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Abstract

The paper describes a procedure for examining short-run dynamic
interactions among macroeconomic models by constructing aggregate state
space submodels for dynamic modes corresponding with short-run response
patterns. Using the quarterly real GNP from the U.S., West Germany and
Japan for 1974.III to 1991.I, we examine dynamic interactions in the
frequency ranges roughly comparable with a range of business cycle
frequencies. We find that there is no (world wide) shock common to the
three countries, even though the West German and Japanese real GNP are hit

by a common shock.



1. Introduction

Intercountry interactions of economic variables have been examined in
the context of policy coordination in general, and of business cycles analy-
sis in particular. For example, the notion of world wide versus country
specific shocks have been examined in the context of policy coordination
questions in Aoki (1973). Gerlach and Klock (1988) use an unobservable
component model with one international and several domestic components to
model international business cycles. Stockman (1988) decomposes the growth
rates of several countries into components specific to countries, those
specific to industries plus idiosyncratic components and concludes that most
macroeconomic fluctuations may not be attributable to technical - shocks
alone. Solow residuals of several countries have been compared by Costello
(1989) using similar decomposition, i.e., error component models, in an
attempt to shed light on real business cycles.

These works all focus on co-movements of real GNP fluctuations, by
assuming at the beginning the existence of significant or non-negligible
amounts of world wide shocks. In this paper we identify several structural
models of short-run dynamic interaction patterns of real GNP of the U.S.,
West Germany and Japan.1 These models are then used to examine the
question of relative contributions to real GNP movements (in the business
cycle frequencies) of common and country-specific shocks. This approach is
more general and informative than that which posits a priori a particular
decomposition of shocks into world wide and idiosyncratic components which
is shown to be a special case of our approach. We also introduce several

tools of analysis which are useful in this type of investigation involving

1A sequential Chow test as well as a more sophisticated test indicate a
structural shift in the Japanese real GNP in the period before 1974I1. To
avoid a possible structural break we use data from 1974I11 to 19911I.



trending time series.

By dynamic interaction in the short-rum, or in business cycle frequency
ranges, we mean dynamic phenomena which occur in a time span of roughly four
to six years. Responses (called dynamic mode(s) in this paper) of the
eigenvalues with magnitude close to one are taken to be the trend component
by definition. Dynamic modes due to eigenvalues less than .9 in magnitude,
says, are the ones responsible for the phenomena in the business cycle
frequencies. To see this, observe that in dynamic modes with eigenvalues
larger than .93, say, effects of initiél disturbances persist, i.e., do not
disappear in the time span of interest, while those with eigenvalues .9 or
less do in quarterly models. Effects of initial disturbances are reduced to

less than 8% in 25 quarters. Note that .9925 - .75, .9525 = .28, but .9025

= .07 and .8925 -

.05.

These numbers suggest that main features of short-run dynamic
interactions in macroeconomic models are produced by dynamic modes with
eigenvalues not greater than .9 in magnitude, and are captured by short-run
dynamic models with dynamic modes in these ranges. To focus on dynamic
phenomena in business cycle frequencies, then, it is convenient to decompose
or pre-filter time series data to retain only dynamic modes that correspond
to these frequency ranges. Such a use of decomposition amounts to aggrega-
ting full models to build submodels which inherit only dynamic modes with
eigenvalues of magnitude less than .9, say.2

Taking the first difference of the logarithms of the trending data

series to eliminate "trend" components, such as taking the logarithms of the

ratios of data values one year apart, has been a common practice for a long

2Aoki (1968) proposes a procedure of dynamic aggregation to retain only
a prescribed subset of eigenvalues of the original model. Aoki (1988)
describes an improved procedure to accomplish the same.



time. This practice has been criticized for loss of longer-run information
and alternative detrending schemes have been proposed to deal with the so-
called unit root or random trends. Unfortunately, test for unit roots are
frequently inconclusive because of low power of tests.3 These tests usual-
ly can’t distinguish time series with eigenvalues of unit magnitude from
those near one with magnitude .98 or greater, for example. For our purposes
it is not necessary to single out eigenvalues of unit magnitude. Dynamic
modes with eigenvalues near and at one, if such exists, all cbntribute to
response patterns which die out slowly if at all, i.e., trend movements,
which are not immediately relevant to shorter-run behavior of real GNPs. We
use a procedure for separating out this broader class of low frequency
components from higher frequencies ones in data, called a two-step method in
Aoki (1990).

Section 2 briefly describes this two-step method, and two other ways of
extracting trends from data in models of three real GNPs. Once is to extend
the average-difference way of representing dynamic interactions of two
country models described in Aoki (1981) to models of three countries when
the three countries are not necessarily specified symmetrically, as in the
original two-country model. The original method has been applied by
others4 and later extended.5 The extension described in this paper is
different. We show that the dynamic model for the average is a special case
of models obtgingd by the dynamic aggregation in the sense of Aoki (1988).

i.e., by the first way of defining trends as behavior patterns with the

3There is a large body of literature. Sims, Stock and Watson (1990) is

a recent example.
4See Miller and Salmon (1984), and Buiter (1990), for example.

5See Fukuda and Hamada (1988) which describes n-country models in the
average-difference scheme suitably generalized.



eigenvalues of largest magnitude. The third way is to modify the reduced
rank regression models for VAR time series with unit roots, such as in
Johansen (1988), to eliminate (near) unit roots shared by all the components
of the data vector. The relation of this approach to the first is also
indicated.

Section 3 summarized the estimated model from the second step. Dynamic
relations among the three real GNPs are conveniently summarized by the
impulse response patterns of the estimated model to structural shocks. This
requires that we solve the identification problem after we estimate the
dynamic model. This is taken up in Section 4. Two models are chosen as
"hbest" ones from all the identified models. In both models West Germany and
Japan share common shocks in the business cycles, but shocks to khe U.S. are
not shared by the other two countries. Thus, there is no world-wide co-
movements in the real GNP business cycles, while a model which presupposes
the decomposition into common and idiosyncratic shocks indicates a signifi-

cant presence of common shocks. The paper concludes with Section 5.

2. Trend Determin on6
We first summarize a state space common trend representation following
Aoki (1990, Ch. 11). This representation is the one actually used to

estimate the short-run model for the business cycles.

6A scheme for extracting a trend, not discussed here, is due to
Whittaker (1923) who defined the trend as that time series which minimizes a
weighted sum of the squared deviation of the data series from the trend
series agg squares of a measure of smoothness of the trend series in terms
of the k"' difference. Much later Akaike (1980) gave a Bayesian framework
for choosing the weight and k. This scheme is also used by Hodrick and
Prescott (1981).

The trend series thus constructed may be smoother than that obtained by
the two-step procedure described in this paper since the former uses the
data in the whole sample period, while the latter uses only the data up to
the point where the trend is being extracted.



Common Trend Representation of Nearly Cointegrated Series

In the above subtitle, by nearly cointegrated we mean that data series
share a common slow dynamic mode due to the eigenvalue with the largest
magnitude.

Let p be the largest eigenvalue of a dynamic matrix A in a state

space representation for "trending" data series (yt},

Repl ™ Axt + noise (1)

Ye = Cxt + noise.

Let p be the corresponding normalized column eigenvector

Ap = pp, P'P = 1.
All the other eigenvalues of Matrix A are strictly smaller in magnitude

than p. Let
Q'A=0QA, Q'Q-=1

be the corresponding row eigenvector expression, i.e., the row space of Q'

spans the subspace corresponding to all other eigenvalues of A. Note that
p'Q=0.

Change the coordinate system so that the components of vector X

change into Te and .

t
x_ = [p,Q] ['t]

Since r_=p’'x_ and n_ = Q'x they are called aggregated subvectors of
t t gg

t t

Xe» each of which inherits dynamic modes associated with p and A,

respectively. To see this, note that the dynamics are now represented by

t+l '
= 1, e+l
t+l



el

= [, |alp.Ql + noise.
t

! S
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S = p'AQ.

Note that

where

From (1), the data series are related to the newly introduced variables by
Ye = Cprt + CQnt + noise.

The variable Te represent a slow dynamic mode shared by all the components
of Yer i.e., the lower frequency elements in Yer and the seéond and the
third term higher frequency components.

This common trend representation of the data shows that any vector
orthogonal to Cp can be used to eliminate the slow dynamic modes, i.e.,

the trend in the data series. Suppose B 1is such that B’Cp = 0. Then
ﬂ’yt - ﬁ'Cth + noise.

Since N, is generated by a dynamic process with spectrum of A, ﬂ'yt
exhibits only those dynamic modes of A and not that due to the largest one
p. The space (Cp)l is the space of cointegrating vectors in this extended
sense. Its dimension is two in the real GNP series of this paper.

In the first step of the two-step procedure, the trend component can be
interpreted-asmthe asymptotically most efficient instrument in estimating
the disaggregation matrix H = Cp, where Ye = Hft + residuals (Aoki, 1990.

Ch. 9). It is given by
Te ™ Ve

where



s-zvrY, R- cov(y 1)
with the data stacked as Yeo1 Ve denoted by
_ t-1
Ye-r T [ - |
t-2

and where matrices £ and V' appear in the singular value decomposition
of E(yty;_l) = USV’. Since the orthogonal projection of y, onto the

a

subspace spanned by y;_l denoted by E is
E(y_;y- ) = USV'RL yT
Yerle-1 Ye-1
- Urt,

this definition amounts to selecting a common trending component as 7 and
H by U in decomposing the data into a slow-moving common trend Yetr and

higher frequency residuals, Ye = Hyct + residual.

G \4 - ence resent

We next describe how the average-difference framework originally
proposed in Aoki (1981) for a two-country model can be extended to this
trivariate real GNP series. In a symmetrically specified two-country
structural or bivariate time series model, the average and the difference of
the two components are defined by dividing the sum and the difference by 2.
The original purpose of this transformation is to render the joint dynamics
for these newly defined variables recursive or decoupled, i.e., to transform
the dynamic matrix into (block) triangular or (block) diagonal forms in the
special case of two countries having the same model parameters (elasticit-
fes). In the case of time series, the average and the difference becomes
uncorrelated if the data is normalized to have the same variance.

To illustrate the nature of the extension simply, consider a simple

model VAR(1l),



Ve = #e1 * e
with the dynamic matrix

be
¢ = a bj. (2)
ba
With this dynamic matrix ¢ (dropping time subscript), y, = (1,1,1)y

possesses eigenvalue of ¢, p = a + b + ¢ under some conditions on the
parameter values. (As we later show this symmetric interaction pattern is
not consistent with the time series data.)‘ The generalized averaging vector
for a non-symmetric ¢ is now defined as the row eigenvector for the
largest eigenvalue of the dynamic matrix ¢, exactly as described in the
previous subsection on the common trend representation by calculating the
eigenvector corresponding to the largest eigenvalue of ¢.

A related procedure is the following: Let p be the largest
eigenvalue of the dynamic matrix ¢, not necessarily symmetrically

specified. Let gq' be its normalized row eigenvector
q'¢ =q'p,q'q = L.

Then let Yar = 9¢-

Its dynamics are
Yar = MYae-1 ¥ V¢

Let ¢6R = RA, R'R = 1 A= diag(Al,Az),

2!
where |Ai| <p, i=1,2.
Note that q'R = 0. Define

dc - R Yeo

ne[1]- e



. It at at
i.e., Ye = kel |ag = [q,R] de

and hence dt = (R <¢Sq)yat_1 + Adt~1 + R €.
The data vector is now representable as
Yp = W, * R, (3)

where is the "average" and dt is the difference for the three

yat
country model. When ¢ is given by (2), q’ is proportional to (1,1,1).

This procedure extends naturally to higher order VAR(q), q = 2 as well.

Reduced-Rank Regression Method

This last subsection relates a VAR representation of cointegrated
series to the state space one described earlier. We do not use this
representation in this paper because of the inherent limitations noted at
the end of this section. It is included here since this type of model is
widely known to the profession.

Let a VAR representation of Ye be given by7
$(L)Y, = n. %)

with a mean zero, weakly stationmary n_. Suppose that p 1s the largest

eigenvalue of this model and, ¢(1/p) » 0 1is of reduced rank, pé(l/p) =

aB', say, where a and B are rank 2 macrices.8 Define
¢*(L) = $(L)-pLé(1/p) .
1-pL

and rewrite (G)~

7Although VAR models are almost exclusively used in the literature on
macroeconomic time series, state space representations easily allow for ARMA
models, as shown in Aoki (1990), for example. The MA models for noises are
sometimes important.

8If the rank is one, then the eigenvalue p 1is repeated. This is
highly unlikely to occur and is excluded.
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- * =

¢(L)y, = pLb(1/p)y, + ¢#*(L)6y, = n,
where Syt - (l-pL)yt,
i * - -afB' 5 .
ie., ¢ (L)6yt af Ye1 ¥ O¢ Since 6yt and n_ are weakly stationary
ﬂ'yt_l must also be so, i.e., the components of y's are cointegrated.
As an example consider VAR(2)

Ye = #1Ye1 t $2Ve2 T e )
The model becomes

8y, = aB'Ye y ¥ #38Ycp * e
where ¢1 + ¢2/p - pl = -af’

4 *

an ¢y = =9,/p.
Note that the vector S must be orthogonal to Cp in the common trend
state space representation. To see the relation between the latter two
representations more concretely, consider the example above, with the state
vector defined by

Yt
X bl .
t t-1

The dynamic representation (5) becomes
AX + € 1,0
Xe = BXen ol Ye = (I3 0lx,

1 ¢21
with A= t 0. (6)

The eigenvalue-eigenvector relation
1 42| P1] 1
=p
I O 2 2

9This is true only when the contemporaneous components of y,_ are
cointegrated by assumption. There are examples in which some components of
Ye and Ye.1 Bre cointegrated but not Ye and Yeo1
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yields yt - (13 0)xt - Plft + Qlyt + nt’
where Q = (I, 0)Q,

we see that ﬂ'yt is weakly stationary if and only if ﬂ'pl = 0. In words,
the two dimensional subspace orthogonal to 121 is the space of
cointegrating vector pB's. Put differently, 7 = p'xt can be used as a

trend which is shared by the components of Y. 8s Crt and the residuals

Ye - Crt have only dynamic modes of to A, with magnitude less than »p.

Comparisons

The previous subsections are meant to convey to the reader our view
that use of the row-eigenvector corresponding to the slowest dyngmic mode of
data vectors as the aggregation vector is a convenient organizing device
conceptually. Although this is not the place to comparatively discuss
numerical behavior of the alternative methods for trend selections, our
experience indicates that the combination of the trend extraction by the
first step of the two-step procedure with the use of left-eigenvector to
change the coordinate system in which to represent the model improves, in
some cases, statistics of the residuals from the second step of the two-step
procedure. This device is found to be useful in some modeling context with
exogenous signals also, even though we have not touched on the issue of

exogenous signals in this paper.

3. Estimated Model

All series are divided by the first data value component-wise, so that
the logarithms of the series start with zero values in the three components
The first step of the common trend representation procedure extracts the
first order dynamics with the eigenvalue .97. The residuals from this first

step, denoted by w_, are then modeled in state-space form
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z - : - w=Hz_+
£+l th + Get, wt \* zt et

where w is the sample mean of the residuals from the first step. A three-
dimensional state vector z, is chosen to be sufficient, i.e., a three-
dimensional dynamics produce the innovation vector e, which is sufficient-
ly uncorrelated over time to approximate a white noise sequence, measured by
the DW statistics which are 2.01, 2.11 and 1.93 respectively for the three
components of e, .

The dynamic matrix, F, of this second step has eigenvalues .89 and a
pair of complex eigenvalues with the real part .84 and the imaginary part
.22. The period of the pair is 24.4 quarters.

The impulse responses to innovation shocks are given by

Fk-l

H G; k=1,2,...

In this paper we are primarily interested in the impulse response patterns
of this short-run model with respect to structural shocks. In the next
section we relate the structural shocks to the innovations so that we can

use the above formula to calculate the effects of structural shocks.

4, Identification Prob

Having retained for further modeling purposes only faster dynamic modes
corresponding to the eigenvalues of less than » in magnitude, and having
estimated a dynamic submodel for them, we next relate the estimated model to
a structural model in order to analyze effects of structural shocks. More
specifically, we relate the innovations in the estimated time series model
for short-run dynamics of the data series to structural shocks. We do not
use a common but somewhat arbitrary procedure of variance decomposition for
VAR models, and adapt the procedure used by Bernanke (1986) and Sims (1986)

to state space models. This section describes this identification method
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and the results for the three real GNP series.

A structural relation for the data implies a particular relation
between the contemporaneous components of the three real GNPs. When only
contemporaneous variables are collected from a structural model, it defines

a relation
Ye = ¢nt + lagged terms (7)

where Ye has three components y .., ygt 'and yjt’ the real GNP of the
USA, West Germany and Japan, in that order, and similarly for n_. This
relation may be thought of as follows.

Let ¢(L)yt - G(L)nt describe the unknown structural model, where
#(e) and 4(e) are some finite order matrix polynomials of the lag
operator L, which governs the three dimensional data vector, Ye- We
assume that structural shocks are such that its means, conditional on the
past data, are zero. Subtract the expectation of both sides of the struct-
ural equation, conditional on the past data, from it to obtain the
contemporaneous relation between the innovation of the data vector with
respect to its own past and the structural noise ¢0et - oont where the ¢0
and 00 are the constant matrices of the respective lag matrix polynomials.

Assuming that ¢0 is non-singular, we derive a relation equivalent to (7)

where ¥ = ¢8100,

"ft"bnt

which is basic to what follows. The matrix ¥, therefore, relates the
structural shock to the innovation vector, and determines how the structural
shock is distributed among the components of the data vector, as shown in

.
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The estimated covariance matrix of the innovation vector, 4, is

therefore related to the covariance matrix of the structural shock, X, by
A = Yy’ . (8)

A three-dimensional model has been estimated for the detrended real GNP
series. The estimated short-run dynamics has one real and a pair of complex
eigenvalues with the period of about 24.4 quarters, and the innovation
covariance matrix

.1215 .0368 .0293
103 x A = |.0368 .1067 .0337
.0293  .0337 .0970
The estimated innovation vector series has the DW statistics, 2.01, 2.11 and

1.93 respectively, and the estimated model is deemed satisfactbry.lo

The unknown matrices % and I must be estimated subject to (8).
Since (8) provides only six independent relations, the elements of the
matrices ¥ and I must be constrained in some ways to allow for only six
independent parameters if the parameters are to be (uniquely) determined
(just-identified).

Without loss of generality, the diagonal elements of the matrix ¥ can
be normalized to be one, and we assume that the three components of the
structural noise are uncorrelated, i.e., the matrix I is diagonal. This
uses up three of the six relations. In the just identified cases, we must
introduce three zero restrictions to determine the matrix ¥. There are 20
such ¥ maE?iEes. Of these, 6 of them are eliminated outright since these
imply that an off-diagonal element of A is zero, which is not empirically

supported by the estimated A as shown above. For example, matrix ¢

1OEstimated dynamics and statistics of the innovations vary as the size
of the Hankel matrix is changed. The size is chosen to produce a pair of
complex eigenvalues with the period of about 6 years or less.
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specified as

00
1l o
e 1
together with a diagonal Z implies that Al,l is zero.

The remaining 14 possible matrices and the associated diagonal elements
of matrix Z are solved.11 A particular matrix ¥ implies the relation

among the contemporaneous real GNPs

Iy = n (9

where the matrix 0 is ¢-1 premultiplied by a diagonal matrix D in such
a way that the diagonal elements of @ are all ones. There are six models
with the values of the trace of DZD closer to each other.

The best in terms of the value of the trace of shocks in (7), denoted

as ml, has the estimated ¥

.280 .302
1 .347
0 1
with the variances s, = .105 x 10-3, S, = .095 x 10-3, and S, = .097 x

10-3, where s, = var(ni), {=1,2,3, i.e., the innovations in the real

i

GNPs of this model are related to structural shocks by

e =n, + .28n, + .30n
u

1 2 3 eg -n, + .35n3; ej = ng,

where the subscript refers to a particular country, u, for the U.S., and

so forth. This matrix implies that (9) becomes in this model
Yy = .28yg + .20yj +n,

- 34 +
f: Yy T ™

11Some of the resulting equations need be solved using a symbol
manipulating software.
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Yj -n3

with the trace value of .297 x 107,12 Although n,, which is identical to

the Japanese real GNP innovation, appears in the other two country’s real

GNPs the percentages in the innovation variances are small; in the U.S. case

2

.30" x s is about .072, and in the German innovation .352 X s

3/811 3/892

is about .111. The shock ny is specific to the U.S. real GNP.
Another class of matrices ¢ introduces four unknown parameters with
the constraint that the second and the third components of Z are equal to

achieve the just identification. The best model in this class, denoted as

m2, has the form

.286 .294
¥ = 1 .318].
.030 1
with s, = .105 x 10'3, S, = S5 = .097 x 10'3.

Note that it is very similar to the matrix ¢ estimated for model ml.

The relation (9) of this model is

- 28 + .20 + n,; - 32 + .99n,; = .03 + .99n
Yo Yg Yj 1 Yg Yj 2 yj Yg 3

with the trace DEZD being .295 x 10'3.13 Comments similar to the one

above apply to this class of models, i.e., no dominant common shock can be

12The second best is

A .30yj + 0y yg - é24)’u + .O4yj + ny; Yj - 0,

with the trace value of .298 x 10 ~. The third is
Y, = .34yg + nli3yg =N,y
with the trade at .299 x 10 ~.
A close fourth is

Yy = Op5 yg - 30yu + ny; yj - .16yu + .26yg + n,.

j - .16yu + .26yg + n,

13A close second of this class has the form:

- . - . - 9
Yy = M8 yg .24yu + .25yj + .99n2, yj .23yu + .025yg + .9 n,
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found.

A third class of models incorporates the assumption that structural
shocks are composed of common (world) shock plus country-specific shocks and
posit

n=hn +n
c s

where n, is a common shock and the vector h distributes it among the
three real GNPs, and n_ is uncorrelated with n, and has a diagonal

covariance matrix. Together with (7), this assumption posits that
Ye = p(hn +n )+ lagged terms

As it is, this model has too many parameters. If we set ¥ to be the

identity matrix and normalize the vector h to be |1 h1 hz]', then there
are exactly six parameters and six relations: var(nc) = ,032 x 10-3,
var(n ) = .090 x 10'3, var(ng) - .064 X 10'3, var(nj) - .070 x 10’3, where

the subscript indicates common or country-specific shocks, and h1 = 1.150,
and h2 = .916.

If this representation is used, then about 26% in the U.S. and Japan,
and about 40% in Germany of the noise variances are due to common shocks.
It must be admitted, however, that this representation is rather special

since ¢ 1is constrained to be the identity matrix.

5. Conclu i

1f the third class of model specifications is adopted a priori, this
amounts to assuming that the coefficient ¢0 in the original ARMA model is
not of the full rank. We can see this because the assumption implies that
there are only two linear relations ;-ohg the components of y's to

eliminate the term depending on the common shocks,
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a'y =a'n; and B'y = 8'n
s ]
where the vectors a and pB are independent, and are orthogonal to the

vector h. There is no third linearly independent relation like this. 1In
other words, there is no full rank matrix such that

¢oyt - ooht + .
for some coefficient matrices with ¢0 nonsingular as we have assumed at
the beginning of Section 4.

We have examined all possible contemporaneous relations among the data
consistent with the estimated innovation covariance matrix and selected two
best models to conclude that the U.S. real GNP series contains country-
specific shocks not shared by the other two series.

We have already shown that the best two models do not show the
existence of any significant common shocks. Let us examine the implication
of another model which is the second best model in the first class. It

states that the innovations are related to the structural shocks as follows:

e =n, + .30n
u

1 e =mn, + .24n, + .35n,; e. = n
1 3’ g

2 1 30 %5 7 M3
which is seen to have ng in common. However, .32 X s3/A11 is about
.066, although .352 X s3/A22 is about .102 where s, = .089 x 10_3.
Therefore the effects of n, on e, is negligible.

We therefore conclude that the real business cycles in the U.S. contain

behavior patterns not shared by the other two business cycles, at least for

the period of data examined in this paper.
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