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1. INTRODUCTION

Default, and the anticipation of default, appear to play an important
role in the economy.! The possibility of default may deter lenders, the fear
of penalties may deter borrowers, and the cost of enforcement represents a
deadweight loss to society. In view of such consequences, it seems natural to
view default in a negative light, and to ascribe the default which is observed
to the impossibility of perfectly foreseeing all possible contingencies.

The purpose of this paper is to argue — precisely to the contrary — that
default may also play an important positive role. In a world of uncertainty
and incomplete financial markets, default may promote — indeed, even be
necessary for — efficiency. We find this to be so because the possibility of
default improves the efficiency of markets, and does so in a way that simply
opening new markets does not.

The positive role which we find for default rests on three essential ideas.
The first of these comes from Dubey, Geanakoplos and Shubik (1988). When
markets are incomplete — that is, when only certain contingent contracts
are available — opportunities for mutual risk-sharing are missing, and there
may be a gap between equilibrium and efficiency. Suppose for instance that
efficiency requires some trader to shift wealth from some particular future
state (call it w, say) into the present.? This could be accomplished by selling
today a contract that promises delivery (of units of account or consumption
goods) in the future, contingent on the occurrence of the state w. However,
if none of the contracts that are available today promise delivery in state w,
such wealth transfers will be impossible, and all feasible allocations will nec-
essarily be inefficient. Market incompleteness may also lead to inefficiency
in another way, however. Suppose that contracts are available today that
promise delivery in the future contingent on the occurrence of state w, but
that these contracts also promise delivery in some other states, which have
low probability of occurrence. To sell such contracts is to promise deliveries

1The U.S. Bankruptcy Court reported 3.9 million filings for personal bankruptcy during
the 10-year period ending June 30, 1989.
20r between two future states.



in all of these future states — and not merely in state w. In the absence of
sufficient endowments in these other states — or of sufficiently many other
contracts — such promises cannot be kept. Hence, if traders are only able
to enter into agreements that they will be able to honor regardless of the
future state, then opportunities for mutual risk-sharing may be severely lim-
ited. (In extreme cases, only spot market trades might be possible.) In such
a circumstance, a dramatic improvement in efficiency may be obtained by
allowing traders to enter into contracts that they will be able to execute with
high probability, but not with certainty.?*

Allowing for default may shrink the gap between equilibrium and effi-
ciency — but so might opening new markets, and it might be simpler (and
less costly) to open new markets than to create the institutions necessary
to regulate default. The second essential idea is that opening new markets
does not necessarily shrink the gap between equilibrium and efficiency —
even as the set of markets expands to an approximately complete set. (This
idea comes from Zame (1988).) Although perhaps puzzling at first, this has a
simple explanation, which builds on the previous discussion. As new markets
are opened, the collection of conceivable portfolios of contracts is enlarged.
However, a typical portfolio is comprised of both longs and shorts (purchases
and sales); the net payoff of such a portfolio will be positive in some future
states and negative in others. Negative net payoffs represent liabilities to be
satisfied; if these liabilities are sufficiently great, they will exceed the value
of endowments, and cannot be satisfied. If traders are only able to enter
into agreements that they will be able to execute regardless of future states,
portfolios which create unsatisfiable liabilities cannot be traded. Opening
new markets may therefore expand the set of conceivable portfolios without
(significantly) expanding the set of portfolios that can actually be traded; in
such case, opening new markets will not lead to efficiency.

The third idea (which seems entirely new to this work) is closely related
to the first two. As new markets are opened, the collection of conceivable

3We defer for the moment any discussion of the institutions which might accomplish
this.

4Just as there may be an optimal amount of pollution, so there may be an optimal
amount of default; see Dubey, Geanakoplos and Shubik for some discussion of this point.



portfolios is enlarged. Some of these new portfolios may create liabilities
so large that they cannot be satisfied. In general, however, there will be
many portfolios with the property that the occurrence of states in which
liabilities are unsatisfiable is a very low probability event. In such a setting,
default may dramatically improve efficiency by allowing people to enter into
agreements that they will be able to execute with high probability — but
not with certainty. Indeed, we find that this is precisely what occurs, and in
the limit (as the set of available contracts expands to one that spans all the
uncertainty), equilibrium allocations become (arbitrarily close to) efficient. 5

Although the mathematical model we use to formalize these ideas is a
bit complicated, the three essential points may be understood quite clearly
in a simple example, which is presented in a very informal way in Section 2.
We consider a two-date world with uncertainty about the state of nature at
date 1; a single consumption good is available at date 0 and in each of the
infinite number of states of nature at date 1. At date 0, there is trade in the
(date 0) consumption good and in N given contingent contracts for date 1
consumption; since there are infinitely many states of nature, but only a finite
number of contracts, contingent contracting is necessarily incomplete. In
such a setting, equilibrium allocations need not be efficient (Pareto optimal).
In the example, in fact, no feasible allocation is efficient, and we are able to
calculate explicitly the (utility) distance from the set of feasible allocations
to the set of efficient allocations. We find that this distance remains bounded
away from 0 as N — oo. In particular, equilibrium allocations do not become
nearly efficient when new markets are opened. To put it in language that we
have used before: there is a gap between equilibrium and efficiency, and this
gap does not shrink when new markets are opened. On the other hand, we
show that the possibility of default shrinks this gap, and that in the limit

as N — oo it disappears entirely. In a very real sense, the remainder of
the paper is devoted to building a rigorous formal framework around this
example, and to showing that this example represents the typical case, not
the pathological.

Our formalization of these ideas builds on what is by now a standard

SProvided that default penalties are sufficiently large.



model of a security market (as in Arrow (1953, 1964) or Radner (1972)),
adapted to allow for an infinite set of states of nature. To examine the
effect of expanding the set of available securities (= contingent contracts),
we fix an infinite sequence of securities {A,}, and consider the equilibrium
allocations of the security market in which only the first N of these securities
are available for trade.® If these allocations converge, as N — oo, to a Pareto
optimal allocation, we say the sequence of securities {An} is asymptotically
efficient; otherwise, it is asymptotically inefficient. The example discussed
above demonstrates that asymptotic inefficiency is possible; in Section 4 we
show that, in a sense we make precise, asymptotic inefficiency is typical.

To explore the role played by default, we adapt a model introduced by
Dubey, Geanakoplos and Shubik (1988). In the present context, a security
is simply a promise to pay; default means that (some) agents can not —
or do not — keep (some of) these promises. In the real world, such de-
fault might entail many and varied consequences: creditors might be able
to seize assets and be awarded judgments against future earnings, default-
ers might be barred from future credit markets, etc. Rather than attempt
to model such institutional details, we follow Dubey, Geanakoplos and Shu-
bik in assuming that the only consequences of default are penalties assessed
against the defaulters, and that these penalties are assessed directly in terms
of utility. For the sake of simplicity, we assume that the default penalty is
independent of the security and of the state of nature, is the same for all
consumers, and is proportional to the amount of default; we write A for the
constant of proportionality.” We work in a perfect foresight, general equilib-
rium framework.® Thus, we assume that all default is perfectly anticipated
— but anonymous — and that default is spread equally among all creditors.

For each default penalty A (with 0 < A < 00), a default equilibrium exists.

6To avoid trivialities, we assume that the sequence {A,} spans all the uncertainty, in
an appropriate approximate sense.

7But there would be no difficulty in allowing for non-linear penalties which depend
on the security, the state of nature, and the consumer. What is crucial is that penalties
become arbitrarily large as the magnitude of default tends to infinity.

8Gince we may assume that traders have common priors over states of nature, our
framework is even consistent with rational expectations.



At one extreme, A = 0 and default goes unpunished; in such a situation, no
optimizing agent will ever keep promises to pay, and there will be no trade
at the default equilibrium. At the other extreme, A = oo and no optimizing
agent will ever default; in such a situation, default equilibrium coincides
with security market equilibrium in the sense discussed previously. (So the
security market model might be viewed as a special case of the default model.)
However, for all intermediate values of A, there will generally be a positive
amount of default at equilibrium (although the probability of default and the
expected magnitude of default will both be small if X is large).

When default is not possible, the requirement that liabilities be satisfied
may severely restrict the portfolios that can be held. When default is possi-
ble, traders may plan not to keep all their promises (that is, to leave some
liabilities unsatisfied); this will enlarge the set of portfolios that can be held.
Moreover, since both the choice of portfolios and the default decision are
endogenous, this enlargement might be in precisely the “efficient directions.”
We show that this is indeed the case: if the sequence of securities {A,} spans
all the uncertainty and the default penalty is sufficiently large, default equi-
librium allocations will be close to Pareto optimal allocations — indeed, to
Walrasian (complete markets) equilibrium allocations..

We emphasize that this positive role of default depends crucially on in-
completeness of security markets. If security markets are complete (that is,
if a complete set of contingent contracts is available), equilibrium allocations
will already be Pareto optimal, and default — whenever it occurs — will
necessarily have a Pareto worsening effect.

We have nothing to say here about why security markets are incomplete.
Our point of view is simply to take market incompleteness as given, and
to explore the consequences. Similarly, we offer no mechanism by which
new markets may be opened. Rather, we take as given a specific infinite
sequence of securities, which we view as a proxy for some unmodelled process
of opening new markets. Market incompleteness and the origins of new
markets are clearly important — and related — issues, and worthy of further
study.



Another limitation of our framework is that we formulate default penalties
entirely in terms of utility punishments. Of course this is unrealistic: debtor’s
prisons and flogging are no longer in common use (although they are certainly
of historical importance). However, we do not intend that utility penalties
should be taken literally. Rather, we intend that utility penalties should be
viewed as proxies for real — but unmodelled — economic penalties: seizure of
assets, loss of access to future credit markets, etc. It will surely be desirable
to have a model which incorporates such real penalties, but such a model
will necessarily be substantially more complicated.?

Our formalization also requires that the potential magnitude of default
penalties be unlimited. In reality, society might find such penalties difficult
or undesirable to enforce — for moral as well as economic reasons. In such
circumstances we might expect to find alternative institutional arrangements.
We might find, as well, that the particular institutional arrangements have
an important effect on outcomes. We have chosen here to abstract away
from institutional arrangements, but there is no doubt that they too are an
important topic for future work.

Following this Introduction, Section 2 presents the example which lies at
the heart of paper. Section 3 presents the formal security market model, and
Section 4 addresses asymptotic inefficiency in the absence of default. Sec-
tion 5 presents the formal default model, Section 6 addresses the efficiency-
promoting role of default, and Section 7 concludes. Proofs are collected in
the Appendix.

9Kehoe and Levine (1989) have constructed an infinite horizon model in which the
penalty for default is loss of access to future credit markets. However, they work in a
complete markets framework, and there is no equilibrium default. Geanakoplos and Zame
(in progress) describe a model in which the penalty for default is the seizure of collateral,
and there may be equilibrium default.



2. EXAMPLE

In this Section we present — in a very informal way — an example which
illustrates the crucial ideas. In a very real sense, the function of the remainder
of the paper is merely to formalize the insights of this example. Although
the example we present has some special features, they serve only to simplify
various calculations. As we shall show in the following sections, this example
is entirely typical, and its properties are quite robust.

We consider a world in which there are two trading dates, 0 and 1, and
uncertainty about the state of nature at date 1. We summarize uncertainty
by a countably infinite set @ = {1,2,...} of possible states of nature. A
single consumption good is available at date 0 and at each state in date 1.
The economy is comprised of two traders who maximize the sum of utility
for consumption at date 0 and expected utility for consumption at date 1.
Each trader’s consumption is constrained to be non-negative at date 0 and
at each state of the world at date 1. Traders share a common probability
assessment p over the set of states of nature at date 1, where p(1) = p(2) =
1/4, p(w) = 37“*? for w > 2. Traders also share a common time and state
independent utility function u(t) = /1 +¢. Thus each trader’s utility for
a consumption plan z, representing consumption z(0) at date 0 and state-
dependent consumption z(w) in state w is:

U(z) = z(0) + :11-\/1 +z(1) + i\/l +z(2) + i 3742 /1 + z(w)

w=3

2

Finally, endowments w!, w? are given by:

w'(0) = 1, w¥0) =1
w'(1) = 1, (1) =7
w'(2) = 7, w?(2) = 1
wi(w) = 1, wi(w) = 1 for w > 2

Write @ = w! + w?. A simple calculation with marginal rates of substi-
tution shows that the Pareto optimal allocations for this economy are all of

7



the form:
=tw, *=(01-t)©

for some ¢ with 0 <t < 1. In particular, at any Pareto optimal allocation
each trader consumes equal amounts in the two states w = 1 and w = 2.
‘Similarly, it is easy to see that the unique Walrasian equilibrium allocation
is the symmetic one:

2 =w/2,2 =w/2

In the Walrasian world, all contingent contracts are available for trade.
Suppose however, that only date 0 consumption and a finite number of con-
tingent contracts (securities) for date 1 consumption are available. To be
precise, suppose that contracts A, Az,... Ay are available, where each A,
promises consumption at date 1, contingent on the state of the world. The
only allocations (y!,y?) that can be obtained by trading date 0 consumption
together with such contracts have the property that, for each state w at date
1

N
y'(w) =w'(w)+ Z_: 0 An(w)

N
yH(w) = w'(w) = 2 bnAn(w)
n=1
where 8 = (6,,...,0n) is a portfolio.

Now suppose that A, promises delivery of one unit of the consumption
good in the state w = n, two units of the consumption good in the state
w = n + 1, and nothing in other states. If consumption is constrained to be
non-negative, so that y! > 0 and y* >0, expanding the above expressions for
y}(w), y*(w) and evaluating successively in states w = N +1,N,...1 yields
two systems of simultaneous inequalities:



1420y > 0
1420y_1+0n > 0O
14+20,+6; > 0
1+70,+6, > 0
1+6, 2 0
and

1-208 >

1-20n_1—6n 2
1-20,-6; > 0
1-20, -6, > 0
7T-6, > 0

Solving these systems of inequalities yields
-1<6 <+land -1<6; <+1
This entails y*(1) < 2 and y'(2) > 4, whence y*(1) > 6 and y*(2) < 4.

As we have already noted, at every every Pareto optimal allocation, each
trader is allocated equal amounts of the consumption good in states w =1
and w = 2. Hence, no Pareto optimal allocation can be obtained by trading
only the contingent contracts Ay,..., Ay. Indeed, if (y',y?) can be obtained
by trading these contracts, and (z!,?) is a Pareto optimal allocation, then
at least one trader i finds that U(z') exceeds U(y') by at least (VT - 2]/4.
Thus there is a gap between the utilities that can be attained when complete
contingent contracts are available, and the utilities that can be attained when
only the contracts Ay,..., Ay are available. Most importantly from our point
of view, this gap does not depend on N, and hence it does not disappear, no
matter how large is the number of contracts available for trade.

9



To make the same point in another way, suppose we try to obtain the
Walrasian equilibrium allocation (@/2,w/2) by trading a portfolio 8 of the
contracts Ai,..., An. Suppose for the moment that N is even. Trader 1’s
state w allocation will be o l

N
yl(w) = wl(“") + Z 0 An(w)

n=1

Setting y! = W/2 and evaluating successively in states w = 1,2, ... yields

0, = (-1)*'2*'9  for2<n<N (2)

Since N is even, it follows that y'(N + 1) = 1 — 2V¥=19 which of course is
(very much) less than 0. In other words, the only portfolio § which yields
the desired consumption in states w = 1,2,... N also creates a liability in
state w = N + 1 that cannot be satisfied. If N is odd we obtain the same
conclusion, but with trader 2 playing the role of trader 1.

Thus, the requirement that all liabilities be met puts limitations on the
portfolios that can be traded. The effect of these limitations is to constrain
feasible allocations away from Pareto optimal allocations — even when the
number of contracts available is very large.

Requiring that liabilities be met is the same as forbidding default; let’s see
what happens if default is permitted. For convenience, assume that N2>2
is even. In that case, trader 1 might purchase (and trader 2 might sell)
the portfolio 8 defined by equations (1) and (2) above, and trader 1 might
simply default (make no payment at all) whenever his liability exceeds his
endowment. This will yield both trader 1 and trader 2 the allocation @/2. In
each state w % N + 1, each trader meets his obligations; in state w = N +1,
trader 1 has a unsatisfied liability of 2¥~!9 units of the consumption good.
However, the probability that this state occurs is only 3-N-1 50 the expected
magnitude of trader 1’s unsatisfied liability is only oN3-N+1 ' which is very
small if N is large. If the institutional structure is such that default which is
of small expected magnitude incurs penalties which are small in expectation,

10



both traders will benefit from this arrangement.!®

In the sections to follow, we shall try to formalize the intuitions of this
example. In Section 3 we formalize a model in which markets are incomplete;
that is, only some contingent contracts are traded. In Section 4 we show that
opening new markets — expanding the set of contingent contracts that are
available — will generally not lead to efficient allocations. In Section 5 we
formalize a model in which default is contemplated, and in Section 6 we
show that default promotes efficiency in precisely the manner suggested by
this example.

An important part of our formal development will be to show that this
example represents behavior that is quite typical, and not at all pathologi-
cal. In particular, both asymptotic inefficiency in the absence of default and
asymptotic efficiency in the presence of default are typical conclusions for
sequences of assets.

1914 might appear that the particular probability distibution x and particular preference
structure play important roles here, but these appearances are misleading. If the probabil-
ity distibution u and/or the preference structure were different, it might be necessary to
choose the portfolio 8 differently, and it might not be possible to achieve an allocation that
agrees exactly with the Walrasian equilibrium allocation in the first N states and differs
in other states by a total which is small in expectation. But it will always be possible to
achieve an allocation that is close to the Walrasian equilibrium allocation in the first N
states and differs from the Walrasian allocation in other states by a total which is small
in expectation.

11



3. THE SECURITY MARKET MODEL

In this Section we describe our basic model of a security market. We
use what seems to be the simplest possible model because it is adequate for
our purposes and avoids the technical difficulties that would arise in more
general models.

Our model has two dates, 0 and 1, with uncertainty about the state of
nature at date 1. A single good is available for consumption at date 0 and in
each state at date 1. At date 0, trade takes place in the single consumption
good and in each of a finite number of securities, whose date 1 payoffs depend
on the state of nature. At date 1, the state of nature is revealed, securities
pay their returns, and consumption takes place. Since we consider only a
single consumption good, there will of course be no trade at date 1.

More formally, we describe uncertainty by the set @ = {1,2,...} of states
of nature. It is convenient to write 0* = QU {0} = {0,1,2,...} for the set of
spots. A consumption plan z : * — R specifies consumption at date 0 and
in each state at date 1; z(s) is consumption at the spot s. It is sometimes
convenient to write z; for the restriction of z to Q, so that z; is a plan of
consumption at date 1. Conversely, each date 1 consumption plan z; has
a canonical extension to a plan @ — R which calls for 0 consumption at
date 0; it is convenient to abuse notation and write z; for this latter plan
also. For simplicity, we assume throughout that all conceivable consumption
plans are bounded. Write [ for the space of date 1 consumption plans and
R x 1 for the space of all consumption plans. Given consumption plans
z,y € R x I°, we write: £ > y to mean z(w) > y(w) forallw € Q% z >y
to mean z(w) > y(w) for all w € 9%, and z >> y to mean that there is a
positive number € > 0 such that z(w) > y(w) + € for all w € Q. In particular,
z >> 0 means that z is bounded away from 0.

Securities are claims to date 1 consumption plans, and thus are elements
of I°°. The dividend of security A in state w is A(w); we assume for simplicity
that A(w) > 0 for each w. If there are N securities Ay, ..., An, a portfolio
is a vector 8 = (6y,...,0n) € RY; 0, is the holding of the n-th security. The

12



dividends on the portfolio § = (6,,...,0x) € R are:

div(f) = > _ 0,4, € 1%
n
Security prices are vectors ¢ € (?RN)’L; if0 € RN is a pértfolio, then ¢ -
0 = Y. gn0, is the value of the portfolio 8 at the prices ¢. We take date 0
consumption as numeraire, so that security prices are denominated in date
0 consumption.

Traders h € {1,...,H} are defined by consumption sets X h, endow-
ments w* € X", and utility functions U* : X* — R*. For convenience,
we assume that all consumption sets are the positive cone R* x (I*)*, and
that each trader maximizes the sum of utility for consumption at date 0 and
expected utility for consumption at date 1 (expectations taken according to
some common prior probability distribution s on ©2).!' Our assumptions on
utility functions mean that there are functions uh, v* such that:

UMz) = "(a(0) + [uh(a(w))du(w)

= v*(2(0)) + X u*(z(w))p(w)

We assume that the functions uP,v* : R% — Rt are continuous, strictly
concave, and strictly monotone, and that the (right hand) derivatives u*'(0),
v*(0) are finite. Finally, we assume that endowments are bounded away
from 0; that is, w* >> 0 for all A.

A security market £ consists of a finite set of traders {(w”,U")} amd a
finite set of securities {A,}; the assumptions above are understood to be in
force at all times.

Because there is a single physical commodity, there will be no trading in
commodities after the state of nature is revealed. Hence, given security prices

11The assumption of common priors is made only for notational simplicity. Our ar-
guments would remain unchanged if we allowed for traders to have different priors u”,
provided that priors are consistent, in the weak sense that consumers find each of the pos-
sible states of nature to have positive probability: u*(w) > 0 for each h,w. Indeed, there
would be no real difficulty in extending our results to allow for general utility functions.

13



q, we define the budget set B"(q,w") for a consumer with endowment w" as
the set of set of triples (z", ¢", "), where z* is a non-negative consumption
plan and ¢", " are non-negative portfolios — of security purchases and
security sales, respectively — such that: -

o ¢-(¢" — ") < wh(0) — 2*(0)
o zh(w) = wh(0) + div(¢")(w) — div(é*)(w)

The first of these equalities says each trader finances purchases and sales of
securities from date 0 consumption, while the second says that each trader’s
consumption in state w is the sum of his endowment and the dividends on
his purchases, less his payments on liabilities.?

An equilibrium for the security market £ is a 4-tuple (g, (z*), (¢*), (¥*)),
of security prices g, consumption plans z*, purchases (¢*) and sales (¢*)
such that:

1. (2" —wh) =0 (commodity markets clear)
2. (o —yh) =0 (securities are in zero net supply)
3. (z", ¢",¢*) € B*(q,w") for each h (plans are budget feasible)

4. if (y*, a*, B*) € B*(q,w") then Uh(z*) > Uh(y*)
(traders optimize in their budget sets)

The basic fact about security markets is that equilibria exist. We defer
the simple proof to the Appendix.

12In the usual formulation, purchases are not separated from sales, but there is certainly
no harm in doing so, and it will prove necessary in the default model.

14



Theorem 1 Every security market has an equilibrium.

Underlying the security market £ is a complete markets (Arrow-Debreu)
economy £°M with the same traders, in which all contingent consumption
patterns are available for sale. A price in ECM is a positive linear func-
tional 7 : ® x I® — R+ which is continuous with respect to the topology
of convergence in expectation (with respect to the common prior probability
distribution ).!® Continuity implies that we may interpret 7 as a price list:
there is a (unique) function 7* : Q* — R* with the property that, for each
z € R x [, the value of the consumption plan z at the price 7 is

Tz = i 7*(s)z(s)

s=0

Thus 7*(s) is the value (at the price 7) of the consumption plan promising
1 unit of consumption at the spot s and 0 elsewhere. Since 7 - z is finite for
all consumption plans z, it follows that 3~ 7*(s) < oo.

As usual, a (Walrasian ) equilibrium for £ is a pair (7, (z*)) consist-
ing of prices = for contingent claims, and feasible consumption plans z*,
satisfying

1. T(zk —wh) <0

2. 7 (zh —wh) <0 foreach h

3. if UR(y") > U*(z*) then 7 - (y* — w*) >0

13The sequence {z"} of consumption plans converges in expectation to the consumption
plan z if z"(0) — z(0) and

dg(@} - #1) = Bxp(lef - 1)) = [ laf -l du =0
(Recall that z7 is the restriction of z" to 2, which is a date 1 consumption plan.)

15



4. ASYMPTOTIC INEFFICIENCY OF SECURITY MARKET
EQUILIBRIUM

If security markets are incomplete, opportunities for insurance and risk-
sharing are missing. As a consequence, there may be a gap between (security
market) equilibrium and (Pareto) efficiency. As the example of Section 2
shows, this gap between equilibrium and efficiency may persist, even as the
set of available securities expands.

In general, the limit behavior as the set of securities expands will depend
(in a rather complicated way) on the particular securities. What moral (if
any) we might draw should depend — to some extent at least — on our model
of the process which gives rise to securities. Unfortunately, no convincing
model seems available, and we have none to offer. Instead we take what
seems to be a reasonable shortcut. We fix an infinite sequence {A,} of
securities, consider the equilibria of the security market in which only the
first N securities are available for trade, and then consider what happens
as N — oo. To capture the idea that our results represent the “typical”
situation, we parametrize the set of sequences of securities as a compact
metric space, and appeal (as is frequently done) to a topological notion of
size to represent the “typical” situation. In this framework, we show below
that the example of Section 2 is typical: asymptotic inefficiency is the rule.

Of course, the efficiency or inefficiency of security market allocations de-
pends on the particular securities available for trade, but it also depends
on endowments. Equilibrium allocations in security markets will will always
be Pareto optimal if endowments are themselves Pareto optimal — even if
no securities are available for trade. It seems natural therefore to focus on
“typical” endowments as well as “typical” sequences of securities. Here too
we shall parametrize the set of endowments as a compact metric space and
appeal to a topological notion of size to represent the “typical” situation.

To parametrize endowments, recall that we have, throughout, required
that endowments be bounded above and bounded away from 0. For the
present purpose it is convenient to restrict attention to endowments bounded

16



above by 1 and below by 1/10H; write

W = {(w!,...,w"): L < wh(s) <1 for each h, s}
10H

If we equip consumption sets R x [*® with the topology of simple convergence
(so that z" — z exactly when z"(s) — z(s) for each state s), and equip
W with the product topology, then W is a compact metric space.'* To
parametrize sequences of securities, recall that we have required that security
returns be positive and bounded; there is no loss of generality in requiring
that they be bounded by 1. Write S for the set of such securities

S={A:0< A(w) <1, for each w}

and let A be the set of (infinite) sequences of securities (in S); we write A
for a sequence in .A. Equipped with the topology of simple convergence, S is
a compact metric space; if we equip A with the (infinite) product topology,
it too becomes a compact metric space.

Recall that a subset of a topological space is residual if it is the intersec-
tion of a countable family of dense open sets. It is customary to view residual
subsets of a compact metric space as large, and to view their complements as
small; in particular, the Baire category theorem asserts that residual sets are
dense. We say that a property holds for almost all values of some parameter
if the set of parameter values for which it is valid contains a residual set.

We find it convenient to view utility functions U?,...,U H a5 fixed, and
to view the endowments w = (w") € W and the sequence of securities
A = {A,} € A as parameters. For each integer N, denote by En the
security market populated by these traders and in which only the first N
securities A,,..., Ay are available for trade. We are interested in whether
or not equilibrium allocations of £y are close to Pareto optimal allocations,
when N is large. Anticipating the negative answer obtained below, we shall
say that the sequence of securities {A,} is asymptotically inefficient (from

14 Alternatively, we might endow W with the topology of convergence in expectation
(defined in Section 3). However, the product topology and the topology of convergence in
expectation coincide on bounded sets.
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w) if the utilities of all feasible security market allocations of En are bounded
away from the utilities of Pareto optimal allocations.

There is another point to be addressed here. Inefficiency may arise be-
cause securities do not span all the uncertainty, but it is the combination
" of inefficiency and spanning that is of most interest to us. In the case of
a finite state space, spanning (completeness) has an unambiguous meaning:
every date 1 consumption pattern can be obtained as the dividends of a finite
portfolio. When the state space is infinite, it seems natural to require only
that every date 1 consumption pattern be approximable by the dividends
of a finite portfolio. Since we have assumed that traders share a common
probability distribution p over the set of states {1, it seems natural to require
approximation in the topology of convergence in expectation with respect
to this common probability distribution.® Formally, say that the sequence
{A,} spans all the uncertainty if for each date 1 consumption pattern z and
each € > 0 there is a finite portfolio 8 (of securities in the sequence {A.})
such that

Exp(|z — div(8)]) = / Iz — div(6)] du < €

As the following result shows, spanning and inefficiency are the rule.
Looking ahead to the default model and the discussion in Sections 5 and
6, we take this opportunity to record the additional fact that almost all
sequences of securities are linearly independent.

15 A5 noted earlier, convergence in expectation (defined in Section 3) coincides with con-
vergence in the product topology for bounded sequences, but convergence in expectation
is a stronger requirement for unbounded sequences. Qur assumptions imply that feasible
consumption plans are uniformly bounded, and that dividends on feasible portfolios are
bounded, but dividends on feasible portfolios need not be uniformly bounded.
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Theorem 2 Fiz utility functions U". Then

o Almost all sequences of securities are linearly independent.
e Almost all sequences of securities span all the uncertainty.

o For almost all endowments, almost all sequences of securities are
asymptotically inefficient.
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5. THE DEFAULT MODEL

In this section, we describe an adaptation of the security market model
which allows for the possibility of endogenous default. The model we use is
a variant of a model due to Dubey, Geanakoplos and Shubik (1988). Our
discussion follows rather closely that paper and related work of Dubey and
Geanakoplos (1989); we refer the reader to these papers for further discussion.

The basic data of the model are essentially the same as the data of the
security market model described in Section 2. However, we modify the def-
initions of the budget set and of optimizing behavior (and consequently of
equilibrium) to allow for the possibility that agents do not meet their lia-
bilities. To be more precise, we allow each trader k to choose, in addition
to a consumption plan and portfolios of purchases and sales, the amount
D"(n,w) that he actually delivers on security A, in the state w.1® Of course,
if trader h chooses not to sell the security A,, he will have no obligation to
meet; in this case we require that his delivery D*(n,w) = 0; in every case,
we require that D*(n,w) > 0.17 Since additional consumption is always de-
sirable, consumer h will never choose to deliver more than the full amount
of his promise, which is ¥"(n)A,(w); hence we will always have

0 < D*(n,w) < P*(n)An(w)

Several things are important to note. First of all, the decision not to
deliver on a security is voluntary; in particular, there is no requirement that
traders meet their obligations whenever they are able. Default may occur
either from necessity or for strategic reasons. Second, by separating purchases
from sales, we have allowed for the possibility that agents go long and short
in (i.e., buy and sell) the same security. We have implicitly contemplated this
possibility in the security market model, but when default is not possible,

16Recall that sale of a security entails a promise to pay in the future. Since we require
securities to have non-negative returns, we avoid the need to interpret failure to deliver
on promises of negative quantities.

17To allow D?(n,w) to be negative would amount to allowing additional borrowing at
date 1.
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such an action is irrelevant. However, when default is possible, such an action
may not be irrelevant; it may benefit a trader to go long and short in the same
security if he does not intend to meet all his obligations. In particular, there
is nothing to prevent a trader from buying one share of a security, selling
one share of the same security, collecting the returns from his purchase, and
defaulting on his obligations.

With the possibility that others will default on their obligations, a rational
agent will make conjectures about this default, and act accordingly. We
view purchases and sales of securities as implemented through some central
bank, and assume that shortfalls on promised deliveries are spread uniformly
among all creditors. In this sense default is anonymous, and each creditor is
affected only by the aggregate default. (Mortgage-backed securities provide a
reasonable real world approximation to such securities.) Moreover, although
we consider explicitly only a model with a finite number of consumers, we
implicitly take the view that there are actually a continuum of consumers,
but only a finite number of types. Hence, each trader correctly views the
effect of his own actions on the aggregate level of default as negligible. Write
K"(n,w) for trader h’s conjecture about the aggregate fraction of promised
deliveries on security A, that will actually be made in state w. Of course,
0 < K*n,w) < 1.

If trader A’s conjectures are correct, then 1 share of security A, will
yield the actual return K*(n,w)A,(w) in state w, rather than the promised
nominal return A,(w). Trader h’s budget set B"*(q,w", K*"), given security
prices ¢, endowment w" and conjectures K*, will therefore consist of 4-tuples
(z*, ", ¢*, D*), where z" is a consumption plan, ¢" is a portfolio of security
purchases, #" is a portfolio of security sales, and D" is a plan of deliveries,
such that:

o g (p" —¥*) < wh(0) - 2*(0)

o zh(w) < wh(w) + T{K"(n,w)p*(n)An(w)} = £ D*(n,w)

As before, the first of these inequalities says that traders finance purchases
and sales of securities from date 0 consumption, and the second says that
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trader h’s consumption in state w is no bigger than the sum of his endowment
and the dividends on his purchases (taking into account the default against
him), less his own deliveries on liabilities.

To this point we have not spoken of the consequences of default. In real-
ity, creditors might be able to seize assets and be awarded judgments against
future earnings, defaulters might be barred from future credit markets, etc.
To simplify matters as much as possible, we assume here that the only con-
sequences of default are penalties assessed against the defaulters, and that
these penalties are assessed directly in terms of utility. We shall also assume
that default penalties are independent of the state of nature and of the se-
curity, are the same for all agents, and are proportional to the amount of
default; we write A for this constant of proportionality.'®

Given a default penalty of A, the utility consumer h will achieve by fol-
lowing the plan (z*, ", %", D*) is:

U (a*, ", uh, D*) = UM(ah) — [ A S[H(n) An(w) = D" (n,w)ldp

That is, trader A enjoys the utility of his consumption, less his expected
penalties. (Note that ¢*(n)A,(w) — D*(n,w) is the amount of trader h’s
default on the security Ay,.)

A default equilibrium is a list q of security prices, a collection of conjec-
tures K", and a collection of plans (zh, o*, 9", D*) such that

1. S(z* —wh) <0

18 A5 we have discussed in the Introduction, we view utility penalties as proxies for real
economic penalties; it would surely be desirable — although much more complicated —
to formulate these explicitly. However, the assumptions about the precise nature of the
utility penalty are made solely for notational convenience. There would be no difficulty in
allowing for default penalties that depend on the state and the security, are agent-specific,
and are not proportional to the amount of default. All that is really required is that
default penalties be concave and be sufficiently severe when default is large to ensure that
no agent will seek to acquire liabilities that exceed the aggregate resources of society.
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2 (et -y =0
3. (zh, ", ", D*) € B*(q,w*, K*) for each h
4. if (yh;a";ﬂ",—D_h) € B*(q,wh, K*) then

A __h S
Uy ot 8%, D) < UMz, ", ¢*, DY)
5. conjectures K* are correct

In other words, commodity markets clear, security markets clear, agents
optimize (among budget feasible plans) given security prices and their own
conjectures, and agents have correct (and therefore identical) conjectures.

It remains to formalize the last requirement, that conjectures K* be cor-
rect at equilibrium. This is straightforward for conjectures about securities
that are traded and pay positive dividends in a given state w, and is irrelevant
for securities that do not yield dividends in the state w; the requirements are:

e if A(w)>0and T,¢" >0 then

L DA(n,w)

h n,wj=
Ko (nw) = S Anw)

o if A (w) =0 then K*(n,w) may be arbitrary

However, if the security A, yields positive returns in state w and is not
traded at equilibrium, there is some question as to the proper requirement.
Were we to allow for arbitrary conjectures in this case, there would always
be trivial equilibria in which no assets are traded because all agents conjec-
ture total default — even if default penalties were so high that purchasers
of securities would not actually be willing to default. A similar issue is fa-
miliar from the theory of extensive form games. As Selten (1975) points
out, the Nash equilibrium notion imposes no restrictions off the equilibrium
path. Requiring that agents optimize at all decision nodes — even those
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off the equilibrium path — leads to the stronger notion of subgame perfect
equilibrium. Of course the bite of subgame perfection is in the restrictions it
imposes on beliefs. In our framework, insisting that traders conjecture that
others always choose optimal actions — even out of equilibrium — rules out
the trivial equilibria described above. There are several ways to formalize
the requirement that consumers always conjecture optimal behavior by oth-
ers; such formalizations have been given by Dubey, Geanakoplos and Shubik
(1988) and by Dubey and Geanakoplos (1989). Our formalization is weaker
than either of these, so that we allow more equilibria (as the reader will see,
this is in keeping with our aims).

To motivate our requirement, we show that, if the default penalty A is
sufficiently high, and traders are optimizing, then the probability of default
will be low, and there will be no voluntary default at all. To make these
assertions precise, write w® for the aggregate endowment. Fix a trader k ,
and consider an optimal budget-feasible plan (z*, o*, ¥, D¥). Let Qi be the
set of states in which trader k defaults on some security (i.e., ¥*(n)An(w) —
D¥(n,w) # 0 for some n) and let ) be the set of states in which consumer
k’s default is voluntary (i.e., ¥¥(n)An(w) — D¥(n,w) # 0 for some n and
z*(w) # 0). Write w® = T w”. We assert that

o (i) if A > u*'(0) then (% = 0
o (ii) p() < (1/2)(w¥(0) +v*(0))(sup{w’(w) : w € 2°})

The first of these assertions means that trader k will not default voluntarily
if the penalty is sufficiently high; the secortd provides bounds the probability
that trader k will default at all.

To verify (i), suppose to the contrary that A > u*'(0) and that there
is a state w in which trader k defaults voluntarily. If € is less than trader
k’s consumption and default in state w, then trader k can alter his plan
by making a larger payment on his state w debt, thereby decreasing both
his consumption and default in the state w by e. Reducing default by €
reduces the utility penalty by e u(w); reducing consumption by € reduces the
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utility of consumption by at most eu*’'(0)u(w). If A > u*'(0), this contradicts
the optimality of the plan (z*, o*,¢*, D¥); this contradiction establishes the
assertion.

To verify (ii), let ¢ be a real number with 0 < t < 1, and consider the
alternate plan (w* + t(z* — w*), te*, t*, D¥) . Because w* >> 0, this plan
will be budget-feasible if ¢ is sufficiently close to 1. However, this alternate
plan would entail a utility cost of foregone consumption not exceeding

(1 = t)(u¥'(0) + v*(0))(sup{w’(w) 1w € O°})
while avoiding a utility penalty of (1 — t)Au(Q%). The plan (z*, ¥, %*, D*)

is optimal, so this alternate plan cannot be an improvement; this yields (ii).

The rationality requirement we wish to impose when securities are not
traded is that conjectures should be consistent with the above observations.
To express this requirement most simply, write

M, = sup{u¥'(0) + v*(0) : 1 <k < H}

and
Qn = {w: K*(n,w) # 0 for some n}

Applying (ii) for each trader leads to the requirement:
o 4(Q) < H(Mo/N)(sup{w®(w) : w € 2*} for each A

As we have said, our rationality requirements are weaker than those im-
posed in Dubey, Geanakoplos and Shubik (1988) and Dubey and Geanakoplos
(1989). In particular, our requirement is vacuously satisfied when

H(Mo/))(sup{w?(w) :w € Q*} > 1

that is, when the default penalty is sufficiently small. Hence, we allow here
for a potentially larger set of default equilibria.'®

19This is in keeping with our goal, which is to show that all default equilibria are nearly
optimal; see Section 6.
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For € > 0, we define an e-equilibrium to be a list ¢ of security prices, a col-
lection of conjectures K%, and a collection of plans (z*, o*, y*, D*) satisfying
1., 2,3, 5., and

6. if (y",a",ﬁh,ﬁh) € B"(q,w", K") then

Uh(yh, o, 85, D) < Uh(zh, ", o*, D*) + ¢

This completes the description of the default model. The next step is to
show that the model is consistent; i.e., that equilibria exist. Again, the proof
is deferred to the Appendix.

Theorem 3 If securities are linearly independent, then for each A a default
equilibrium ezists.?®

It is instructive to consider the two extreme cases A = 0 and A = oo. If
A = 0, there is no penalty for default. In such case, optimizing agents will
never honor any of their commitments, and agents with correct expectations
will never lend (i.e., sell securities). Thus, at equilibrium, there will be no
trade in securities, and hence (given that there is a single commodity), no
trade at all. If A = oo, optimizing agents will never default (else they would
incur infinite penalties). Hence such default equilibria coincide precisely with
the security market equilibria of Section 3.

Thus, in extreme cases, we see no equilibrium default. However, for all
intermediate penalties, there will generally be some (probability of) default
at equilibrium. We have already noted that, if the default penalty is high,
the probability that default will occur will be small. As we shall see, if the
default penalty is high, the expected amount of default will also be small.

201p the security market model, there is no need to assume that securities are linearly
independent, since redundant securities can be priced by arbitrage. However, when default
is possible, this is no longer the case; see Dubey, Geanakoplos and Shubik (1988) for further
discussion.
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6. THE ROLE OF DEFAULT

Default creates inefficiencies: the direct losses of imposing the default
penalties, and the indirect losses due to the reluctance of lenders to lend
and the inability and reluctance of borrowers to borrow. In this section we
show that, despite the inefficiencies it creates, default may promote overall
efficiency. The example of Section 2 and Theorem 2 in Section 4 provide the
intuition necessary for understanding this apparent contradiction. When de-
fault is not possible, the requirement that consumers keep all their promises
(i.e., that terminal wealth constraints be met) may severely restrict the port-
folios that can actually be traded, and hence the effective span of securities.
Indeed, as we have argued in Section 4, this is typically the case. Default
gives consumers some ability to tailor security payoffs to their own require-
ments. In this way, default endogenously increases the effective span of se-
curities, and this may (more than) compensate for the direct and indirect
losses associated with default.

We formalize this intuition in two ways. If the default penalty is large
enough to discourage voluntary default and the number of securities is suffi-
ciently large, then near-efficiency is possible: some default e-equilibribrium
allocation is close (in utility) to a Walrasian equilibrium.?! If both the de-
fault penalty and the number of securities are sufficiently large, then near-
efficiency is necessary: every default equilibrium allocation is close (in utility)
to a Walrasian equilibrium.

In what follows, we fix a set of H traders, specified by endowments wh and
utility functions U*, and an infinite sequence {A,} of securities. We assume
that this sequence is linearly independent and spans all the uncertainty (in
the sense discussed in Section 4). (In view of Theorem 2, almost all sequences
of securities satisfy these requirements.) Given an integer N and a default
penalty A, write £V for the security market in which the first V securities
{A,,..., AN} are available for trade and the default penalty is A. Recall
that, given a consumption plan z*, purchases ¢*, sales ¥*, delivery plans D"

211y fact, every Walrasian equilibrium is approximated by a default e-equilibribrium.

27



and conjectures K", trader A’s utility is

Oh(zh, oh, P, D) = UM (zh) —/A [ %*(n) An(w) — DH(n,w)] du

Theorem 4 For every € > 0 there is a default penalty A(e) and a function
N(e, ) : (M), 00) — (0, 00) such that:

If A > Ae) and (q,(Kh,:c",cp",z/)",Dh)) is a default equilibrium
of the security market EN* then there is a Walrasian equilibrium
allocation (y*) for which

o Exp(|zh —y*|) <
o [Uh(zh, ok, 9", D*) — Ur(yh)| < ¢

for each trader h.

Theorem 5 For every e > 0 and every A > Ay = max {u*(0):1 < h < H}
there is an integer Ny such that:

If y is a Walrasian equilibrium allocqtion of the underlying com-
plete markets economy, and N > Ny then there is a default e-
equilibrium (q,(K",m",cp",zph,Dh)) of the security market EN*
for which

e Exp(jz* —y*|) < e
o [Uh(zh, ok, ¢t DP) — Ur(yh)| < ¢

for each trader h.
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It is natural to think of an economy with complete markets as an idealized
limit of economies with incomplete markets. From this point of view, we
might interpret Theorems 4 and 5 as statements about the continuity of
equilibrium allocations. Theorem 4 — which provides conditions under which
all default equilibria are close to Walrasian equilibria — asserts a kind of
upper hemi-continuity. Conversely, Theorem 5 — which provides conditions
under which Walrasian equilibria can be approximated by default ¢-equilibria
— represents a kind of lower hemi-continuity. 22

It should be noted that the conclusions of Theorems 4 and 5 are not quite
parallel. To obtain the conclusion that all default equilibrium allocations are
close to Walrasian equilibrium allocations, the default penalty might need
to be extremely large. However, in order to obtain the weaker conclusion
that some default e-equilibrium allocation is close to a Walrasian equilib-
rium allocation, the default penalty will only need to be sufficiently large to
discourage voluntary default.

A final point. In the proofs we will show that, if the number of securities
and the default penalty are sufficiently large, then the probability of default
and the expected magnitude of default are both small; in particular, there
is no default in most states of the world. However, we have nothing to say
about the magnitude (or fraction) of default, conditional on the event that
default actually occurs. In particular, we do not rule out the possibility that
when default occurs it is total: no deliveries at all are made.

22Theorem 2 shows that, in the absence of default, both upper and lower hemi-continuity
fail.
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7. CONCLUSION

_In this paper, we have argued that default plays an important, positive
role in the economy. When markets are incomplete, and traders are only
able to enter into contracts that they will be able to execute regardless of
future events, contingent contracting may be severely restricted. Moreover,
opening new markets may not relieve these restrictions. Default makes it
possible for traders to enter into contracts that they will be able to execute
with high probability, but not with certainty — and that possibility may
greatly expand opportunities for contingent contracting.

The only consequences of default that we have considered here are direct
utility penalties imposed on defaulters. This has made it possible for us
to explore the role of default without exploring particular mechanisms or
institutions. There is no doubt however, that institutions matter, and that
this represents an important direction for future research.

The institutions currently used in this country for dealing with default
involve primarily the withdrawal of credit and the seizure of collateral and
other assets. Most of the previous analysis of these institutions has been in
the context of game-theoretic and/or partial equilibrium models (Hart and
Moore (1989) is a recent example), but there has been some work in the gen-
eral equilibrium spirit of the present model. Kehoe and Levine (1989) have
formulated a model in which the threat of withdrawal of credit plays a central
role. In their model, however, markets are complete and there is no equilib-
rium default. This is entirely in keeping with their goals, which are to see
how the threats of penalties can force traders to honor their commitments.
Expanding their model to allow for incomplete markets and equilibrium de-
fault does not seem at all straightforward. In work in progress, Geanakoplos
and the author construct a general equilibrium model in which short sales of
securities (that is, borrowing) is collateralized.
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APPENDIX

Here we collect proofs of the Theorems. In our one-commodity world,
establishing the existence of security market equilibrium is easy.

Proof of Theorem 1: There is no loss of generality in assuming that the
securities A, have linearly independent returns (since redundant securities
can be priced by arbitrage). We reduce the existence of a security mar-
ket equilibrium to the existence of a Walrasian (Arrow-Debreu) equilibrium
for a complete markets shadow economy in which the commodity bundles
represent date 0 consumption and portfolios of securities.

This Walrasian shadow economy is defined in the following way. The
commodity space for the shadow market is ® x Y (where N is the number
of securities). For (¢,0) € R x RV, we interpret ¢ as date 0 consumption and
0 as a portfolio (not necessarily non-negative) of securities. The consumption
set for consumer A is the set X" of pairs (t*,6*) € R x RV such that w* +
(th, div(8")) > 0; it is easily seen that X" is a closed convex subset of ® x RV,
and is bounded below (because security returns are linearly independent.)
The utility function V* : X* — R of consumer # is defined by

VA(th, 0%) = Ur(wh + (4, div(6")))

It is easily seen that V* is continuous, quasi-concave, and strictly monotone
(because security returns are non-negative). Finally, consumer h’s endow-
ment is e* = (w*(0),0) € R x RY. (Keep in mind that securities are in zero
net supply.) Our assumption that security returns are bounded and that en-
dowments are bounded away from 0 guarantee that e* belongs to the interior

of X*.

It follows from standard existence theorems that this Walrasian economy
has an equilibrium (g, (*,8")) . Write ", 4" for the positive and negative
parts (respectively) of 5h, and set ! = wh + (fh, div(?h)). It is easily checked
that the tuple (g, (z*), (¢"), (¥")) is an equilibrium for the security market
£, as desired. O
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We note that this construction provides an equivalence between the equi-
libria of the security market £ and the equilibria of the Walrasian shadow
economy. It follows that equilibria of the security market £ are constrained
optimal, in the sense of being Pareto undominated by any allocation at-
tainable by trading date 0 consumption and available securities. This is an
observation first made by Diamond (1967), in the context of a finite state
space.

Before embarking on the proof of Theorem 2, it is convenient to collect
some notation and isolate two portions of the argument as lemmas. f w e W
is an endowment vector, write PO(w) for the set of Pareto optimal allocations
(from initial allocations w). For each state w, set

W, = {w € W : for every (z*) € PO(w), there is a trader k such that
|zt (w) — wh(W)| > 1/3 or |g*(w + 1) — wh(w + 1)| > 1/3}

Write Wy = UW,,. The first lemma establishes that, for almost all endow-
ments, every Pareto optimal allocation entails at least one large net trade.

Lemma 1 W, is a dense open subset of W.

Proof: That each W, — and hence W itself — is open follows directly from
the definition and the fact that the Pareto correspondence is compact-valued
and upper hemi-continuous. To see that W is dense, fix an endowment
vector w € W and a state w; define new endowment vectors W, w by

h

Th(r) = w'(r)=wt(r) forT<w
T(w) = B (w+l)=1

w(w) = ww+l)=1

T(r) = w'(r)= glﬁ otherwise

The endowment vectors @ and w represent different distributions of the same
aggregate, so PO(W) = PO(w). Suppose that neither @ nor w belong to W.,.

32



Then we could find Pareto optimal allocations ("), (z*) € PO(w) = PO(
satisfying all the following inequalities:

)

S

- THw) > 2/3
THw+1) < 1/2

(w) < 1/2

T(w) > 2/3

i (w) < 1/2

i w+1) > 2/3

z¥(w) > 2/3

i (w) < 1/2

We now use separability of preferences to compare marginal rates of intertem-
poral substitution at (Z*) to those at (z*); we see that consumer 1’s increases
while consumer 2’s decreases. Since marginal rates of substitution are equal
at a Pareto optimal allocation, this means that (z*) and (z") cannot both be
Pareto optimal allocations. We conclude that at least one of @ or w belongs
to W,,. By choosing w sufficiently large, we can make W and w as close to w
as we like, so it follows that Wy is dense in W, as asserted. O

For z,y € I*® , write ||z|,, = sup {z(w) : w € R} and dw(z,y) =
|z = yllo- If I CQ is any set of states, write z[/] for the vector that agrees
with = at all states in I, and is 0 elsewhere. It is convenient to abbreviate
z[{1,...,n}] by z[n] and z[IN{1,...,n}] by z[I[n]]. If A = {A,} is a sequence
of securities, we write A[I] = {A,[I]}. Write spanA for the linear subspace
of I*° spanned by A; i.e., the set of finite linear combinations of the securities
A,, or equivalently, the set of dividends on finite portfolios of elements of A.
Write F for the set of sequences in [* that are 0 from some point on. For
v € F and I CQ, write @ (v) for the set of sequences A such that

o (011], spanALl]) 2 3ol

Set @Q; = NQ(v), the intersection extending over all v € F. The following
lemma is closely related to a result in Zame (1988).
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Lemma 2 If I C Q is an infinite set, then Q; is a residual subset of A.

Proof: We show first that Qj[v] is residual for each v. To this end, fix
v € F; if v[I] = 0 there is nothing to prove, so assume v[I] # 0. Fix integers
m,r such that v(w) = 0 for w > r, and let k be the first integer such that
I[k] has precisely r elements. (Such a k exists because [ is infinite.) Write
p = (1/2)(1 = 2™™), and let Q;(v,r,m) be the set of security sequences A
such that:

1. A[I[k]],... A.[I[k]] are linearly independent
2. duu(oll], span{AT], AT > plol1]]

It is evident that Q;[v] = NQ(v,r,m), so to show that Q[v] is residual, it
suffices to show that each Q;(v,r,m) is a dense open set.

Note first that 1. is equivalent to the non-vanishing of a k x k determinant,
and so remains valid if we replace A by any perturbation that is small in
the first k states and for the first k terms of the sequence. Hence the set of
sequences satisfying 1. is dense and open. Note next that 2. is satisfied if
and only if there is a state w such that

3. doo(v[I[w]], Span{Al [I[W]], A,.[I[W]]} > p”v[I]”oo

Because the vectors v[I[w]], As[I[w]] all lie in a finite dimensional space, a
simple continuity argument shows that 3. remains valid if we replace A by
any perturbation that is sufficiently small in the states {1,...w} and for the
first r terms of the sequence. Hence the set of security sequences satisfying
condition 2. is open.

To see that the set of sequences satisfying condition 2. is dense, fix a
sequence A; we must find arbitrarily small perturbations of A satisfying 2.
Because the set of sequences satisfying 1. is dense, there is no loss of gen-
erality in assuming that A already satisfies 1. We may also assume without
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loss that there is a state ( > r such that A;(r) = 0 for 7 > (. Consider
the dividend operator A : R — [ defined by A(8) = ¥ 0,A,[I]. Since
Ay[I),...A.[I] is a linearly independent set, this transformation is an isomor-
phism of " with a finite dimensional subspace of [*. Let © be the set of
portfolios § € R™ such that

doo(D_ 0 Anl1],v[1]) < pllvl]ll

Because the dividend operator A is an isomorphism, © is a compact set.

Fix 8 € O, and a state 7 > (; define a perturbation A’ of A by A, (w) =
A,(w) for w # 7 and Al(r) = 1. The dividends of each security A; are
non-negative and bounded by 1, and p < 1/2, so | ¥ 6;| > p||v||,- Because
v(w) = 0 for w > r, it follows that

(*) deo(X0nAL[1],v[1]) > pljv]lo

Continuity implies that (*) remains valid if we replace 8 by any portfolio #' in
some neighborhood By of 8; moreover, this neighborhood By may be chosen
independently of the choice of the state r. Since © is compact, we can cover
it with a finite number of these neighborhoods, and make perturbations in
different states to achieve a security sequence A” such that

(**) doo(Z On A [I], 0[1]) > pllvllc

for all § € ©. Because we have made perturbations only in states where v
and each A; vanish, we conclude that (**) holds for all § € R". Because
we can make these perturbations in states with ( arbitrarily large, these
perturbations can be made arbitrarily small. Hence @Q;(v,r,m) is a dense
set; as we have noted, this implies that @(v) is residual.

To see that Q is residual, observe that, if v,v’ € F then the triangle
inequality yields

doo(v', spanA) > doo (v, spanA) — doo (v, V")
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Since the subset of F consisting of vectors with rational entries forms a count-
able dense subset, it follows that, if A € Q;(v) for each v € F having only
rational entries, then in fact A € @Q(v) for every v € F. Hence @ can
be written as the intersection of countably many residual sets, and is hence
residual. O

With these technical results in hand, we turn to the proof of Theorem 2.

Proof of Theorem 2: That almost all sequences are linearly independent was
established in the proof of Lemma 2 above. To see that almost all sequences
span all the uncertainty, we use a similar argument. For each state 7, write
6, € I® for the consumption plan which is 1 in state 7 and 0 in every other
state. For each state 7 and each positive integer k, write

A ={A € A:dg(é,,spanA) < 1/k}

(Recall that dg(z,y) = Exp(]z — y|).) Evidently, every sequence in N A,
spans all the uncertainty, so it suffices to show that each A, is a dense
open set. To this end, observe first that every vector in spanA is a linear
combination of a finite number of securities. If dg(6,,Y 6;A4;) < 1/k, then
dp(6-,20;A)) < 1/k, provided that dg(A;, A}) is small enough (for each
i). Hence A,y is an open set. To see that it is dense, fix any sequence of
securities A = {A,}. For each index m, let A™ be the sequence which is
identical to A except for the m-th security, with A% = é,. It is evident that
A™ € A.) and that A™A (as m — oo) in the product topology, so that A,
is dense, as desired.

It remains to address asymptotic inefficiency. For each state w, set

W¢ = {w € W : there is a T > w such that w*(r) < 1/9H for each A}
and
W° =W = {w € W: for infinitely many T, wh(r) < 1/9H for each h}

Arguing just as above, we may see that each W* is a dense open set, so W°
is a residual set. It follows that W* = W° N W, is also a residual set.
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Fix w € W*; say that w € W,,. Set
I={w,w+l}u{r: wh(r) < 1/9H for each h}

Note that I is is an infinite set of states. According to Lemma 2, the set Q;
of security sequences is residual, so it suffices to prove that every sequence
A € Qg is asymptotically inefficient (for the initial endowment vector w).
Since w € W,, every Pareto optimal allocation requires a net trade of at
least 1/3, either in state w or in state w + 1. Hence every allocation which
is close to a Pareto optimal allocation requires a net trade of at least 1/4 ,
either in state w or in state w + 1. We claim that no such allocation (z*) can
be obtained by trading a finite number of the securities A,.

To see this, write z* = z* — w" for the net trade of consumer 4. For the

sake of definiteness, assume that consumer 1’s net trade in state w is large:
1
|2 (w)] = |z'(w) —w'(w)| 2 7

If (z*) can be obtained by trading n securities, there is a profile of portfolios
¢* € R such that
z* = div(9*) € spanA

for each h. Set v = z!'[w]. Because A € Qy, it follows that
doo(v[1], spanA[l]) 2 (1/2)||v[1]ll = |2'(w)| 2 1/4

Hence, do (v[1],2'[I]) > (1/8). Since v(w) = z'(w), thereis astate T € I,7 #
w such that |z!(7)] > 1/8. On the other hand, if 7 € I then w"(7) < 1/9H.
Since consumption vectors are constrained to be positive and the sum of net
trades is 0, this entails |2!(7)| < 1/9H. We have obtained a contradiction,
so we conclude that (z"*) cannot be implemented by trading a finite number
of the securities A™; this completes the proof. O

Proof of Theorem 3: We have already noted that, if A = 0 , autarky is an
equilibrium, and if A = oo the default model reduces to the usual security
market model, so it suffices to treat the case 0 < A < oco. We construct
a default equilibrium for the security market E as the limit of equilibria in
security markets with a finite number of states.
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For each index r, define a security market £[r] by truncating all the data
of € to the first r spots. (That is, endowments w*[r](s) = wh(s) if s < r,
wh[r](s) = 0 if s > r, etc.) It follows from work of Dubey, Geanakoplos and
Shubik (1988) and Dubey and Geanakoplos (1989) that £[r] has a default
. equilibrium

(alr), (KM ], P, @Mr), 42 (7], D)

We claim that some subsequence of these equilibria converge to an equilib-
rium for £.

To demonstrate this, we need to show first that the components of equi-
libria lie in compact sets. Note that boundedness of the set of feasible date
0 consumptions implies that marginal utilities for date 0 consumption (eval-
uated at feasible consumption bundles) are bounded away from 0. By as-
sumption, marginal utilities for date 1 consumption are bounded above. It
follows that the security prices ¢[r] are bounded (independently of r), and
hence lie in a compact subset of ®¥. To see that portfolios lie in a compact
set, note first that, since the collection of securities is finite, there is an index
ro with the property that each of the securities yields a strictly positive re-
turn in at least one state w < ro, and that the truncations A;{ro), ..., An{[ro]
are linearly independent. If the portfolios of sales y"[r] were not bounded
(independently of r), linear independence of securities would guarantee that
would be at least one state w < 1o in which liabilities were unbounded. Since
aggregate consumption is finite in each state, there would be at least one
state w < ro in which default would be unbounded. Since default penalties
become unbounded with unbounded defaults, such actions would be incom-
patible with individual rationality, and hence with equilibrium. It follows
that portfolios of sales 1*[r] are bounded; since securities are in 0 net supply,
portfolios of purchases " [r] are also bounded. Hence, portfolios of purchases
and sales lie in a compact subset of RV. It follows that promises, and hence
deliveries D"[r] lie in a compact subset of & x [*°; we have already noted that
consumption plans lie in a compact subset of ® x {®. Of course conjectures
also lie in a compact set. Passing to a subsequence if necessary, we see that
equilibria of £[r] converge to some tuple (q, (KR, zh ot b, D")), which we
assert to be an equilibrium of £.
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With the exception of individual optimization, verification of the equi-
librium conditions is straightforward, and left to the reader. To verify in-
dividual optimization, suppose that x = (z,¢,%, D) is an alternative plan
for consumer h, which is feasible and superior to the equilibrium plan xt =
(zP, ", ", D*) (given endowment w", conjectures K*, and security prices
q). We are going to find an index s and a plan x* = (z*,¢", %", D") in the
economy &[s] which is superior to consumer h’s equilibrium plan x[s]. To
this end, let a, 8,6 > 0 be parameters (to be chosen later) and let s be an
integer (also to be chosen later). Define the plan x' = (z',¢',%', D’) in the
following way:

t'(t) = max{z(t)-a,0} for 0<t<s

=0 for t>s
¢ = (1-By
Y o= 9
D'(n,t) = max{D(n,t)—46,0} for 1<t<s
=0 for t>s

If we choose s sufficiently large and a,§ sufficiently small, the plan X’
achieves almost as much utility as x; in particular, x’ achieves more utility
than x". (Note that the utility achieved by a plan depends on consumption,
on sales, and on deliveries, but not on purchases or on conjectures.) Since
conjectures K*[s] converge to conjectures K", if we choose 3 sufficiently
small and s sufficiently large, the plan x’ will be feasible (i.e., meet the non-
negativity constraints) in the economy &[s]. Since prices q[s] converge to g,
if we choose s sufficiently large, the plan-y’ will be budget feasible in E[s)-
Finally, if we choose s sufficiently large, the plan x"(s] (the equilibrium plan
for the economy £[s]) and the plan x* (the equilibrium plan for the economy
£) achieve almost the same utility, so the plan x’ will achieve more utility than
x"[s]. Since this contradicts the equilibrium conditions for the economy E|[s},
we conclude that x cannot be superior to x"*. Hence (q, (K*, zh, o, Pt D"))
is an equilibrium for £, as desired. O

Proof of Theorem 4: For each N, A, consider a default equilibrium (N, A) of
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ENA write z(N, \) for the vector of consumption plans. Passing to subse-
quences if necessary, we assume that z(N,A) — z(}) (as N — o) and that
z(A).— z (as A = 00). The desired result follows if we can show that (for all
choices just made) z is a Walrasian equilibrium of the underlying complete
markets economy, and that utilities converge: W*(n(N,})) — U h(zh) for
each h.

We show first that z is in the core of the complete markets economy; that
is, no group of traders can improve on z using only their own resources. To see
this, suppose not. Then there is a set of consumers (whom we may suppose
to be {1,..., M} and a vector y of consumption plans that is feasible for the
group {1,..., M} and strictly preferred (by each member of the group) to
the plan z. Let a,f,7v,6 > 0 be positive real parameters and let r be an
integer (all to be chosen later). Define @, § by

§"(t) = max{z*(t) —a,a} for 0<t<r

=0 for t>r
Wh(t) = wh(t) for 0<t<r
=0 for t>r

If a is sufficiently small and r is sufficiently large, then § is feasible for the
group {1,..., M} and strictly preferred to z. Write §; for the restriction of
y to ; §, is a vector of date 1 consumption plans.

Now let A\* be any default penalty so large that, if A > A*, and N is
arbitrary, then in the security market EN there is no default in statesw < 7.
For 1 < h < M — 1, we may use the fact that the securities {A,} span all
the uncertainty to choose a finite portfolio 6" such that:

wh(w) + div(0*)(w) —y* (W) < % for 1<w<r
Exp(|o"* + div(8") — ) < _}6[_
Set
M-1
M=% 6
h=1
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and let o, " be the positive and negative parts of 6* (respectively). Our
construction guarantees that

lwM(w) + div(0™)(w) = yM(W)| < a fof' 1<w<r
Exp(jw + div(6™) —§"|) < B
St -9h) =0

We now define plans (z*, ", ¢*, D*) (for the security markets ENAY as

follows. Consumption plans z* are given by
y*(0) ifs=0
2"(s) = { wh(w) + div(@)(w) fl<s<r
0 ifs>r

Portfolios ¢"*,3" of purchases and sales are defined to be the positive and
negative parts of §* (respectively). Plans of delivery D" are defined by

h ifl<w<
D*(n,w) = {z (n)An(w) iii;‘: ST

Our choice of A and our rationality requirement guarantees that no trader
conjectures default in states w < r. Hence the constructed plans are feasible
(that is, satisfy the non-negativity constraints). If a is small enough then
Uh(z") > Ut(z*) for 1 < h < M. If B is enough, these plans all incur small
default penalties; in particular, if 8 is small enough, Uh(zh, ot ¢t D) >
Uh(zh) for 1 < h < M. On the other hand, continuity of utility functions
implies that
Ub(z*(N,A)) = Ut(z"())) as N — o0
and
Uh(z*(\)) —» Ur@a") as A — o0

It follows that, if N, A are sufficiently large then
O*(2", o, 9", D*) > UM"(N, V)
Since UR(z"(N,\)) > U*(n*(N, X)), we conclude that

Uh(z*, ", o, D) > UM (n*(N, X))
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provided that N, )\ are sufficiently large. This contradicts individual opti-
mization at equilibrium, so we conclude that z is in the core of the complete
markets econoniy, as asserted.

The same argument shows that (the replication of) z belongs to the core of
every replication of the complete markets economy. By a result of Aliprantis,
Brown and Burkinshaw (1987), which is the infinite dimensional version of
the Debreu and Scarf (1963) core convergence theorem, it follows that =
is a Walrasian equilibrium allocation of the complete markets economy. In
particular, z is a Pareto optimal allocation.

It remains to show that U*(n"(NV,))) — U*(z*) for each trader h. If
not we could (passing to subsequences if necessary) find a trader (say trader
1) and a ¢ > 0 such that U*(9*(N,))) < U'(a') — (/2 for N, ) sufficiently
large. We may then find a sufficiently large index r and a feasible profile of
consumption plans (y*) such that

y*(w) =0
for w > r and all A,
Ub(y*) > UM(a) > UM(n*(N, )
for h # 1, all N, ), and
U'(y') > U'(n*(N, )))

for all N, ). Let a, 8 > 0 be positive real parameters. Using the same ideas
as above, we may construct portfolios ", " such that

lwh(w) + div(p")(w) — div(Y*)(w) —y*(Ww)|<a for 1<w<r
and
Exp(|d* + div(¢") —y"|) < B

and $(p* — ¢*) = 0. If ) is sufficiently large then there will be no default
in states w < r. If 3 is sufficiently small the total default penalty will also
be small. Hence, if we choose o sufficiently small we may construct, just
as above, a collection of plans that are superior to the equilibrium plans in
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ENA (provided N is sufficiently large) and have the property that at least
one of them is budget feasible. This is a contradiction, so we conclude that
UM(n*(N,))) — U*(z"), as desired. This completes the proof. O

- Proof of Theorem 5: The proof is quite similar to the proof of Theorem 4.
Fix € > 0, the default penalty A > A9, and a Walrasian equilibrium (=, (z"));
there is no loss in normalizing so that the price of date 0 consumption is 1.
Let a, 3,4 > 0 be positive real parameters and let r be an integer (all to be
chosen later). Define consumption plans z* by

3h = {max{m"(s) —2a} f0<s<r
0 ifs>r

As in the proof of Theorem 4, we may choose a collection of finite portfolios
", * of the securities {A4,} such that

0 < wh(w) + div(e")(w) — div(P™) (W) < (W) +
for w <r, and
Exp(jw*(w) + div(p") — div(y™) — 2*|) < B
and
S -4 =0
If we choose r sufficiently large and « sufficiently small then

Exp(|z" — #*|) < ¢/2
[UR(zh) — UR(EM)|" < ¢/4

The portfolios ”, 9" involve only finitely many securities; A,,..., An,,
say. For N > Ny, let £V* be the security market in which the securities
Ai,..., AN are available for trade and the default penalty is A. From this
data, we construct an e-equilibrium (q, (K", &k, o b, D")) for EN*. Define
security prices ¢ by ¢(n) = 7 - A,, Conjectures K* concerning the securities
Ay, ..., An, predict no default in states w < r and complete default in states
w > r; conjectures concerning the securities A, with n > Nj are that default
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is total in all states. For traders 1,...,H — 1, portfolios ©*, 1" are as above;
we require that consumer H purchase (in addition to the portfolio ¢ above)
and sell (in addition to the portfolio ¢H above) a small quantity 7y of each
security A, with n' > Np. Finally, we arrange deliveries consistent with no
default on securities Ay, ..., An, in states w < r, total default on securities
Ay,..., AN, in states w > r, and total default in all states on securities
A, with n > N;y. These plans are feasible. If 3 is sufficiently small, then
default penalties for each consumer do not exceed €/2. Using this fact, and
keeping in mind the conjectures and that A > Ag, it is easily checked that
(q, (K, 2k, ot ot Dh)) is an e-equilibrium. Moreover, the fact that default
penalties for each consumer do not exceed ¢/2 implies that

|U* (3", 0", P, DP) — U(zh)| < /2

What we have accomplished is not quite what was called for, since we
have chosen the index N, in a way that depends on the particular Walrasian
equilibrium (7, (z"*)), while the statement of Theorem 5 calls on us to choose
Ny in a way that depends only on ) and ¢, but the desired uniformlity is
easily obtained. The e-equilibrium allocation we have constructed is close to
the Walrasian equilibrium allocation (z*) and hence close to every Walrasian
equilibrium allocation (Z*) that is close to (z*). Since the set of Walrasian
equilibrium allocations is compact, uniformity follows by an obvious com-
pactness argument. O
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