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ABSTRACT

This paper examines the role of forecast-encompassing principles in

" model-specification searches through the use of linear composite forecasts.
Based on the results of the pairwise forecast-encompassing test, this paper
outlines a conceptual framework to provide some useful insights on cross-
model evaluations in econometrics and the selection of predictors in
composite forecasts. The contribution of this paper is twofold. First, it
clarifies the complementary role of forecast-encompassing principle and
composite forecasts. Second, it offers three different ways of performing
the encompassing test and compares their finite sample performance through a
Monte Carlo simulation study. Test results guide researchers to choose
component forecasts and thus to avoid blind pooling in the combining

regression.

KEYWORDS: Choice of forecasts, Composite forecasts, Forecast-encompassing

test, Monte-Carlo simulation, Non-nested hypotheses



1. Introduction

In the literature on linear combination of forecasts (e.g., Granger and
‘Ramanathan, 1984) and cross-model comparisons of economic forecasts (e.g.,
Nelson, 1972; Wallis, 1989), it has become standard to estimate the
combining weights and to assess the performance of forecasts relative to
each other by running the following linear regression:

Ye = ﬂo + ﬂlflt + ﬂ2f2t + ...+ ﬂkfkt +u, (1)
where subscript t indexes the order of observations (t = 1,2,...,T), Ye
is the outcome series, fit (i=1,2,...,k) 1is the ith forecast series,
ﬂi (i =0,1,2,...,k) are unknown parameters, and u, is the error term.
Despite the similarity between these two paradigms, historically they were
developed independently (Cooper and Nelson, 1975). It is interesting to
note that articles on composite forecasts are primarily published in fore-
casting, management science, and operations research journals; articles on
cross-model evaluation of economic forecasts have mostly appeared in
economics journals. Additionally, the role of the regression equation (1)
in each paradigm is different.

The method of combining forecasts is based on the fact that alternative
forecasts of the same variable are often available and on the belief that
each of them most likely contains useful information. Under the error-
variance minimizing criterion, Bates and Granger (1969) represents the most
influential early contribution to the linear combination of forecasts.
Later, Granger and Ramanathan (1984) demonstrates that the method can be
interpreted as, and generalized to, the estimation of the regression equa-
tion (1). Recently, Clemen (1989) writes a thorough survey on this

important and still currently topical theme.



In the case of evaluating economic forecasts, a popular approach is
that of Nelson (1972) and Cooper and Nelson (1975). Their proposal reflects
the dissatisfaction with the use of some conventional error measures such as
root mean squared percentage errors (RMSEs %) and mean absolute percentage
errors (MAEs %) to rank economic forecasts. It is now generally agreed that
even a relatively inaccurate forecasting model could contain useful informa-
tion which is not shared by other competing models (Nelson, 1972). To find
out the forecasting abilities of competing models, the Nelson-Cooper.
procedure essentially uses the linear regression (1) as a benchmark and
examines the statistical significance of the estimated coefficients.

More recently, Chong and Hendry (1986) propose the concept-of
encompassing in forecasting as a basis for cross-model comparisons. The
statistical procedure consists of regressing the out-of-sample forecasting
errors from a particular model on a selected rival forecast series and
performing the encompassing test through a significance test of the forecast
series on the righthand side. In addition to Chong and Hendry's (1986)
procedure, we show below that the forecast-encompassing test between two
separate models can also be carried out in two alternative ways and that all
three methods are based on the combining regression (1) and its variant.

Economists and statisticians were skeptical about the method of
composite forecasts, when the idea was first introduced by the group under
Granger at the University of Nottingham about two decades ago (see the
discussions of Newbold and Granger (1974)). In view of mainstream
econometricians, the primary interest i{n modelling an economic system is to
understand the structural relationship. That is, they would be more
interested in developing the "true-structural model in a particular system.

Therefore, Diebold (1989) pointed out that "there is no role for forecast



combination within such a paradigm" (p. 590), because if the "true”
structural model can be constructed and verified then the "good” forecast
will follow automatically. However, today the principle of combining
forecasts has been increasingly accepted in the forecasting profession
(e.g., Bunn, 1989). The change reflects a view that the pooling approach is
pragmatic (Diebold, 1989; Winkler, 1989). Although aggregating information
sets is superior to aggregating forecasts, the aggregation of information
sets is either impossible or too costly. On the other hand, although
combining forecasts is inferior to aggregating information sets, combining
forecasts is easy to implement and thus practical.

As a result, most of the theoretical and empirical works on the pooling
approach are aimed at showing and demonstrating the superiority of the
composite forecasts over the individual forecasts under some optimal crit-
eria such as minimizing mean square error (MSE) criterion. In contrast, the
Nelson-Cooper and Chong-Hendry procedures use the combining regression (1)
and its variant to examine the forecasting ability of a particular model,
and then to assess whether the model suffers from misspecification. In
other words, from an econometric perspective, the combining regression (1)
is merely a tool which is mainly designed to examine the strength and
weakness of a particular model. Using (1), econometricians can test whether
a specification dominates others or suffers from misspecification. However
it is not the major concern to them whether the linear combination of
forecasts is helpful to achieve predictive accuracy.

The main purpose of this paper is to investigate the relationship ot
forecast encompassing to composite forecasts. In addition to the general
understanding that the combining regression is a useful tool for model-

specification searches, it shows that the test results based on the



forecast-encompassing principle can offer valuable insights on the choice of
forecasts in the combining regression. The focus is on evaluating separate
(non-nested) models for their relative forecasting ability and on treating
the encompassing principle (Mizon and Richard, 1986) as a unifying framework
to guide the selection of component forecasts in the combining regression.

It should be noted that Diebold (1989) deals with a similar issue in
his discussion of Clemen’'s (1989) paper. Nevertheless, his emphasis is on
the role of the combining regression as a hint for model-specification
searches but not the other way around. This paper is more general because
it argues that there exists a two-way interaction between forecast-encom-
passing principles and composite forecasts. More specifically, this paper
argues that on the one hand the combining regression is a useful tool for
model-specification searches; on the other hand the forecast-encompassing
principle offers valuable insights on the choice of forecasts in the
combining regression. Once the interaction is established, the complement-
ary role of the composite forecasts and forecast-encompassing principle can
be understood more clearly.

The organization of this paper is as follows. Section 2 summarizes the
main features of three forecast-encompassing test procedures and the rela-
tionships among them. Section 3 details the implementation of the Wald
tests associated with the forecast-encompassing tests. Section 4 compares
the finite sample performance of three tests using Monte-Carlo simulations
In Section 5 we compare the proposed forecast encompassing test procedures
with Davidson and MacKinnon’s J-test using aggregate U.S. consumption data
for 1929 through 1989. Section 6 studies the implications of the forecas:
encompassing test results and applies them to the issue of model-

specification searches in econometrics and choice of forecasts in composite



forecasts. Concluding remarks follow in Section 7.

2. Forecast-Encompassing Test
This section outlines Chong and Hendry'’s (1986) forecast-encompassing
test procedure and two other versions of the test. Consider the two linear

forecasting models with claimed formulations:

2
Hl' Y = Xla + Ul’ U1 ~ N(O,allT) (2)

2
H2. Y = Xzﬁ + UZ’ U2 ~ N(O,UZIT) (3)

where Y is an Tx1 vector of observations on the variable being forecast;

X1 and X2 are Txd1 and Txd2 full column rank matrices of observations

on explanatory variables; a and = are dlxl and dle vectors of

unknown parameters; and Ui (1 =1,2) is a Tx1 vector of normally,
independently and identically distributed random disturbance terms. The
normality assumptions are not essential since the test statistics are
asymptotic in nature and some version of the central limit theorem is to

work. X1 and X2 in general may share some common variables; however,

they are not nested within each other. That is, for the two hypotheses H1

and H2 to be separate, at least one column in Xl must be linearly

independent of columns in Xz, and vice versa. The issue here is to test

whether a maintained model can predict the performance of the other model.
Let flt and f2t denote two m-periods (m = 1,2,...) ahead forecast
series based on Hl and HZ’ respectively. Chong and Hendry (1986)

considers a simplified version of the combining regression (1):

Ye = Brfie + Bpfge + up ()

Then the forecast-encompassing test of Hl as the null is to test the null

hypothesis that ﬂl =1 and ﬂ2 = 0. This testing procedure shares the



spirit of Davidson and MacKinnon’'s (1981) J-test. The J-test tests the
significance of the least squares estimator of ﬂz in the following

regression:

Y = Xla + ﬁ2F2 + U,
where F2 - Xz(XéXZ)-IXéY is the fitted value of Y based on model H2.
However, there are two clear differences. First, we are computing model-
specific forecasts recursively, which makes more sense in the light of

forecasting. Second, the test of H, as the null hypothesis uses as one of

1
the regressors, its own predicted value f1t instead of Hl-specific
regressors X, .

It is worth noting that there are three alternative ways to implement
the test.

First, we can directly test the joint hypothesis that ﬂl =1 and ﬂz
= 0 wusing, for example, a Wald test. If the result is not significant,
then we cannot reject the null that model 1 encompasses model 2 in forecast;
otherwise, we reject the null. In the latter case, notice that model 2
forecasts are not encompassed in model 1. Accordingly it is logical for
researchers to extract information from f2 as well as from fl'

Second, we can test whether ﬂz = 0 in the combining regression of
(4). If model 2 forecasts do not provide additional information beyond that
already contained in model 1 forecasts, the estimate of ﬁz will not be
significantly different from 0. Intuitively, such an outcome implies that
if the combined forecast based on (4) has an error variance that is not
significantly smaller than that based only on fl’ then f2 appears to
provide no useful information beyond that already contained in fl’ and we

conclude that model 1 encompasses model 2 in forecast. This procedure was

used in Cooper and Nelson (1975) as well as in Fair and Shiller (1990).



Third, when ﬂl = 1 1is true, (4) is expressible as:

S P R T (3)
Therefore, given ﬂl = 1, whether the second forecast is capable of
explaining the errors in the first forecast can be tested statistically by
inspecting the significance of the coefficient ﬂz. If ﬂz is found to be
significantly (insignificantly) different from zero, then the null H1 is
rejected (not rejected) and model 1 forecasts are said to be incapable of
encompassing (capable of encompassing) model 2 forecasts. This is the
procedure proposed in Chong and Hendry (1986). Recent empirical studies
using this procedure in cross evaluations of macroeconometric models include
Fisher and Wallis (1990), and Charemza (1991). -

The second and third procedures are statistically different, even
though they share the same spirit of encompassing tes-ts.1 We would like to
point out the difference between the second and third procedures based on
equation (4). The probability of not rejecting the null under the second

procedure is:

Pr(g, e(-t*,t¥)], (6)
while the same probability under the third procedure is

Pr{p e(-t¥,t%) g, = 1], (7

with t* being a critical point of a t-distribution multiplied by a
standard error estimate of é2' Note that (6) is in the form of marginal

probability; (7) in the form of conditional probability.2 The conditional

lObviously, the first test is different from others in that it is a
joint hypothesis testing procedure.

2You might understand the probability statement on g from a Bayesian
perspective: probability based on Bayesian posterior on §B.



event ﬂl =1 in (7) implies that model 1 receives full weight in
predicting y, leaving smaller room for model 2's independent role. As a
result, conditional on ﬁl = 1, the event that ﬂz € (-t*, t*), that is,
that model 2 does not play a significant independent role in predicting y
is more likely. To sum up, the conditional prob (7) under the third testing
procedure of not rejecting the null tends to be higher than the marginal
prob (6) under the second procedure. Also, with regard to the role of Hl
and HZ’ it is worth noting that within the context of the second test
procedure they are treated in a symmetric way, implying that the same form
of regression equation (4) can be used in testing both le ﬂ2 =0 and H2:
ﬂl = 0. However, within the context of the third test procedure they are
treated in an asymmetric way, implying that in testing Hl against H2 we

use regression equation (5), while in testing H2 against Hl we should

use the following regression equation:

yt - f2t - ﬂlflt + ut (8)

By interchanging the roles of H1 and H2’ the forecast-encompassing

test of H2 against H1 can be carried out in exactly the same way.

3. Implement of the W es
To begin with, let us summarize each of the three test procedures

above. Based on the regression equation:

3
Ye = ﬁlflt + ﬁ2f2t + u, . t = co +m,...,T,

the first test is a joint hypothesis test of

HO: ﬂl =1 and ﬂ2 = 0.

3The reason why t runs from tyg t @ in equation (9) will be clear
the following section.



The second test is to test HO: ﬂz = 0 using the same equation (9). The

third one is to test HO: 52 = 0 based on the regression equation:

Ye - flt - ﬂ2f2t + u, t = tO +m,...,T. (10)

Under the null hypothesis that model 1 is the true model, but model 2
is not, the error term u in equation (9) is equal to that in equation

(10) for each t = to +m,..., T. The common u_ can be written as
ue = Ye -y (1)
When we are making m periods ahead forecasts, then f1t can be

written as

~t-m

flt - xit o (12)

~t-m . : :
where a is the least squares estimate of a in equation (2) using

observations 1 =1,...,t-m. Let

Yt -m =
(t-m)x1l

Ult-m =
(t-m)x1

Lult-m

)—1

.t-m ,
Then a = (X lt-m Yt-m
, -1
lt-m Xlet-m’

it-m xlt-m

-at X Xlt-m Ult-m'
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Therefore, under the null hypothesis, u_ can be written as

ue =y - e

_]_'

= xpetu -oxp fer@ X ) X U] (14)
-u,, - (x )'1 ' U
1t lt—m lt-m lt-m "1t-m
and
-1
Var(u ) = al[1+x (X1t . S m) xlt]' (15)

We notice that the variance of the "forecast error" u, is composed of two
parts: the variance of the "model error" u, and the variance reflecting
that the true model is estimated. If the value of Xq e does not change

much as t changes, we can reasonably approximate the variance of u_ as:

2 1
Var(ut) = oy(l + t-m)' (16)

Note that the variance resulting from estimation (approximated

2
o
as 1;%;) disappears as t increases, which is in line with the consistency

property of least squares estimators. However, for finite samples, the
forecast error u, shows heteroscedasticity.

For t > s, we can also compute the covariance between u_ and u_:

t
Cov(u.,u ) = o2x! (X! L [1-1 ]
t'Ys ¥ 1s lt-m 1t m X1t (t-m>s)
o2x! X' X ) o1 (17)
71%1 Kt nX1t-n)  *1el(1<t-s<m)

%x]'.s(xl't— X1t-m) -1xlt if 1st-s<m
if t-sznm,

0

where 1( ) is an indicator function taking value 1 if the condition
inside the parentheses is met, 0 otherwise. If m = 1, that is, 1if we

are making one-period ahead forecasts, then the forecast errors are

uncorrelated. If m > 1, then we have correlation among nearby forecast
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errors. But even in this case (m > 1), the correlation is expected to be
small. Note that if the value of X e is relatively stable over time and
if t is large, then both the heteroscedasticity and autocorrelation of
ut's disappear.

In applying the Wald test‘in the next section, we may consider three
types of variance estimates of the least squares estimators of ﬂl and ﬂz

in equations (9) and (10). Write the equations (9) and (10) in a general

matrix form
Y=X8+1U, (18)

where the errors are heteroscedastic and serially correlated up to order m-
1 with m the forecast horizon. Note that when we are making one-period
ahead forecasts (m=1), the errors are only heteroscedastic.

The conventional variance estimator of g, the least squares estimator

of B, is

Var(g) = (x'x) "1 &2 (19)
where

- U0
with U = (ﬁl,...,ﬁT)' the least squares residual vector; K the number of

regressors. The White's (1980) heteroscedasticity consistent variance

estimator of B 1is
— 1 a2, Lt -1
Var(g) = (X'X) 21 dfxex, | (X'X) (20)

where ﬁt is the t™" least squares residual and xé is the 1xk row

vector of tth explanatory variables.

The Newey and West (1987) variance estimator of ﬁ is

T T
~ - -1 . ] " a ’ '
Var(g) = (X'X) LZI “Extxc * vl 22 Ugle-1 (XeXp_) *Xe-1%X¢)
= ts
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T
N ! ! ' '1
AT S AU ég; Gelt-m+l (X tXpopa] *RXe-m+1Xe) (X X) (21)

where wj =1 - j=1,...,m-1. In the above formula, the term

31,

m
beginning with w, within the square bracket is introduced to capture the
jth serial correlation of the error terms, j = 1,...,m-1. By the form of
the weight function wj, we readily notice that higher order serial
correlations are receiving less and less attention. When m = 1, the
additional terms beyond Zz_l ﬁtxtxé drop and the estimator reduces to the
previous White heteroscedasticity consistent variance estimator. If we
treat each serial correlation symmetrically, we would like to make wj -1
for all j = 1,...,m-1. The resulting estimator was used by Fair and

Shiller (1990).

The null hypotheses of interest can be written in a general form as
Ho: AB = 0,
where matrix A has full row rank of q. Note that in the first test, q

= 2, and in the second and the third tests, q = 1. Under the null

hypothesis, the Wald test statistic
W = B'a’ [AVar(B)a’ |~ taB (20)

has an asymptotic Chi-square distribution with q degrees of freedom if the

-

variance estimator of 8 1is consistent.

4. Monte-Ca S lo)
To compare the performance of three different tests in finite samples,
we conducted a small simulation study

Data on y are generated according to the following scheme:

Ye = 90 + 0.x,  + 6,x v

171¢c %2t IyXpe YUy BT 1,...,T (21)
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where xj is uniformly distributed over [O,Ij], j =1,2,12 with Ej

chosen such that Var(Xj) - a?, that is, £j =-2/3 aj; u, is normally

distributed with mean 0 and variance 02; Xl' X2, X12 and U are
mutually independent.

Two non-nested models considered are

Hyt oy =g v X + X + Uy,

and

Hyt Yo = Yo * Y1%0e ¥ Y2¥12¢ ¥ Yot

(22)

(23)

by

By using observations t = 1,...,R, we can estimate &g, &T, &g
running OLS to model H,; %g, %?, %g by running OLS to model H,. Under

each model, the m period ahead forecast on y at time R can be obtained

as follows (see Liang and Ryu (1991)):

, R .R X
Hy: f1pem = % * %1%1R+m ¥ %2%12R+m’
and
H,: f - 3R +

2° Torem T Y0 Y Y1¥2R4m * *2%12R+m’

(24)

(25)

Let R start from t,. We readily notice that t, 2 3 is needed. We fix

0 0

ty = 5 1in our simulation study. Also, R s T-m is required.

Now let f1 and f2 be (T-m-t

+1) x 1 vectors of (

0 fiRem!

(£

2Rou'

respectively, each element of which is recursively obtained as R runs from

0

R=t, to R=T-m. Let Yp be the corresponding (T-m-to+1) x 1l sub-

vector of y. In terms of the combining regression
Yp - ﬂlfl + ﬂzfz + U

the null hypotheses that Hl

different forms under each of the three testing procedures:

is the true model takes the following three



14

L

Hy: By =1, B, = 0;
2-

Ho. ﬂz = 0;

H3' B, =0 diti 1 =1
o' By conditional on ﬂl .

In our simulation study, we consider three parameter settings:

setting A: o = 1, g, = 0;
setting B: o, = 1, g, = 1;
setting C: o = b, g, = L

Other parameters are common to all three settings: &, = 01 - 02 - 03 =1,

g

12 = l, o=1.

Under setting A, model H is in fact the true model, while under B

1

and C, model H, is not true and model H2 also contains a useful piece of

1

information which is not contained in Hl. Under setting B, model H1
deviates more from the true model than under setting C.

Sample size T = 25, 50, 100, 200, 500, (1,000 only for setting A)
forecast horizon m = 1, &4 and significance level a = 5%, 10% are consid-
ered. Random numbers are generated through RNDN for N(0,1) and RNDU for
uniform variables using GAUSS. Results are in Tables 1 through 6. These
tables show the number of rejections out of 1,000 replications. For m = 1,
we used two types of covariance estimates: the conventional one (C)
together with White’s heteroscedasticity consistent one (W). Note that
when m = 1, we do not have any serial correlation among forecast errors
under the null hypothesis. For m = 4, we used two additional covariance
estimates: heteroscedasticity and autocorrelation consistent covariance
estimates as used in Fair and Shiller (FS), and Newey-West (NW). Under

setting A, table entries are related to empirical sizes of tests, while
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25

50

100

200

500

1000

= 5%
10%
- 5%
10%
= 5%
10%
= 5%
10%
= 5%
10%
- 5%

10%

15

TABLE 1
Test 1
£ W
98 168
145 237
86 91
145 165
82 83
148 144
80 58
123 113
73 64
136 126
59 56
103 89

Test 2
£ W
82 128
134 187
87 87
147 157
82 69
133 123
74 63
133 124
66 59
127 120
61 51
101 91

Test 3
£ W
73 84
118 129
50 57
114 112
58 63
116 121
45 43
101 98
66 62
121 122
46 44
92 93
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25

50

100

200

500

1000

= 5%
10%
= 5%

10%

10
= 5%
10%
- 5%
10%
= 5%

10%

16

TABLE 2
=4
Test 1 Test 2 Test 3

Cc w_F M lc w_FS MW JC W FS N
180 280 339 371§ 147 209 263 252 1100 113 178 152
263 345 380 437 221 301 317 315 )165 295 240 221
123 143 225 159 98 113 137 122 83 81 113 97
192 202 290 237{ 177 183 216 192 J151 147 182 150
104 90 138 104 69 69 77 691 71 69 71 71
153 155 195 147 } 133 123 129 125 J117 115 133 121
87 83 96 76 | 101 91 84 85 72 66 60 69
164 154 155 146 f 172 150 169 155 J128 132 131 133
77 67 57 63 76 67 64 69 | 57 56 58 56
127 124 126 114§ 126 110 115 108 J126 126 115 127
79 72 66 69 56 58 50 55 ] 56 5S4 54 55
118 120 114 113§ 110 112 106 112 j116 110 116 114




Setting B, m =1
T =25 - 5%
10%
T = 50 = 5%
10%
T = 100 - 5%
10%
T = 200 =- 5%
10%
T - 500 - 5%
10%
T - 1000 5%

10%

17

TABLE 3
—Test 1 Test 2
-Cc _V —C _W
637 742 700 762
720 800 765 814
883 915 916 932
916 935 948 954
991 991 995 994
995 993 998 995
1000 999 1000 1000
1000 1000 1000 1000
1000 1000 1000 1000
1000 1000 1000 1000
1000 1000 1000 1000
1000 1000 1000 1000

Test 3

< _¥
82 93
141 167
90 105
151 - 163
149 156
231 242
294 309
418 433
690 707
792 799
913 915
953 956
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TABLE 4
Setting B, m =4
Test 1 Test 2 Test 3

¢ W _FS  NWw p C W _ _F5 _NW ) C W FS NI

- 25 a = 5% 595 722 549 775Q) 632 727 670 753 §120 136 198 185
10% 671 786 569 823 727 795 718 801 J 193 212 1277 256

= 50 a = 5% 881 920 881 933 903 926 911 922 §158 163 172 162
10% 917 943 893 940 934 940 935 945232 253 237 226

= 100 a - 5% 994 993 986 990 999 994 993 995173 176 181 177
10% 998 994 997 99731000 997 995 997 247 259 271 256

=- 200 a = 5% J1000 1000 999 999 31 1000 1000 1000 1000 §329 337 331 329
108 J1000 1000 1000 1000 § 1000 1000 1000 1000 §431 449 435 433

= 500 a = 5% [1000 1000 1000 10003 1000 1000 1000 1000 671 680 667 674
10 #1000 1000 1000 10009 1000 1000 1000 1000 §784 795 778 789



ett C m

T = 100

T = 200

T = 500

10%

10%

10%

10%

10%
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TABLE 5
Test 1
< W
398 489
486 587
591 632
689 717
852 855
903 907
982 978
990 987
1000 999
1000 1000

Test 2
€ W
419 502
523 589
665 674
752 768
891 893
938 937
988 985
992 992
1000 1000
1000 1000

_ _Test 3
< W
71 88
116 141
67 70
108 114
70 66
132 135
100 106
160 160
136 190
280 282



Setting C.. m =24
T =25 a = 5%
10%
T =150 a = 5%
10s
T =~ 100 a - 5%
10%
T = 200 a = 5%
10s
T = 500 a = 5%

10%

TABLE 6

_Test 1 _Test 2 - Test 3
_LL_FL_&_LL_ES__NL_L_W_EL&
400 514 493 615 | 407 496 518 5390103 123 185 175
495 591 531 681 | s02 571 592 615 (173 199 243 223
575 634 684 693 | 651 692 704 683] 96 101 141 115
685 735 740 754 732 754 770 775 | 167 169 180 167
807 847 836 847 | ses 861 873 3867 HlOl 100 97 97
891 903 887 893 899 911 905 907 158 172 148 154
983 975 973 972 996 989 988 989 | 93 87 89 85
994 991 986 937 999 998 993 997 §143 145 141 133
1000 998 998 997 1000 998 996 999 163 167 165 167
11000 1000 999 993 1000 1000 999 999 261 263 261 265



under settings B and C, table entries are related to empirical power.

As the sample size T increases, the empirical size approaches the
hypothesized nominal size «. But the differences between the empirical
size and nominal size are quite huge even for T = 200. 1In general, the
discrepancy is bigger for m = 4 than for m = 14, and is bigger for
tests 1, 2 than for test 3. In Table 1, using White'’s heteroscedasticity
consistent covariance estimator (W) does not always improve the finite
sample approximation using the conventional formula (C). In fact, until
the sample size reaches T = 100, W has shown even poorer performances,
But as we expect, as the sample size increases, W offers a better
approximation than C.

In Table 2, neither FS nor NW offers a better approximation than W.
In fact, both FS and NW have shown even poorer performance until the sample
size reaches T = 200. Even for T = 500, 1000, we could not see any
significant improvement of FS or NW over W. Regarding the relationship
between C and W, the same pattern is observed as in Table 1: W is
worse than C until the sample size reaches T = 100. After that, W
outperforms C. In Tables 3 and 5, using W gives higher power than using
C. But this may simply reflect that the size of the test using W is
inflated in small sample sizes (see Table 1). In Tables 4 and 5 note that
using NW offers much higher power than using FS. Even though sizes of tests
using FS and NW have both inflated by about the same rate, NW offers much
higher power.

Also as T increases, empirical power increases for all three tests.

But the empirical power of test 3 is extremely lower than that of tests 1

aThis may reflect the fact that when m = 4 the forecast errors are
autocorrelated as well as heteroscedastic, while when m = 1 the forecast
errors are only heteroscedastic. See Section 3 above.
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and 2, which is consistent with our earlier explanations. Considering size

and power together, we would choose tests 1, 2 over test 3.

5. Applications to the Choice of Consumption Function
Gaver and Geisel (1974) propose two forms of a consumption function
Hys Cpo= By + Bp¥e + ByCey + Upe

and

Hyt Co=vp ¥ ¥ + 1% + Upe
where Ct is the real aggregate consumption in year t, and Yt is the
real aggregate income in the same year. Model Hl implies that the effects
of changes in income on consumption persist for many years, while model H2
implies that consumption responds to changes in income only over two years.

Using aggregate U.S. data for 1929 through 1989, we performed each of
the three proposed forecast encompassing tests. For each test, we used four
different variance estimators: conventional, White'’s, Fair and Shiller’s,
and Newey and West's. For comparison purposes, we also carried out Davidson
and MacKinnon’'s J-test. The encompassing test results are summarized in
Table 7.

Our proposed encompassing tests cannot reject the null model of H1 at
a = 5% significance level. Even at a = 10% significance level, we cannot
reject the null model of H, except for two cases. On the other hand, we

1

always reject the null model of H at a = 5% significance level. Based

2
on our encompassing test results, ve clearly select model H1 over H2 and
conclude that in the U.S. aggregate consumption behavior changes in income
affect consumption over many periods

The results of Davidson and MacKinnon's J-test are as follows:
*

*
Hl against H2: t-value = 8.3



IH against H

:w against H

NOTE:

TABLE 7

Test 1 ﬁ Test 2 Test 3
C _V FS _Nw C _v FS N _ c " FS = _NW
2
m=1 4. 7% 4.2 4.2 4.2 1.4 1.6 1.6 1.6 . 3.3% 2.4 2.4 2.4
m= 4 3.2 4.1 1.4 1.9 0.9 1.1 0.4 0.5 2.3 2.2 0.6 0.8

1

m=1 §31.2%k 26.3%% 26.3%k 26.3%k| 6.1%% 6.7k 6. Thkk 6. 7%k [23. 3k 21 Sk* 21.5%% 21, 5%*
m =4 §36.1%% 50.6%% 17.8%% 24 1xx [ 16.4%% 22 0kk 6.8k% 9 9ux |15 Sex 20 7% 4 Twe 7.0%%

(1)
(2)
(3)

(4)

(5)

(6)

All three tests are to be evaluated according to chi-square distribution.
The degrees of freedom are 2, 1, and 1 for Test 1, 2, 3, respectively.
C = using conventional variance formula
VW = using White’'s heteroscedasticity consistent variance formula
FS = using heteroscedasticity and autocorrelation consistent variance formula as in Farr and Shiller
NW = using heteroscedasticity and autocorrelation consistent variance formula as in Newey and West.
m=1: 1l-period ahead forecast
m = 4: 4-period ahead forecast
Hyt G =B+ BYe +ByCe 1 + Uy,
Hat Ce = Mo * 1Y + 1Yy * Uy,
*: significant at o = 10%
**: significant at a = 5%.
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*k
H2 against Hl t-value = 11.4

The J-test rejects both null models, and thus is not able to suggest a

single model.

6. Implications of the Forecast-Encompassing Test Results

The above analysis can be regarded as applying to a situation where
economists are seeking to discriminate between two competing forecasting
formulas such as (2) and (3) in Section 2. It investigates if there is a
significant contribution of f2 to predictive power after controlling for
fl' In this sense, Hl or f1 is tested against H2 or f2. The problem
is analogous to comparing two non-nested specifications in econometrics
(McAleer, 1987), and the choice of alternative hypothesis plays a critical
role because it affects the power of the test when the null is not valid
(Chong and Hendry, 1986). When the roles of Hl and H2 are symmetrically
considered, four outcomes are possible (see Table 8): (i) reject neither
Hl nor H2;
reject H2, but reject Hl; and (iv) reject both Hl and HZ'

(1i) do not reject H but reject H2; (iii) do not

1’
Accordingly, it is possible to accept both forecasting formulas or to reject
both. Only in cases (ii) and (iii), is it possible to discriminate between
the two rival formulas.

The four possible outcomes we have mentioned lead to some rather
valuable insights on cross-model evaluations in econometrics and modelling
strategy in composite forecasts. From an econometrics perspective, a
failure to achieve encompassing acknowledges the possibility of an
incomplete model (Hendry, 1983; HendFy and Richard, 1983), thereby time tis
better spent improving the model specifications. Conversely, an ability to

achieve encompassing recognizes that the encompassing model is satisfactoryv



Outcomes and Conclusions of the Pairwise Forecast-Encompassing Test

Hypothesi

S

H

2
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TABLE 8

Hypothesis H1

Do not reject Hl

Reject H

Do not reject H

Reject H

2

2

(1)

(ii)

Reject neither

H1 nor H2

Do not reject

Hl’ but reject H2

(iii)

(iv)

Do not reject
H2,

Reject both

H

1

but reject H

and H

2

1
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at least at the current stage. According to Table 7, when model 1 serves as
the null and model 2 as the alternative, outcomes (iii) and (iv) acknowledge
the possibility that model 1 is misspecified, implying that a better model
can be constructed (Chong and Hendry, 1986). On the other hand, outcome
(ii) admits that model 1 stands up to the forecast-encompassing criterion.
Outcome (i) suggests that both models are consistent with the data, implying
that the informational contents of both models are about the same.

In the case of composite forecasts, a failure to achieve encompassing
suggests that the strategy of combining forecasts is justified (Hallman and
Kamstra, 1989; Fair and Shiller, 1990). On the other hand, an ability to
achieve encompassing offers a logical reason that researchers may concentrate
on the forecast which dominates others (Granger, 1989). In this sense, an
ability or a failure to achieve encompassing provides researchers a useful
guide to resolve an important but generally neglected issue in the literature
of composite forecasts: that is, under what conditions is combining most
useful (Armstrong, 1989)? Clearly, if a model encompasses others in
forecast, then using a combination of forecasts will not achieve significant
information gain. In this case, a single best model alone is capable of
forecasting the variable of interest "significantly well,” and therefore it
is unnecessary to consider other models. On the other hand, should we end up
rejecting both Hl and H2 (outcome (iv)), it is implied that a composite
forecast containing both f1 and f2 can outperform each of the two
individual forecasts. In this situation, the sample is not entirely
consistent with Hl or H2 individually. Therefore, a pragmatic attempt
would be to use the artificial combining regression (4) to obtain a better

description of the data than does either individual forecast. Fisher and

McAleer (1979) provide an analogous argument on this aspect in a non-nested
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hypothesis testing context. Liang and Ryu (1991) provide a constructive way
of dealing with the combining regression like equation (4).

In sum, outcome (iv) suggests that both model 1 and model 2 forecasts
contain useful information that are capable of generating a composite
forecast with smaller forecasting error than does either f1 or f2.
Outcomes (ii) and (iii) acknowledge that using f1 or f2 alone is
sufficient to generate forecasts of Y with "almost" the same degree of
accuracy as both f1 and f2 combined, implying that it is not worthwhile
pursuing a combining strategy in either case. Finally, outcome (i) suggests

that f1 and f, are highly co-linear, accordingly, there is insufficient

2
information to discriminate between the two forecasts. 1In this-
circumstance, ﬂl and ﬂ2 in (4) may not be separately identified
(Kennedy, 1989; Fair and Shiller, 1990). This coincides with the case of

unstable combining weights in the literature of composite forecasts (e.g.,

Kang, 1986).

7. Concluding Remarks

The development of the method of the combining regression and its
application to economics has led to comparisons among the forecasting
abilities of rival models. Using the forecast-encompassing principle, it is
possible to test whether one specification dominates others. On the other
hand, a great number of theoretical and empirical works in forecasting have
shown and demonstrated the superiority of the composite forecasts over
individual forecasts under some criteria.

This paper examines the role of forecast-encompassing principles in
model-specification searches through the use of linear composite forecasts.
In this way the approach has similarities to non-nested hypotheses testing

in econometrics. Based on the outcomes and conclusions of the pairwise
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forecast-encompassing tests, this paper also outlines a conceptual framework
to provide some useful insights on cross-model evaluations in econometrics
and the selection of predictors in composite forecasts. The conventional
wisdom focuses on the former aspect but not the latter. Once the two-way
interaction is established, the complementary role of composite forecasts
and the forecast-encompassing principle can be clearly presented.

Overall, the contribution of this paper is twofold. First, it
clarifies the complementary role of the forecast-encompassing principle and
composite forecasts. Second, it studies the relationship of forecast-
encompassing principles to composite forecasts and provides three different
ways of performing the encompassing test. Test outcomes guide researchers
to choose component forecasts and thus to avoid blind pooling in the
combining regression. Given the wide advocacy of the combining forecasts
and the advent of inexpensive forecasting software for personal computers,
clearly this is an important issue; it is, however, an issue that has been

rather neglected.
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