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ABSTRACT

Due to a discrete observation scheme, many duration variables are available only up
to an interval, and not up to an exact point. The proportional hazard model is the most
widely used continuous time duration models. Interval observations cause several difficul-
ties in applying Cox’s partial maximum likelihood estimation method to the proportional
hazard model. First, two different death times reported to fall into the same interval are
observationally equivalent. In Cox’s procedure, there is no natural way of handling ties.
Second, the nuisance part of the baseline hazard rate cannot be conditioned out of the
estimation process. This paper develops semni-parametric minimum Chi-square estimators
of the proportional hazard model for the case when durations are grouped and covariates
are categorical. This paper also suggests simple specification tests. Monte Carlo simu-
lations demonstrate the performance of the proposed estimators and the size and power
properties of the proposed specification tests.

Unemployment duration, for example, is at most known only up to an interval of a
week. To identify factors affecting the unemployment duration, the proportional hazard
model has often been used. Hence, in an unemployment duration analysis, we face a sit-
uation with discrete data and a continuous model. If a worker’s observed characteristics
can be captured as a set of categorical covariates, an application of Berkson’s minimum
Chi-square estimation to the grouped unemployment data yields a computationally simple
estimator which is asymptotically as efficient as the maximum likelihood estimator. By
comparing the two sets of minimum Chi-square estimators, one from the original grouped
data set and the other from a fgrther grouped data set, we can test whether the propor-
tionality assumption holds. Under proportionality, the two estimators should converge to
the same quantity; however, if proportionality is violated, they should converge to different
quantities.

KEY WORDS: Minimum Chi-square estimation; Semi-parametric estimation; Seem-
ingly Unrelated Regressions; Hausman's specification test; Binary choice model; Partial

maximum likelihood estimation.



1. INTRODUCTION

Many duration variables are often reported to fall within some intervals, and not
up to exact points, due to a discrete observation scheme. Unemployment duration, for
example, is at most known only up to an interval of length I=one week. However, the
underlying model often assumes a continuous time framework, in which the underlying
duration variable can take any continuous non-negative real value. Hence, in duration

analysis, we face a situation with discrete data and a continuous model.

The proportional hazard model (PHM) is one of the most widely used continuous time

duration models (Cox 1972, 1975, Cox and Oakes 1984, Kalbfleisch and Prentice 1980).

Under PHM, the hazard rate of a duration is specified as a product of two separate terms:
the baseline hazard describing the overall shape of the hazard rate over time, and the
proportionality factor capturing the covariate (regression) effects on hazard rates across
different individuals. Cox developed a semi-parametric estimation technique which can
identify the covariate effects efficiently without specifying the functional form of the base-
line hazard. This nuisance part of the baseline hazard is conditioned out of the estimation
process in his suggested estimation procedure. One can condition the baseline hazard out
of the estimation process if one knows who and how many were at risk at each moment in

time. This estimation is called partial maximum likelihood estimation (PMLE), since the

maximand of PMLE is equivalent to the likelihood contribution of only the relative ranks

of durations on the regression coefficients.

Interval observations render it impossible to apply Cox’s PMLE to his PHM. First. too
many ties arise. Two death times reported to fall into the same interval are observationally
equivalent. In the PMLE procedure, there is no natural way of handling ties. This problem
becomes more severe as the interval length ! becomes wider. Second, since we do not know
the exact death time, we cannot condition the nuisance part of the baseline hazard rate out
of the estimation process unless it is constant across each interval in the observation scheme
In addition, we are often interested in the changing pattern of the baseline hazard ver
time as well as in the regression coefficients. In this regard, positive and negative duration

dependence mean increasing and decreasing baseline hazard function, respectively.
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We call PHM parametric or semi-parametric, respectively, depending on whether the
baseline hazard is parametrically specified or not. Of course, we need a parametric specifi-
cation regarding the proportionality factor. Grouped duration can be viewed as a sequence
of independent binary dependent variables indicating whether the duration survives each
interval or not. By constructing a set of synthetic binary data treating each combination
(individual, interval) as a new unit of indexing, we can reduce a grouped duration analysis
to a binary choice analysis. Here, PHM implies a certain functional form for the binary
choice probabilities. If we have many observations for each value of the covariate vector

(often called, many observations per cell), application of Berkson’s minimum Chi-square

estimation yields a computationally simple estimator which is asymptotically as efficient
as the maximum likelihood estimator. In this paper, we fully develop the minimum Chi-
square estimation of PHM when the duration data are grouped and the covariates are
categorical. By comparing the two sets of minimum chi-square estimators, one from the
original grouped data

set and the other from a further grouped data set, we also develop simple specification
tests of PHM. Under PHM, the two estimators converge to the same quantity; however,
if proportionality is violated, they converge to different quantities. The suggested tests
are easy to use and can take alternative hypotheses into account. Using Monte-carlo
simulations, we illustrate the performance of the semi-parametric minimum Chi-square
estimators and the size and power properties of the proposed specification tests.

The rest of the paper is organized as follows. In section 2, after setting up a framework
for discussion, a relationship between group duration analysis and binary choice analysis 1s
shown. Estimation and identification issues are discussed in section 3. Section 4 develops
the minimum Chi-square estimation of PHM when durations are grouped and covariates
are categorical. Simple specification tests of PHM are developed in sections 5 and 6.
Through Monte-carlo simulations in section 7, the performance of the proposed estimators
and the size and power

properties of the proposed tests are reported. Concluding remarks follow in section 8.
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2. FRAMEWORK, RELATION BETWEEN GROUP
DURATION AND BINARY CHOICE

First, let us introduce a framework for further discussion. Let T' € RY represent a
duration variable of interest. Let A(t,z) = ho(t) exp(z3) be the hazard rate of the duration
T, where z is an 1 x k vector of covariates, and 3 a k x 1 vector of regression coefficients.

Quite often, the discrete observation scheme can be represented as an equi-spaced
partition Q of the support R*: @ = {0,1, 217-0-,rl,oo}. The underlying observation
process can be regarded as follows: the experiment is conducted starting at £t = 0 until
t = rl, where each sample is recorded at each time point jl, j = 1,---,7. Under this
observation scheme, the researcher keeps a record of the objects’ status at every [ time
units, until time r{ elapses. Let I = [0,0),--, I, = [(r — 1)I,rl), Ir+1 = [rl, 00). Under the
observation scheme Q, we have r non-right-censored intervals Iy, -, I, an_d a single right-
censored interval I,;,. For each observation falling within a non-right-censored interval,
we know its duration up to an interval of length I; for each observation falling within
the right-censored interval, we only know that its duration exceeds a certain lower bound
(here, ri).

In the sequel, we will assume, for expositional simplicity, that [ =1 and r = 2. The
resulting observation scheme is @ = {0,1,2,00}. Here, I = [0,1) and I, = [1,2) are two
non-right-censored intervals. I3 = [2,00) is the single right-censored interval. Durations
are available only up intervals I, Iz, and I5. Let a; be the probability that the duration T
survives interval I;, and let a; be the conditional probability that T survives I conditional
on that it has already survived I;. Then by the above proportional hazard assumption.

we have
oy =exp|- /0 it 2) df
= exp[—exp(zf + 1))
and
2
o = exp[— /1 h(t, ) di]
= exp[— exp(z8 + 712)]
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where .
v =logl [ holt) )
and
2
va = log] [ ho(t) ]
These formulas are originally available in Prentice and Gloeckler (1978).
To take into account observed heterogeneity among individual duration variables, let
; index each different observation. Assume that observations are independent. When we
have n observations, i takes on an integer value from 1 through n. Accordingly, define T;
as the ith duration variable, z; as the 1 x k covariate vector of individual z, ay; and ay; as
a;, ag, respectively, evaluated at ¢ = z;, dy; = 1 if T; survives I, dy; = 0 otherwise, and
dp; = 1 if T; survives I, conditional on dy; = 1, dg; =0 otherwise. Under the observation
scheme Q, the ith observation can be summarized as a triple (z;, d1;,d2;), where dy; and

dg; are two (r=number of non-right-censored intervals in Q) binary dependent variables

indicating whether the individual survives the first and the second interval, respectively.

A grouped duration can be considered as a sequence of binary dependent variables.
The effective number of terms in the sequence varies depending on whether the individual
dies during the first interval or not. Note that d,;’s are meaningfully defined only for
those which have survived the first interval I;. By constructing a synthetic binary data set
treating each combination (individual, interval) as a new unit of indexing, we can reduce a
grouped duration analysis to a binary choice analysis (Kiefer 1988, Prentice and Gloeckler
1978, Sueyoshi 1991, Thompson 1977). For each combination (interval, individual), a
survivor of the jth interval independently receives the probability a; = F(zpB+4+;)if he or
she has covariate vector z, where F(:) is defined by F(y) = exp(—exp(y)). The range of
F(-) is between zero and one, satisfying a necessary condition to be a probability. Recall
that in Logit binary choice model, F(-) takes the form F(y) = 1/(1 + exp(y)). In fact,
Thompson (1977) adopted this parametrization to make group duration analysis directly
comparable to Logit analysis. '

Under Thompson's specification, we have

l-aj

J

log =zB +7;;



while here under PHM, we have

log(—logaj) =z + ;.

The two specifications require quite different transformations of a; on the left hand side to
obtain linear regression type equations. However, if a; is near one, both transformations

are approximately equal
l-a« j

— ~ —log a;.
a; _

If the interval length is small and thus if the corresponding interval survival probability
a; is near one, group duration analysis of PHM can be carried out through Logit analysis
simply by defining the afore-mentioned synthetic binary data set. On the other hand, if
the group interval is rather wide and the interval survival probability is quite different from
one, we need to use a; = F(zf + ;) with F(y) = exp(—exp(y)). Instead, if we use the
Logistic counterpart for group duration analysis of PHM, interpretation of the coefficient
$ becomes ambiguous, bearing no relation

with the underlying PHM.
3. ESTIMATION AND IDENTIFICATION ISSUES

Without making a parametric functional form assumption on the baseline hazard
ho(-), we can still estimate the integrated baseline hazard over each of these r non-right-
censored intervals (here, r = 2). In our simplified setting, we are able to estimate v; and
2, or equivalently exp(y1) = _]: ho(t)dt and exp(y2) = ff ho(t) dt. This means that we
can approximate the unknown functional form of ho(-) up to a step function with two
different values (in general, a step function with r different values, insofar as r is either
finite or increasing at a rate slower than the number of observations.). This is called a
semi-parametric estimation of PHM.

Once we parameterize ho(-) using m free parameters, we have a fully parametric

duration model. One natural selection is

ho(t) = exp(ag + ayt +--- + am-1t™"1).

3



The exponential distribution is an example with m = 1. If the number m of free parame-
ters is equal to the number r of non-right-censored intervals (in our example, r = 2). then
both the non-parametric and parametric baseline specifications would yield the same re-
sults. This is because of the invariance property of the extremum estimators (estimators
defined as the arguments either maximizing or minimizing a certain objective function:
for instance, maximum likelihood, least squares, or minimum Chi-square estimators). If
m is greater than r, we are not able to identify all these m parameters from grouped
duration data with only r non-right-censored intervals. We can only identify r restrictions
on m parameters, since the baseline parameters enter only the likelihood function through
Y1,+++,9r. On the other hand, if m is smaller than r, then we are virtually imposing r —m
parametric restrictions on these r integrated baseline hazard rates. For identification of the
parametric baseline hazard function, we readily note that the number m of free parameters
in the baseline hazard function should not exceed the number r of non-right-censored inter-
vals in the data set (m < r). When the two numbers are equal (m = r), both parametric

and non-parametric baseline hazard specifications result in the same duration model.

Many authors have stated that a grouped duration analysis without a parametric
baseline hazard specification can be thought of as a fully non-parametric procedure with
respect to the baseline hazard estimation (Han and Hausman 1990, Moffitt 1985, Sueyoshi
1991). However, this type of procedure is conceptually quite different from the type implied

by the conventional usage of the term non — parametrics. Note that in grouped duration

analyses, the primary concern is with estimating the integrated baseline hazard rates over
each of r non-right-censored intervals, and not the baseline hazard function itself. Of
course, if r increases at a certain rate with a compensating decrease in the interval length
[ as the sample size n increases, then we can apply a standard non-parametric argument
to show the consistency of even the baseline hazard function itself.

However, in most grouped duration analyses, the number r of intervals and the n
terval size [ are often fixed by an exogenous observation scheme. In this case, we do not
have freedom in choosing finer and finer intervals as the sample size becomes larger In
conventional non-parametrics, we can reduce the band-width (which is equivalent to our

interval length [) at a certain rate as the sample size increases.
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When the nature of grouped duration data is given by an exogenous observation
scheme, we should admit that we can only identify the baseline hazard up to integration
over each of the non-right-censored intervals in the observation scheme. In this case, we
have virtually the same duration model whether we model the baseline hazard function
parametrically or not, insofar as the number m of free parameters in the parametric baseline

hazard function is equal to the number r of non-right-censored intervals.

4. MINIMUM CHI-SQUARE ESTIMATION
OF GROUPED DURATION MODEL

The minimum Chi-square method in the context of the binary choice model was first
proposed by Berkson (1944) for Logit analysis, but can be used for any binary choice model.
Since a grouped duration analysis can be reduced to a binary choice analysis as we have
seen, we may consider applying the minimum Chi-square estimation to grouped duration
analyses. However, this estimator can be defined only when there are many observations
for each value of the covariate vector. Often it is described as many observations per cell.
A cell is defined as a distinct vector value of covariates. This situation will naturally occur

if the nature of covariates is either categorical or otherwise somehow aggregated.

Let me continue to use our simplified set-up to illustrate this estimation method.
Suppose that the covariate vector z; takes on g distinct vector values z(y), -+, Z(g)- Let us
classify the integers (indices of observations) N = {1,---,n} into g disjoint sets Ny,---, Ny
such that i € N; if z; = z(j), ¢ = 1,---,n, ) =1,---,9. Note that Nj; is a set of indices
whose covariates are equal to z(;). Let us divide the integers in N; into those in Nj, and
those not in Ny; such that i € Ny if1 € .V, and if dy; = 1. That is, those in NNy; are those
which have covariates equal to z(;) and which have survived the first interval ;. Further,
divide the integers in N;; into those which have survived the second interval as well and
those which have not: i € Ny; if i € Vi, and if dyi = 1. Let nj,nyj, and ng; be the
sizes of Nj, Nyj, and N3j, respectively. F;)r each group j = 1,-,g, we can estimate each
interval survival probability, @, ; or ag;, through the relative frequency of those which have

survived the corresponding interval. Let &), and &3; be those estimators: &y = ny,/ny.



and let &z; = ngj/ni; (assuming ny; # 0). Note that {G;;,d9;}7, constitute a set of
sufficient statistics for the model. In the following discussion, we shall write z(;) as z; for
notational convenience.

Under PHM, interval survival probabilities a;; and az; can be written as

ayj = F(z;B+m)

and

azj = F(z;8 + 72)

where F(-) is defined as F(z) = e*"; 11 = log[ [, ho(t) dt]; 72 = log[ fZ ho(t) dt]. Note
that the proportional hazard assumption results in the same 3 in both a;; and ay;. If the
proportionality assumption is violated, the 3 in a;; will be in general different from the
B in az;. Here, we are not going to assume any functional form for the baseline hazard
ho(+), leaving v; and v, as two free parameters. Since F(-) is one-to-one, we can invert the

relationship to obtain

F Y ayj)=z;8+m (4.1)
and
F~lazj) =z;B+72 (4.2)
where F~1(z) = log[— log(z)].
By expanding F~1(é;) = log[— log(é1;)] and F~!(éq;) = log[—log(éz;)] in a Taylor

series around the true a;; and a3j, we obtain

log[—log(én;)] = z;B8 + 1 + w1; (43
and

log[— log(&2;)] = z;8 + 72 + u2; (44

where u1; and uy; are defined by

_OF ;)

Uy = l =
J 80:1,- alj-QIJ'

1 .
=——=(61; — 1)
Q5 108(0‘11')( ! !

(@1 — a1j)
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and OF(as;)
97 (o)
Uz 00!2]' |°’2;‘=0;,~(

1 .
0‘5,' 108(“3,‘)( 2 24)

Gigj — az;)

with af; and a3; lying between &, and ay;, between a3 and asj, respectively.

Under the condition that &;; is consistent, we can easily show that wu;; —
mlz(-;u—)(&lj — ayj) is O(n}'l) and hence u;; can be treated as m(&u - ay;)
for large n;. Similarly, under the condition that d&; is consistent, uz; can be treated as
m(&gj — agj) for large nyj. For a detailed discussion on this kind of asymptotic
equivalence, see Amemiya (1985, sec. 9.2.5).

The &;;’s are uncorrelated across j since they are computed from different sets of
observations. The first interval survival probability &;; has variance a1;(1 — a1;)/nj, j =
1,---,g. The &z;’s are also uncorrelated across j- And é;; has variance azj(1 — azj)/n;j,
conditional on nyj, j = 1,-,g. These variances can be consistently estimated by replacing
the true unknown quantities a;; and ag; by their corresponding estimates. Also, we can
show that the &;; and the &2; are uncorrelated.

Therefore, the above two equations (4.3) and (4.4) comprise a system of

seemingly unrelated regressions (SUR) with heteroscedastic variances. Note that the same

regression coefficient 3 appears in both equations. The minimum Chi-square estimator of
(8,71, 72) is the weighted least squares estimator applied simultaneously to the above two
equations. This estimator has the same asymptotic distribution as the maximum likeli-
hood estimator, provided that each group size goes to infinity as the sample size increases,
and that the probability of dying in each interval (each I; and I;) and in each cell (each
j=1,---,g) is bounded away from both zero and one in a neighborhood of the true pa-
rameter values (Amemiya 1985). Note that without the bounds on the death probability,
the inverse probability transformation in (4.1), (4.2) is not well-defined.

Using matrix notation, these two equations can be written as
1 =260+ uw (4.5)

and

y2 = 203 + uz (4.6)
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where y1, = (log[—log(éu1]), -, log[—log(d15)])'s 61 = (8" : M), wx = (w11, urg)
Y2, 02, uy are similarly defined, and Z = (X : l) with X = (z},--+,2y) and I = (1,---,1).

Let 2, be the variance of u; evaluated at &;;. Similar definitions also apply to 2, therefore

1- &

Ql = dxag[

g
n;é j(log &1;)? Ji=1

and

o 1 - &2] ]
QZ - dlag[nlj&2j(log d2j)2]j=l,

where diag[g;]]_, meansa g X g diagonal matrix having g; as the (j, j)th element.
Further, we can combine these two equations (4.5) and (4.6) into a single equation

system

= X: 1: 0
Z‘(x: 0: z)

with 0 a ¢ x 1 vector of zeros, § = (8’ : v1 : 72)', and U = (u} : uh)'. Note that the error

where 7 = (y; : y3)'; and Z is

term ¥ is heteroscedastic. The variance matrix of @ can be consistently estimated by
ﬁ = dl&g [Ql : Qg] .

The minimum Chi-square estimator is obtained from the weighted least squares ap-

plied to the above equation system

i=(Z0 270 '§=6+(2Z0 2)7'Z0 = (4.8)
And its variance can be consistently estimated by
e XX + XX Xert X'\ T
Var(®)=(ZQ Z)™' = rovtx ot 0 (4.9)
ro;tx 0 st

By using an inverse formula for partitioned matrices (see for example, Amemiya 1985.

p. 460), we can separate the regression coefBicient estimator 3 out of 9

B =[(Ci+ C)X]" (Ciyr + Cay2) (4.10)
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with C; (j = 1,2) defined as
Ci =X'Q; I, - ('Q;7 )7, (4.11)
Note that C;l =0, j =1,2. Therefore, B can be written as
B =8+ [(Cy + C2)X]|"}(Cruy + Cauz). (4.12)

Also note that C1Q,C} = C; X and C29;C; = C;X. Using this, the variance estimator of

3 can be easily derived as

Var(8) = [(Ci + C2)X] ™, (4.13)

which is the k x k upper-left corner of the Var(?) matrix. _
Once we sort ﬁ out of 5, it is straightforward to fill in the rest: deriving the formulas

for 4, and 43, their variances, and the covariances among 1, ¥2, and A. They are:
§; = ) y; - XB), =12
Var(3;) =('Q;'H)™ + Q)T XVar(B)X'Q5M, 5 =1,2;
Cov(31,32) =('Q D) ('R )T X Var(B) X057,
Cov(4;,8) = — ('R )~'Q; XVar(B), j =1,2
Note that
Cov(i1,42) = COU(‘%,ﬂA)VaT(ﬂA)—ICW(ﬁ,‘?z),

which implies that the correlation between 4, and 9, comes only and indirectly through

their correlations with B In other words, given 3 fixed, 4, and 4, are uncorrelated.

5. SPECIFICATION TESTS OF THE PROPORTIONAL HAZARD
ASSUMPTION: OVERVIEW, THEORETICAL BACKGROUND

The immense popularity of PHM has made the issue of model checking extremely
important. Many ways have been developed for testing for the proportionality assumption

(see among others, Lin 1991, Sueyoshi 1991).
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Lin (1991) devised a test for the proportional hazard assumption by comparing
weighted and non-weighted score estimators in a continuous time/continuous data con-
text. His non-weighted score function is simply the first derivative of the Cox partial
log-likelihood function with respect to the regression parameters. If the proportional haz-
ard assumption holds, then the non-weighted score estimator which is obtained by setting
the score function equal to zero is the most efficient, consistent estimator. This estimator
is in fact Cox’s partial maximum likelihood estimator. On the other hand, any weighted
score estimator which is obtained by setting a weighted score function (where individual
scores are asymmetrically weighted depending on the time of deaths) equal to zero is still
consistent but not as efficient as the unweighted estimator. However, if the proportional
hazard assumption fails to hold, both estimators converge to different quantities in general.
This observation gives rise to Lin’s (1991) test statistic, in fact, this can be viewed as an
application of Hausman’s (1978) specification test idea.

Sueyoshi (1991) developed another test for the proportionality assumption by applying
a Lagrange multiplier test idea to grouped duration analyses of PHM (in a continuous
time/discrete data context). As we have discussed, the likelihood function of grouped
duration data takes the form of a binary choice model. PHM imposes the restriction that
we have the same regression coefficients 3 appearing in each interval survival probability
aj,j=1,---,r. If the proportionality assumption is violated, we will in general

have different 3’s across the different intervals. Sueyoshi’s test is a Lagrange multi-
plier test to check whether the coefficients are constant across these intervals or not. This
test statistic can be easily computed from a certain auxiliary least squares. The auxil-
iary regression takes one of two different forms depending on whether we use the BHHH
information matrix or its expected value (see Berndt et. al. 1974).

By further aggregating the already grouped duration data, we can artificially generate
another coarser set of grouped duration data. Concretely, in our simplified setting, we may
consider aggregating two intervals I) and [; into a single large interval I = LU I = [0.2).
In this case, the duration data will take the following form: d; = dyid2i = 1 if individual
i survives both interval I, and I, d; = 0 otherwise. And a; = ajiq; is the true survival

probability of the interval I = 1UL,. Obviously, the new coarser data set contains a lesser
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amount of information.

If we estimate the same fixed number of parameters from both the new (coarser) and
the original (finer) data sets, the estimator, say 3, from the original data set will be more
efficient than the one, say 3*, from the new set.

This is the case when we make a parametric baseline hazard assumption. On the
other hand, if we do not make a parametric functional form

assumption on the baseline hazard as in the previous section, the number of parameters
being estimated under the two data set-ups are different. When we are estimating the
model using the

finer data set (original data set), the information content of the data is richer, but in
this case we are estimating more parameters (estimating more steps regarding the baseline
hazard). Therefore, we cannot say that one estimator is more efficient than the other,
lacking an efficiency ranking between the two estimators. Of course, whether we specify
a parametric baseline hazard or not, both estimators will be consistent under the propor-
tionality assumption.

If the proportional hazard assumption is violated, both estimators will converge to
different quantities, basically by the same reason as in Lin (1991). To see this, let us
assume that all covariates have decreasing impacts on the hazard rates: the 8 applied to
the first interval I; (say, B!) is bigger in a vector sense than the applied to the second
interval I, (say, #2). Then A tends to be stochastically larger than B*, and B converges to
a quantity which is bigger in a vector sense than the probability limit of 3*. The intuitive
reason is as follows: 3*, obtained from the coarser data, is symmetrically affected by both
3! and B2 since the larger interval I is the symmetric aggregation of the two sub-intervals
I, and I,. However, B, obtained from the finer data set, is asymmetrically affected by
both ! and B2 since we tend to have more observations in the first interval than in the
second. In other words, the influence of 8! relative to that of #% tends to be stronger in
the case of using the finer data set than in the case of using the coarser data set. Since ¢!
is assumed to be larger than 42, B tends to be stochastically larger than 3.

Therefore, the difference between the two estimators converges to a zero vector nnder

the proportional hazard assumption, but to a non-zero vector under a non-proportionaliity
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Our specification test uses this disparate convergence pattern of the difference in the esti-
mators: if the difference is significantly different from a zero vector, reject the proportional
hazard assumption, otherwise, do not.

The test statistic
R=(8"-B)[Var(8* - B) (8" - B) (5.1)

follows a Chi-square distribution with k (the number of parameters in ) degrees of free-

dom. The variance inside the bracket can be consistently estimated by
Var(8* = §) = Var(8*) + Var(B) — Cov(B*, B) — Cov(B, B*). (5.2)

In computing the above test statistic, the problem usually lies with the computational
burden of computing the covariance matrix between the two estimators. It is so because
when the two estimators do not satisfy an informational ranking relation, their covariance
matrix does not reduce to the variance of the more efficient estimator, a property enjoyed
by a pair of estimators satisfying an informational nesting relation (see Hausman 1978).
Here, how to compute the covariance between these two regression estimators is at stake.
When there are many observations per cell, the task can be simplified through the minimum
Chi-square method.

The next section obtains B‘, its variance, and its covariance with 8.

If we have more than two non-right-censored intervals (r > 2) in the original data set,
we have a lot more flexibility in this kind of intentional aggregation process. For testing
purposes, the selection of an optimal aggregation may be guided by whatever alternative
hypothesis one has in mind. For example, if there are three non-right-censored intervals
(r = 3) in the original data set and if one suspects that the covariate impact is stronger
in the third interval (if there is any difference), one may aggregate intervals I; and I;
together, leaving the third interval I3 alone. This aggregation will yield a higher power
against the suspected alternative than any other kind of aggregation. Of course, without
a clear prior alternative, we cannot design an optimal aggregation.

Besides the overall Chi-square test, we can conduct individual t-tests to separately

see which covariate has a non-proportional impact on the hazard rate. Also, the signs of
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the individual t-test statistics give us some idea in which direction the proportionality is
violated.

The essence of this testing idea is to secure a testable implication by throwing away
a certain amount of information (aggregation of the original data entails a certain loss of
informational content), which shares Goldfeld and Quandt’s (1965) heteroscedasticity test

idea.

6. SPECIFICATION TESTS OF THE PROPORTIONAL
HAZARD MODEL: ACTUAL DERIVATION

Now let us aggregate two sub-intervals I; and I from section 4 into a single large

interval I (= I UL,). The estimator &; of the interval survival probability a; is (n1; # 0)

N ngj = nl] ny; N (6.1)

By the same procedure as in the finer data case from section 4, we have
y=20+u, (6.2)

where y = (log[— log(&1)},- -+, log[—log(a,)])s Z = (X : 1) with X = (zi,---,2); 0 =
(B': ) with y = log[fo2 ho(t) dt] = log(e™ + e™); and u = (uy,---,u,)" with

1
uj R————(4; — a;)
a; log(é;)
~_.c:¥1'!_. = —_— .
 Tog(a) 1 ™ )+ B Toglay @ o) (63)
log(é;) log(é2;)

~ - ——u
log(é15) + log(a3,) log(én;) +log(az;)
where X ~ Y means that X and Y are asymptotically equivalent. This equivalence can

be easily seen by noting that

A

@j — aj =@yjaz, — ay,az;
=d1 (a3, - az,) + azj(@1; — o1;) 6.4)
~rayj(Ga, — azy) + agj(d1j — o)

~ay (G2, — agy) + da;(a1j — 15).

-
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Of course, this asymptotic equivalence holds only after a suitable normalization.
Using a matrix notation, u can be written as a weighted sum of two uncorrelated error

vectors u; and uj

u=Wuy + (I — W)ua, (6.5)

with

. log(a ;) g
W=d J . )
la'g[log(ézlj) + log(az;)" =1 (6.6)

Let Q be the variance of u evaluated at a;’s

1- &1]‘ + 1- &23' ]g
n_,-&lj(log(dlj) + 10g(dg_,))2 nljdgj(log(&lj) + log(-lazj))z =1 (67)
=Wuw+ (Ig — W)Qg(Ig -W).

Q ~diag|

The pooled minimum Chi-square estimator 6* of § = (B' : 7) is obtained from the

weighted least squares applied to the above equation using the aggregate data I = LUl
0*=(Z2'Q7'2)"'Z2'Q y =6+ (2'Q712)71 Z'7 . (6.8)

And the variance of §* can be consistently estimated by

Var(6*) = (2'Q712)"! = (’f,g’:)‘f "f,;?:lll’ >_1 (6.9
Again, we can separate the regression coefficient estimator B* out of 6*
g = [CX]™'Cy, (610,
with C defined as
C=X'Q7 I, - ' n"wre. 611
Note that Cl = 0. Therefore,
B* =B +(CX]'Cu. 612
By noting that CQC’ = CX, we can easily estimate the variance of 3* as
Var(8*) = [CX]7}, 613
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which is the k x k upper-left corner of Var(6*).
Once we sort 3* out of *, it is again straightforward to fill in the rest: deriving the

formula for 4*, its variance, and the covariance between 4* and B*. They are:
3 = )T (y - X5
Var(3*) =('Q~')~1 4+ (971~ X Var(8*)X'Q7';
Cov(3*,8%) == ('Q~ )~ '~ X Var(B*).

The covariance between 3* and B can be consistently estimated by
Cov(B*, ) = (CX)ICWQUCY + (I, - W) G)[(Cr + C2)X] 7,

which can be easily shown by noting that (i) 3* = B+[CX] 1Cu=~ B+[CX]|"IC[Wu_1+
(I, = W), (i) 8 = B + [(C1 + C2)X]7'(C1uy + Caug), and that (iii) v, and u, are
uncorrelated.

By comparing the two estimators, 3* in this section and B from section 4, we can
develop a test statistic for PHM. Under the null hypothesis that PHM holds, both B and
3* are consistent. If the null hypothesis does not hold, 3 and B* converge to different
quantities as the sample size increases. This disparate behavior of the two estimators

offers a clue to the design of our test statistic. The test statistic
R= (" -B)Var(8* - (5" - B) (6.14)

will follow a Chi-square distribution with k (number of parameters in ) degrees of freedom.

The variance inside the bracket can be consistently estimated by

Var(6* - B) = Var(5*) + Var(3) - Cov(8*,8) - Cov(B,8"). (6.15)

7. MONTE-CARLO SIMULATIONS

The true model is specified through the hazard rate h(t,z) of an individual with

covariate vector = (z1,22,23)

h(t,z) = (0.36t°?) exp(0.2z, — 0.522 + 0.8z3).
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Note that the baseline hazard follows a Weibull distribution with an increasing hazard rate
over time. Assume that z;,z; and z3 are all discrete: z, = —1, or 1; z2 = —0.6, 0, or 0.5;
z3 = —0.9, —0.3, 0.3, or 0.9. Therefore, we have 2 x 3 x 4 = 24 different cells (g = 24),
each of which takes on a distinct vector value z = (z1,z2,z3)'. The observation scheme
is assumed to be Q = {0,1,2,00}. It is characterized by the two non-right-censored
intervals (r = 2), I; = [0,1) and I, = [1,2). The proportional hazard assumption is
satisfied by f; = 0.2,8; = —0.5, and 83 = 0.8. This same B = (0.2,—0.5,0.8)" affects
both interval survival probabilities «; and a;. We make each group size equal in the
simulation. Equal group sizes imply independeﬁce among 1, z2 and z3. The total sample
size is the group size multiplied by the number of groups. The interval survival indicators,
dy;, do;, are each generated by independent coin tosses with success probabilities, a,; and
ag;, tespectively. In lieu of actual coin tosses, uniform random numbers are generated
by the GAUSS mathematical language. Obviously, we need dy; only when dy; = 1. The
combined indicator d; which takes the value one if individual ¢ survives the large interval
I, zero otherwise, is obtained by multiplying the two sub-indicators: d; = d;;da;.

Denote by 3 the estimates of B using the finer data set, I; and I; and denote by
B“ the estimates using the coarser data set, I = I U I. Calculating these estimates 1s
straightforward since it involves only matrix operations. Again, we use GAUSS to perform
the necessary matrix operations. Based on a thousand replications, we computed the
empirical mean and the empirical standard deviation of the estimators, B* and 3. We
tried seven different group sizes to observe convergence patterns of the estimates as the
sample size (=24x group size) increases. These estimated §’s and the standard deviatious
are reported in Table 1. Notice that as the group size increases, accordingly, as the sample
size increases, both B*’s and B’s converge to the true parameter values. In general, between
3* and B we cannot choose which estimator is more efficient. The reason is that whenever
we are using a finer data set, we are estimating more parameters. Even for large group
sizes, the performance of both estimators are quite comparable, with the difference 1n the
mean square errors very small.

To see how the variance formulas perform, we compared the empirically obtained

variances with the corresponding theoretical variances. Theoretical variances are evaluated
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at the true parameter values. Table 2 and Table 3 show the empirical and the theoretical
variance estimates of 3* and B, respectively, for group sizes 20,50, and 100. As expected,
for larger group sizes we have more favorable match-ups. Regarding the variance estimates,
the theoretical variance formulas seem to match up quite well with the corresponding
empirical variances even for small group sizes. Since components of the z vector are
generated to be independent, covariances among the estimators of 3 are expected to be
small. In fact, the off-diagonal elements (covariances) are much smaller than the diagonal
elements (variances). Throughout Table 2 and Table 3, all correlations (normalized off-
diagonal elements) are between 0.01 and 0.07.

Now, let us consider several alternative models to the proportional hazard model.
The true regression coefficients applied to the first interval I; are set as before. The true
regression coefficients applied to the second interval I; are set by adding a vector value A
to the first interval coefficients. Under the proportionality assumption, A is set equal to
zero. As A deviates from the zero vector, the model moves farther and farther away from
PHM. When we are estimating a non-proportional hazard model (non-zero A) wrongly
assuming proportionality, the estimates are in general inconsistent. But, by the assumed
independence among the components in the covariate vector z, only the non-proportional
coefficients are inconsistently estimated. On the other hand, all the other proportional

coefficients are still consistently estimated.

~ Table 4 shows empirical means of the two estimates, #* and B under several al-
ternative models. The coefficients corresponding to the non-zero elements in A are the
non-proportional coefficients. The coeflicients corresponding to the zero elements in A are
the proportional coefficients. All the proportional coefficients are close to the true values
in terms of the empirical means. Note that the pooled estimates of the non-proportional
coefficients (components of B* corresponding to the non-zero elements of A) are always
smaller than the corresponding non-pooled estimates (components of B corresponding to
the non-zero elements of A). Since the trut non-proportional coefficients are monotonically
decreasing over time (note that B% = B + A, and A < 0), their non-pooled estimators,
which receive more weight from the first interval than from the second, are stochastically

larger than the corresponding pooled estimators.
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Table 5 shows the empirical sizes (when A is a zero vector) and powers (when A is
a non-zero vector) of the proposed overall x? tests in terms of the empirical percentage
of rejections out of 1000 repetitions. Results in the top block under A" = (0,0,0) show
empirical sizes under each of the three nominal sizes. As the group sizes increase, empirical
sizes converge to the corresponding nominal sizes. However, for group sizes up to 50, the
test tends to reject the true null hypothesis more frequently than supposed. Results in the
rest of the blocks under non-zero A’s show empirical powers. As the group sizes increase,
the power increases toward 100 %, exhibiting consistency of the test.

To measure a “distance” between the model implied by the non-zero A (call it f,) and
the wrongly assumed PHM (regarding A = 0; call it fo), we modify one of the Kullback-
Leibler (1951) information measures to be suitable to the current discrete observation

scheme. The discrete Kullback-Leibler information is defined as
KL = E*[log(P"(Ty)) — log(P(Ta))),

where (i) E* denotes the expectation taken with respect to model f* (recall that the data
are generated according to model f* in our simulations), (ii) Ty is the interval censored
observation on the underlying continuous duration T, and (iii) P*(T4), P(Ty4) denotes the
probability that T; will be observed under model f*, f, respectively. Given a particular
cell z, we can easily compute K L(z). To define a unique measure for each A, we take
the expectation of K L(z) with respect to the distribution of z. We denote the resulting
quantity as KL in Tables 5,6,7. For details on this distance measure, see the Appendix. In
Table 5, we readily notice that as the distance between the null and alternative increases,
the power tends to increase. Except in some cases when ng, = 100, the rankings based on
power are exactly equal to the rankings based on the distance measure.

Besides the overall x? tests, we also carried out individual t-tests. In fact, we used
normal approximation based on asymptotics. If we have a certain prior knowledge about
the direction in which the alternative deviates from the null, we can conduct one-sided
t-tests; otherwise use two-sided t-tests. These results are reported in Table 6 and 7.
respectively. Those t-tests based on the non-proportional coefficients show a reasonable

powers; while those t-tests based on the proportional coefficients do not show any significant
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powers in excess of the assumed nominal sizes. When there is only one non-proportional
coefficient, the corresponding t-test yields a higher power than the overall x? test. It is
because we pin point the exact source of non-proportionality. In this case, the t-test is
not diluted by other proportional components, while the x? test is. When there are two
non-proportional coefficients, we cannot choose which one, between the t-tests and the x?
test, is more powerful. However, as the group size increases, the overall x? test surpass

either of the relevant t-tests.
8. CONCLUDING REMARKS

Often, we face grouped duration data due to a certain discrete observation mechanism.
The discrete time setting in duration analyses may cause a conceptual problem in that there
arises inconsistency between the two choices in time units. This kind of problem can be
avoided by using a continuous time duration model. The proportional hazard model is one
of the most widely used example of the continuous time duration model.

In this paper, the relationship between group duration analysis and binary choice anal-
ysis is shown. Estimation and identification issues are also discussed. When covariates are
all discrete, application of Berkson’s minimum Chi-square estimation yields a computa-
tionally simple estimator which is asymptotically as efficient as the maximum likelihood
estimator.

We also suggest simple specification tests for the proportional hazard model by com-
paring two sets of minimum Chi-square estimators, one from a finer data set, and the
other from a coarser data set. The suggested tests are easy to use and can take alternative
hypotheses into account, thereby increasing the power of these tests.

Using Monte-carlo simulations, we illustrate the performance of the proposed mini:
mum Chi-square estimators and the size and power properties of the proposed specification

tests. Performance of the overall Chi-square tests and individual t-tests are compared.
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APPENDIX: KULLBACK-LEIBLER INFORMATION MEASURE

I. GENERAL THEORY

Let Q = {0,a;, --,ar,00} be a partition of the positive real line Rt. Then, @ can
represent the following discrete observation scheme: the underlying continuous duration
data on T are only available up to intervals I} = [0,1),--+, [, = [ar—1,8r), [r41 = [ar,o0)
(recall that in the text @ = {0,1,2, 00}, and that the data are available only up to intervals
L =[0,1), I, =[1,2), I; = [2,00).) Let us denote the observed discrete duration data as
T; (note that Ty is an interval censored version of the underlying T).

Let f* and f be two alternative distributions for T. Based on the observation scheme
Q (equivalently, based on Tj), define the discrete version of the Kullback-Leibler distance

(information) measure between those two distributions as:
KLg = E*[log(P*(T4)) — log(P(Ta))],

where (i) E* denotes the expectation taken with respect to model f*, and (ii) P*(Ty), P(T4)
denotes the probability that T; will be observed under model f*, f, respectively. By
Jensen’s inequality, we have —KLg = E*[log P(T4)/P*(T4)] < log E*[P(T4)/P*(Ta)) =
log 1 = 0 with equality if and only if P*(Ty) = P(T;) for every realization of Ty. There-
fore, the distance measure K Lq is non-negative, and strictly positive if and only if two
distributions have different observable implications within the observation scheme Q.

Let P} and P; be P*(T € I;), P(T € L), j = L,---,ryr + 1 PP = [ fr(t)dt,
Pi=] 5 f (t)dt. Then K Lg can be more concretely written as

r+l
KLg =Y P;llog P} —log P;]. (A1)

1=1

Assumption 1. Two alternative distributions f* and f satisfy fooo f*(®)[log f*(t) —
log f(£)] dt < oo, f5° f(t)[log f(t) —log f*(t)] dt < oo.

This assumption states that the Kullback-Leibler distance measure between f* and f

exists, whether measured based on f* or f.

~
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Theorem 1. Suppose {Qk}r=12, is a sequence of partitions of the support Rt such
that! (1) Qx C Qi+1 and (2) mesh{Qr} = 0 as k — oco. Then under Assumption 1,
{KLQ,}peyo.. isan increasing sequence with limit equal to the Kullback-Leibler distance

measure based on the exact observation.

Proof of Theorem 1.
The proof of (1) is completed by using Lemma 1. The second part (2) is proved in steps
using Lemmas 2,3, and 4.

(1) By (A.1), it suffices to prove for each j = 1;---, 7,7 + 1 and for each m; € I;
Py;[log Py; —log Pyj] + Pgj(log P3; —log P2j] > (Py; + Py;)llog(Py; + P3;) — log( Py + Py,
where

m;j a;
= [7 pra By = [ @ B =Py Py
aj-1 m;j

m; aj
Py = / ftydt, Poj= | f(t)dt, P;=Pij + Py
aj-1

mj

Equivalently, suffices to show

Pl‘. P3; .
(B)THT . (25) 7 5 Bt
Pl_, ng - P1j+P2j.

Lemma 1. (P‘..)P +P” (Pz’)P +P" 2 ?{;Ff_ijl_’?(pl )+ 1—,;—_‘_11,—.(—-1-) with equality if
and only 1f (For proof, see Royden (1968), Lemma 1. on page 112.)

But, we can easﬂy show that the right hand side of the inequality of Lemma 1 i~
greater than or equal to F“—};’* with equality if and only if -&4- = L;—’.‘-(— Pr ). Therefore.
we have proved that as the data partition gets finer, the Kullback-Lelbler distance measure

between two distributions increases except when %‘-.‘- = 1;1.'- for each sub-partitioned interval

If &‘- = %.‘- for each sub-partitioned interval j, then the sub-partition does not add any
1)

1 Here mesh is defined as the supremum of the distances between any two contignons
partition points.
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new information with regards to distinguishing between the two alternative distributions,

and the Kullback-Leibler information measure stays the same.

(2) For {Qk}k=12,, define

Zi(t) = Y 1per;llog P} —log Py,
I;€EQw

2(t) = /0 ™ 1 reanllog £(1) = log F(2)]

where I;’s are intervals in Q& (I dropped the superscript k to simplify the notation) and
P; abd P; are the corresponding interval probabilities under model f* and f. Note that
E*Z, = KLg, and EZ = KLg+, where KL+ is the Kullback-Leibler distance measure
based on the exact observation.

Now the following lemmas hold:

Lemma 2 Forall k=1,2,---,EZy < EZ: ie.

S Pillog P} ~log Al < [ £7(0llog () ~log FO]

;

Proof For each I;, it suffices to show

P}(log P} ~log P;) < [ r@hos ) - log SO d
By the following representation

/I F®llog () -l SO/ B} = llog £*(T) — log f(T)IT € L},
it also suffices to show
E*[log f(T) — log f*(T)|T € I;] < log P; ~ log P}

But, by Jensen’s inequality,
(LHS) =E*[log f(T)/ f*(T)IT € I
<log E*[f(T)/ f*(T)IT € I;]
~togl [ F*(01(0)/£°(0) dt/ P
i
—log P; — log P} = (RHS)
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with the equality holding if and only if f(t)/f*() =(constant) for every t € I;. When
f(t)/ f*(t) =(constant) for every t € I, the interval observation ¢ € I; and the exact
observation within I; are equivalent with regards to distinguishing between f* and f, and

therefore their Kullback-Leibler distance measures take the same numerical value.

Lemma 3 {Zi}i=1,2,.- 15 a submartingale relative to o-fields {Fk}k=1,2,.., where Fi
denotes the o-field generated by Q.
Proof (i) Obviously, Fi C Fit1; (i) Zi is Fx measurable;

(iii) E|Zx| = Y _ P;|log P} —log P;|
J

3" P}llog P} —log Pj] + 3" P;}[log P; —log P}]

P! 2P, P <P;

< Y Pllog Py —log Py] + Y Pjllog P; —log P}]
P >P; P <P

< 3 [ rotossw -logfwlde+ Y. [ felosfe) ~log (0l
P,‘ZPJ I; PJ-'<P,' I;

S/ f"'(t)[losf‘(t)-losf(t)]dt+/ f(t)llog f(t) — log f*(t)] dt,
fo2f fo<s

which is finite under Assumption 1; (iv) With probability one, E*[Zi41|Fx] 2 Zi, which

is easily derived by the similar arguments as in Proof (1) above.

Lemma 4 Zx — Z ae. t € R*. (see Theorem 35.4, Billingsley, 1986).

Now by combining Lemma 4 with the bounded convergence theorem, we have
limgy EZy = EZ. That is, the limit of the discrete Kullback-Leibler information is equal
to the continuous Kullback-Leibler information.

When we introduce fixed right censoring at ¢t = ¢, we can similarly prove that as the
mesh of partitions (up to the censoring point c) goes to zero, its discrete Kullback-Leibler

distance measure converges to
[ (oog £2) = tog £ de + P llog P2 = Tog P,
0

where P* = [ f*(t)dt and P. = [ f(t)dt. Note that the above formula is the Kullback-

Leibler distance when data on T are continuously available up to the point ¢ and then
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right-censored. Of course, setting ¢ = o0 yields the Kullback-Leibler distance based on the

exact observation without any censoring.

II. APPLICATION TO GROUP DURATION ANALYSIS OF PHM

To measure a “distance” between the model implied by the non-zero A (call it fi)
and the wrongly assumed PHM (regarding A = 0; call it fo), we apply the above discrete

Kullback-Leibler information measure. The discrete Kullback-Leibler information is
KL = E*[log(P*(T4)) - log(P(T)))

where (i) E* denotes the expectation taken with respect to model f* (recall that the data
are generated according to model f* in our simulations), (ii) Ty is the interval censored
observation on the underlying continuous duration T, and (iii) P*(T4), P(T4) denotes the
probability that T; will be observed under model f*, f, respectively. Given a particular
cell z, we can easily compute KL(z), the discrete Kullback-Leibler distance measure con-
ditional on z. To define a unique measure for each A, we take the expectation of A'L(r)
with respect to the distribution of z. Note that the discrete observation scheme we are

discussing is Q = {0,1,2,00}. The KL(z) is

3
KL(z) =) P}llog P} —log P;]
j=1

=(1 - ai,)[log(1 - af,) — log(1 — &12)]

+ai,(1 - a3,)logai (1 — a3;) —loga1z(1 — @2:)]

+ai,05,[log af 0}, —logarzazz)-
The notation should be self-explanatory referring to the text. By using the formulas for
a*’s and o’s, and by noting that aj, = ai., we have

—er(A+a)+72 )) 84y

KL(z) e 1- get TV Mlog(l —e —log(l — ¢ 3

+e_ezﬁ+‘71 e_e=(ﬁ+4)+'l2 [—Cz(ﬂ+A)+-¥2 + ezﬂ+‘72].
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Table 1. Min x? Estimators: Empirical
Mean (S.d.) Based on 1000 Repetitions

group size 1031' 1052' IOB;

(ny) 105 104, 1035

20 186(0.64)  -4.66(1.44)  7.53(0.94)
1.85(0.62)  -4.60(1.40)  7.38(0.93)

50 1.08(0.43)  -4.91(0.93)  7.86(0.69)
1.96(0.41) -4.86(0.90) 7.76(0.66)

100 1.99(0.30)  -4.98(0.66)  7.94(0.47)
1.97(0.29) -4.95(0.63) 7.89(0.45)

200 1.99(0.20) -5.00(0.47) 7.97(0.32)
1.99(0.19) -4.99(0.45) 7.94(0.32)

500 2.00(0.13) -5.00(0.29) 7.99(0.21)
2.00(0.13) -5.00(0.28) 7.98(0.21)

1000 2.00(0.09) -5.00(0.21) 8.00(0.15)
2.00(0.09) -4.99(0.20) 7.99(0.14)

2000 2.00(0.07) -5.00(0.15) 8.00(0.11)
2.00(0.06) -5.00(0.14) 7.99(0.10)

1. True values: lo(ﬂlvﬂ'b /83) = (2’ —578)°
2. The upper half are estimates based on I = I U I; = [0,2).
3. The lower half are estimates based on I; = [0,1), I; = [1,2).



Table 2. Estimates of Var(3*): Emp. (Thy.)
Emp. Estimates Are Based on 1000 Repetitions

n, 108; 1053 1083

20 103;  0.410(0.447) -0.035(-0.039) 0.028(0.034)
1042 2.081(2.210) -0.008(-0.120)
1032 0.889(1.073)

50 103;  0.181(0.183) -0.015(-0.005) 0.016(0.020)
1042 0.857(0.915) -0.015(-0.038)
103; 0.474(0.446)

100 103;  0.091(0.090) -0.001(-0.008) 0.008(0.006)
1032 0.432(0.443) -0.009(-0.019)
1033 0.220(0.216)

i



Table 3. Estimates of Var(3): Emp. (Thy.)

Emp. Estimates Are Based on 1000 Repetitions

n, 105, 103, 1035

20 108,  0.390(0.417) -0.014(-0.025) 0.028(0.024)
104, 1.946(2.045) 0.008(-0.080)
104, 0.862(1.011)

50 103,  0.166(0.169) -0.018(-0.003) 0.013(0.013)
103, 0.803(0.835) -0.010(-0.026)
1035 0.434(0.415)

100 108,  0.085(0.084) 0.002(-0.005) 0.008(0.004)
103, 0.394(0.432) -0.005(-0.013)
103, 0.206(0.204)

i



Emp. Mean Based on 1000 Repetitions

Table 4. Min x? Estimators:

104 1053 1083

104 n, 105, 103, 103;
(-0.5,0,0) 100 171 “2.96 7.94
1.76 -4.94 7.90

200 1.71 -4.99 8.00

176 -4.98 7.98

500 1.72 -5.00 7.99

1.78 -5.00 7.99

1000 1.71 -5.00 8.00

1.77 -5.01 8.00

2000 1.71 -5.00 8.00

1.77 -5.00 8.00

(0,-1,0) 100 1.98 -5.55 7.95
1.97 -5.38 7.90

200 1.99 -5.54 7.97

1.98 -5.40 7.94

500 1.99 -5.58 7.99

1.99 -5.44 7.96

1000 2.00 -5.56 7.9

1.99 -5.43 7.98

2000 2.00 -5.57 8.00

2.00 -5.43 7.99

v



Table 4. (continued)

104t 1053 1033

104’ n, 105, 105, 108;
(0,0,-1) 100 1.99 ~4.98 7.38
1.98 -4.96 7.43

200 2.00 -4.96 7.41

2.(_)0 -4.97 7.50

500 1.99 -4.99 7.43

2.00 -5.00 7.54

1000 2.00 -4.99 7.43

2.00 -5.01 7.53

2000 2.00 -5.00 7.44

2.00 -5.01 7.95

(0,-1,-1) 100 1.99 -5.50 7.40
1.98 -5.36 7.46

200 1.99 -5.52 7.43

1.99 -5.39 7.51

500 2.00 -9.97 7.42

2.00 -5.45 7.92

1000 2.00 -5.59 7.42

2.00 -9.44 7.52

2000 2.00 -5.56 7.44

2.00 -5.45 7.54

1. Estimating misspecified models by wrongly assuming PHM.
2. The upper half are estimates basedon I =1 Uz = [0,2).
3. The lower half are estimates based on I = [0,1), Iz = [1,2).

4. True values: 108! = (2,-5,8) on I;; 10(8' + A) on I,.



Table 5. Emp. Size and Power (%):

Overall x? Test

104’ nominal size (%)

KLx10*  n, 10 5 1

(0,0,0) 20 51 13 1

0.0 50 18 11 4
100 11 6 2
200 11 5 1
500 12 6 2
1000 10 5 1
2000 9 5 1

(-0.5,0,0) 100 17 12 3

1.2 200 22 13 4
500 40 27 10
1000 61 50 27
2000 90 84 64

vi



Table 5. (continued)

104’ nominal size (%)
KLx10*  n, 10 5 1
(0,-1,0) 100 71 13 5
0.99 200 19 12 3
500 33 23 10
1000 o7 45 21
2000 86 77 53
(0,0,-1) 100 19 10 3
2.1 200 26 18 6
500 52 39 20
1000 82 72 50
2000 99 96 88
(0,-1,-1) 100 24 16 )
3.2 200 35 25 12
500 75 64 39
1000 96 93 82
2000 100 100 99

vii



Table 6. Emp. Size and Power (%):

Individual one-sided t-test

A Ba Bs
104’ nominal size nominal size nominal size
KLx10* n, 10 5 1 10 5 1 10 5 1
(0,0,0) 20 11 5 1 16 10 3 7 4 1
0.0 50 10 5 1 16 9 1 5 3 1
100 7 4 1 15 7 1 5 2 0
200 10 5 1 12 6 1 6 3 1
500 9 5 1 12 7 2 8 4 0
1000 12 7 1 11 6 1 9 4 1
2000 9 5 1 9 5 1 9 4 1
(-0.5,0,0) 100 28 16 5 13 7 1 6 3 0
1.2 200 38 24 9 13 6 1 7 4 1
500 64 50 24 11 6 1 10 5 1
1000 84 75 49 11 6 1 11 5 1
2000 98 96 84 10 5 1 12 6 1

viil



Table 6. (continued)

A B2 Bs
10A’ nominal size nominal size nominal size
KLx100* =n, 10 5 1 10 5 1 10 5 1
(0,-1,0) 100 9 4 1 34 22 8 7 4 1
0.99 200 9 4 1 40 25 8 6 3 1
500 8 4 1 61 47 21 6 3 0
1000 7 4 1 83 73 47 - 5 2 0
2000 8 3 1 97 94 78 ) 2 0
(0,0,-1) 100 10 5 1 13 8 1 22 13 4
2.1 200 13 7 2 12 7 2 39 27 11
500 13 8 2 9 4 1 75 64 36
1000 14 8 2 7 3 1 96 91 72
2000 17 9 3 6 3 0 100 100 98
(0,-1,-1) 100 11 6 2 31 21 7 21 12 4
3.2 200 10 5 1 38 28 10 36 25 9
500 11 6 2 55 42 20 67 54 31
1000 13 7 2 72 58 33 91 85 63
2000 14 8 2 91 84 62 100 99 93

ix



Table 7. Emp. Size and Power (%):
Individual two-sided t-test

A B2 Bs
10A' nominal size nominal size nominal size
KLx10* n, 10 5 1 10 5 1 10 5 1
(0,0,0) 20 14 7 2 16 9 3 19 12 4
0.0 50 13 7 3 14 8 1 20 12 4
100 10 6 1 10 ) 1 12 7 2
200 11 6 2 10 5 1 12 6 1
500 12 6 1 13 7 1 13 6 1
1000 13 6 1 11 7 1 9 4 1
2000 10 5 1 10 4 1 10 4 1
(05,0,0) 100 17 10 3 11 5 1 13 7 2
1.2 200 25 16 6 11 5 1 12 6 2
500 50 38 18 11 6 1 11 6 1
1000 75 64 39 11 6 2 10 6 1
2000 96 92 78 11 6 2 10 5 1




Table 7. (continued)

A B2 Bs
104’ nominal size nominal size nominal size
KLx10* =n, 10 5 1 10 5 1 10 5 1
(0,T,0) 100 12 7 2 24 14 5 59 3
0.99 200 10 6 2 26 15 ) 12 7 2
500 10 ] 1 47 34 16 13 7 2
1000 9 5 1 73 62 38 12 _ 6 1
2000 8 4 1 94 88 70 14 7 1
(0,0,-1) 100 13 8 1 12 6 1 16 8 3
2.1 200 13 7 1 14 8 2 27 19 7
500 14 7 2 11 7 1 64 50 27
1000 12 6 2 12 6 2 91 83 63
2000 13 7 3 13 8 2 100 99 94
(0,-1,-1) 100 15 8 2 22 15 5 15 8 2
3.2 200 11 5 2 28 17 7 25 17 6
500 11 5 1 42 32 13 54 44 21
1000 11 6 1 58 45 25 85 77 53
2000 13 7 1 84 75 55 99 97 89

x1



