, he
can obtain an income of —(1 — r)pDi(T) at the node s, consume the
portion ruw’ of his endowment at all subsequent nodes, and still meet
all his liabilities. Define the income transfer plan H? by Hj = hj if
r = s or 7 follows s, and Hi = ki(T) for all other nodes 7. This
income transfer plan finances the consumption plan (z?(T), c,rw’|s),
provided that the income it generates at node s is sufficient to purchase
the consumption bundle c1. The income generated by H J at s is equal
to —(1—r)pDi(T). Since we have assumed that Di(T) is is unbounded
below, we conclude that the consumption plan (z(T), ¢, rw’|s) is bud-
get feasible, provided that T is sufficiently large. But then Z7(T) is
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budget feasible and preferred to z/(T), a contradiction. We conclude
that implicit debt constraints are bounded below.

Having established that the implicit debt constraints are bounded below,
we may, passing to a subsequence if necessary, assume that

Di(T) — D;
for each trader i and node s. This provides us with a tuple

E* = (p,K,Q, (=), (K),(D"))
which we claim to be a pseudo-equilibrium for the infinite horizon economy.

It is trivial to verify that that individual consumption plans and transfer
plans belong to the individual budget sets at each node, that consumption
plans and income transfer plans are socially feasible, and that the range of
each dividend operator lies in the appropriate income transfer subspace. It
remains only to verify that individual plans are optimal. To this end, suppose
that there is a trader i and consumption/income transfer plan (a*, k) for
trader i which belongs to the budget set at each node and has the property
that U'(a') > U(z*) + 6, for some § > 0. For each horizon T*, consider
the consumption plan a'|T* which coincides with a' at each node s with
t(s) < T*, and is 0 at every node s with ¢(s) > T*. Continuity of preferences
and the definition of the utility functions Uy guarantees that

U@ |T*) > U(a*|T*) > Url2'(T)) + /2

for all T > T*, provided that T* is sufficiently large. Set a = (1 -ead|T
continuity of preferences also guarantees that U'(a’) > U ‘(') +6/3 fore >0
sufficiently small. Set &' = (1—¢)h*. Because endowments are bounded away
from 0, the consumption/income transfer plan (a', k') has the property that
the budget and debt constraints are satisfied (for prices p, pricing functionals
Q) with strict inequalities at every node.

For T > T* define an income transfer plan E(T) by letting A'(T) be
the point of K,(T) closest to k. Because (¢',h') satisfies the budget and
debt constraints with strict inequalities at every node, convergence of income
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transfer subspaces K,(T) — K, and commodity spot prices p.(T) — p,
implies that, for T sufficiently large, the consumption/income transfer plan
(a',h') strictly satisfies the budget and debt constraints (for prices p(T),
pricing functionals Q(T')) at all nodes s with t(s) < T*. Moreover, if T is large
enough, the plan (a', k') also strictly satisfies the implicit debt constraints
Di(T) (for prices p(T), pricing functionals Q(T)) at every node s with t(s) =
T

The definition of the implicit debt constraints guarantees that it is there-
fore possible to find a consumption/income transfer plan (A', H*) for the
economy £(T) that agrees with (a', ') for t(s) < T* and satisfies the budget
constraints for the economy £(T) at every node. Since the consumption plan
a' is 0 at every node s with t(s) > T, monotonicity of preferences means that
Ui(Af) > U(a'). Hence, for T sufficiently large, Urp(AY) > T (2'(T)) + 6/5.
Since (A, H') is feasible for the economy &(T'), this is a contradiction. We
conclude that the consumption/income transfer plans (z', k') are optimal,
and hence that E* is a pseudo-equilibrium, as desired.

It remains to see that the debt constraints D' are loose and consistent.
To this end, note first that our construction guarantees that the implicit
debt constraints D¥(T') are loose and consistent at each node (with respect
to the prices p(T), Q(T)) at every node s with £(s) < T. To see that the
debt constraint D' is loose, fix a node s, an € > 0, and an income transfer
plan k! € K, which satisfies the debt constraints at every node o € st; i.e.,
ki(o) > Di for every o € s*. Assumption 4 (Positive Returns), together with
the fact that all commodity spot prices are strictly positive and the fact that
the range of the dividend operator V,(p) lies in the income transfer subspace
K,, implies that we can find an income transier plan h'; € K, which strictly
satisfies the debt constraints at every node o € s* (i.e., hi(a) > D; for every
o € st) and which differs from k! by at most € at every node o € st. As
before, write A (T) for the income transfer plan in the subspace K,(T') closest
to hi. Convergence of prices guarantees that, for T > t(s) sufficiently large,
the income transfer plan hi(T) satisfies the debt constraints at every node
o € st; i.e., hi(T)(o) > D}, for every o € s*. Because the debt constraints
D¥(T) are loose at s, it follows that

Di(T) + pu(T) - w} — Qu(T) - h(T) <0
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Because Di(T) — D, p,(T) — psy Qs(T) — Qs and hi(T) — ki, it follows
that ‘ . '

Ditpwi-Q-K<0 |
Since h' differs from ki by at most € at every node o € s*, and € can be
made as small as we like, we conclude that

Di+P:'w:—Q:'k:S0

That is, the debt constraint D' is loose at s. The argument that debt con-
straints are consistent is essentially the reverse of this argument; details are
left to the reader. This completes the proof. O

As we have noted earlier, debt constraints are denominated with respect
to spot prices, not present value prices. Hence, we do not require that debt
constraints be uniformly bounded below — and the debt constraints D: we
have constructed above may indeed be unbounded below. Obtaining uni-
form lower bounds on debt constraints would appear to require assumptions
stronger than the ones we have made. (It would suffice, for instance, to
know that the constant c of Lemma 2 could be chosen independently of the
consumption plan z' and the node s. This will be possible, for instance, if
each trader maximizes discounted, state-independent, expected utility, and
endowments are uniformly bounded above.)

In the finite-horizon setting, Duffie and Shafer (1985, 1986) have shown
(with the additional assumption of smooth preferences) that, generically in
endowments and asset structure, pseudo-equilibria are in fact equilibria. We
conjecture that a similar result holds in our setting; however, giving a precise
meaning to “generically in endowments and asset structure” does not seem
an easy task in the infinite-horizon context. We can however, obtain the
existence of an equilibrium in two cases: if all assets are denominated in a
single commodity (numeraire assets), or if all assets are denominated in units
of account (financial assets).

Corollary 3 (Numeraire Assets) If all assets are denominated in a single
commodity, then there is an an infinite horizon equilibrium p, g, (z%), ("), (D*)
for which each D' is a loose, consistent system of debt constraints.
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Corollary 4 (Financial Assets) If all assets are denominated in units of
account, then there is an an infinite horizon equilibrium p, g, (z), (y"), (D*)
for which each D' is a loose, consistent system of debt constraints.

To obtain the first of these corollaries, observe that, for one-period nu-
meraire assets, the returns operator necessarily has constant rank M at each
node, so that the notions of equilibrium and pseudo-equilibrium coincide. To
obtain the second of these corollaries, observe that purely financial assets can
be reinterpreted as numeraire assets provided that we normalize so that the

price of the numeraire commodity is always 1.
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