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Abstract

The paper examines the impact of firm characteristics, market structure and state
regulations on the adoption of automated teller machines (ATMs) by banking organiza-
tions. A grouped duration data framework is used to investigate the effect of these factors
on the hazard rate of adoption. The analysis shows that larger firms, especially those
owned by bank holding companies, were earlier adopters. At any given time, the propor-
tion of prior adopters in a market increased the likelihood that a non-adopter would do
so. Market concentration increased the hazard rate if only a small proportion of firms in
that market were using ATMs. Firms operating in urban, high wage markets and experi-
encing relatively rapid growth of deposits, especially demand deposits, were more likely
to introduce ATMs. The mandatory sharing of ATM systems required by some states
had a negative, though not significant impact. However, the conditional probability of
adoption was higher in states where branching was either prohibited or restricted and
off-premise ATMs were allowed. The study also snows that the effect of the explanatory
variables changed across different phases of ATM diffusion. Further, it is demonstrated
that not accounting for the grouping of the data and/or the use of restrictive parametric
hazards, as in some past analyses, affects both the estimated coefficients and their stan-
dard errors, and may even lead to incorrect qualitative conclusions regarding the impact

of certain covariates.

KEY WORDS: Duration Models, Grouped data, Time-varying parameters, Diffusion
of technology, Automated Teller Machines.



1 Introduction

Technological developments in Electronic Fund Transfer (EFT) systems since the mid-
1960s have revolutionized the nature of banking operations. Automated clearinghouses.
regional and nationwide automatic teller machine (ATM) systems, and developments
in credit authorization and homebanking products have, besides making retail banking
more attractive to commercial banks, transformed the the way transactions are con-
ducted. Since their appearance in 1969, ATMs have been one of the most successful EFT
services. This paper examines the micro-aspects of ATM diffusion in the US with a view
to evaluating the impact of firm characteristics, market structure and state regulations
on the adoption of this new banking technology.

The analysis shows that larger firms, especially those owned by bank holding com-
panies, were earlier adopters. At any given time, the proportion of prior adopters in a
market increased the likelihood that a non-adopter would do so. Market concentration
increased the hazard rate if only a small proportion of firms in that market were using
ATMs. Firms operating in urban, high wage markets and experiencing relatively rapid
growth of deposits, especially demand deposits, were more likely to introduce ATMs. The
mandatory sharing of ATM systems required by some states had a negative, though not
significant impact. However, the conditional probability of adoption was higher in states
where branching was either prohibited or restricted and off-premise ATMs were allowed.
It is also shown that the effect of many of the covariates changed across different phases
of ATM diffusion.

The hazard specification for analyzing the time to first adoption of ATMs is based on
Prentice and Gloeckler (1978). The empirical model can be interpreted as a natural gen-
eralization of the probit/logit specifications used in the vast multi-disciplinary literature
on adoption and diffusion of technical change (see, Rogers (1983), Thirtle and Ruttan
(1987), Feder, Just and Zilberman (1985) for surveys). It allows for the grouped nature
of the available data, time variation in the explanatory variables, and also the possibility
that the impact of the explanatory variables may change over the course of technology
diffusion. The baseline hazard is constant over each (grouping) interval but may differ
across intervals and represents a step function approximation to the underlying true haz-
ard. The results demonstrate that failure to account for grouping of the data and/or
the use of restrictive baseline hazards, as in some past analyses, dramatically affects co-
efficient estimates and their standard errors, and may even lead to incorrect qualitative
conclusions regarding the impact of certain covariates.

Hannan and Mcdowell (1984,1987), Karshenas and Stoneman (1990), Rose and Joskow
(1990) and Saloner and Shepard (1991) utilize a duration modeling framework to exam-
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ine technology adoption. While these empirical studies represent advances in modelling
diffision. they use continuous time approximations and/or restrctive parametric hazards
to estimate models that are based upon grouped duration data. When the grouping
intervals are very small compared to the rate of event occurrence it may be acceptable
to ignore the discrete nature of the data and treat them as if they were truly continuous.
However, when the intervals are large such an approximation may not be justified. Fur-
ther, the partial likelthood method of Cox (1975) is difficult to implement in the presence
of large time intervals due to the occurrence of ties in the data and may even be inappro-
priate (see Farewell and Prentice 1980; Prentice and Gloeckler 1978). Although methods
to handle ties in the data have been developed in the literature (see, for example, Breslow
1974) they are generally ad hoc in nature and/or yield approximate likelihoods that are
computationally not feasible. An additional problem with the diffusion studies mentioned
above is that they make no attempt to control for the effects of unobserved heterogene-
ity. This may be a serious problem since they use restrictive parametric baseline hazard
functions to model the timing of adoption.

ATMs have been introduced by banks for many reasons: (1) to increase their share
of the retail banking market and to attract new customers by offering more flexible and
convenient services. It was hoped that ATMs would lead to higher levels of individual
account balances and make small credit loans more easily available; (2) it was envisaged
that these machines could perform many deposit, withdrawal and transfer operations
at lower cost than human tellers. Further, they could act as surrogate branches and
decrease the number of hours the regular branches needed to be open; (3) they could be
used for marketing purposes to test the demand for services in a particular area before a
regular branch was established. On the cost side, besides the expense of setting up and
maintaining an ATM system (or obtaining access to one), the banks have to deal with
problems of malfunction, fraud, robbery and vandalism (see Baker and Brandel (1988)).

ATM systems typically require high-capital investments and have high fixed costs
(Baker and Brandel (1988)). To a large extent such investment expenditure is a sunk
cost and hence irreversible; further, these expenditures can be delayed allowing the firm to
accumnulate more information about costs, benefits and market conditions before commit-
ing resources. Pindyck (1991) is an excellent survey of models of irreversible investment.
He argues that the nature of such investments invalidates the usual net present value rule
and that irreversibility “makes investments especially sensitive to various forms of risk,
such as uncertainty over future product prices and operating costs that determine cash
flows, uncertainty over future interest rates, and uncertainty over the cost and timing of
the investment itself.” For example, see Favero, Pesaran and Sharma (1991) where an
irreversible investment model is developed to examine the decision of oil companies to



tap known oil reserves, and a duration framework is used to empirically analyze the time
lag between discovery and exploitation of oil fields on the UK Continental Shelf.

The theoretical literature on technology diffusion argues that potential adopters of
a new innovation in a market (or industry) will generally have different adoption dates.
At each point in time, firms evaluate the innovation’s profitability (i.e. compare the
expected streams of benefits and costs, factoring in the associated uncertainties) and make
a decision regarding adoption. The heterogeneity in the adoption dates reflects different
valuations of the technology relative to costs (see, David (1969}, Davies (1979). Mansfield
(1961,1968) and the surveys by Reinganum (1989), Stoneman(1983) and Thirtle and
Ruttan (1987)). This may be due to differing firm characteristics (for example, size,
managerial willingness to take risks, product mix, organizational factors, information
about the technology), market structure (for example, concentration and number of firms
in the market) and state regulations pertaining to the use of the new technology.

In the next section, a general duration model is specified to analyze the impact of the
various factors mentioned above on the adoption of ATMs. The third section contains
the data description and the fourth section discusses estimation results. The last section
presents some caveats and concluding remarks.

2 Model Specification

There are two general approaches to handling the grouped nature of observed duration
data. The simplest is to treat time as if it were truly discrete. An alternative approach is
to use a continuous time model taking account of the fact that the data on the duration
of an event is grouped into intervals. This approach put forward by Prentice and Gloeck-
ler (1978) and Thompson (1977) in the biometrics literature, has been recently used
in economics by Kiefer (1988), McCall (1990), Meyer (1990), and Sueyoshi (1991a,b).
While both these methods may at times yield similar results, the former method leads
to inferences that are sensitive to choice of (grouping) interval length, whereas the latter
does not suffer from this defect. The specification given below uses the latter approach.

Consider the case when time to adoption of a new technology is grouped into intervals
[tk=1,te), k=1,2,...,m+1,t=0 and 41 = 0o, with adoption in the interval {tx_;, )
recorded as t;. These intervals are the same for each firm and t;, means that firm z,: =
1,2,..., N, adopted the technology in interval k; € 1,2,...,m + 1. In addition, informa-
tion is available on a 1 x € vector of covariates X;(k),i =1,2,...,N,k=1,2,...,m+1,
for each firm in each interval of time. These covariates, comprising both firm and market
characteristics, can vary over the intervals but are assumed fixed within each interval.



For notational simplicity, in the rest of the paper we will quite often drop the dependence
of the covariate vector on time. it being understood that X, changes across time intervals.

Let the underlying density of durations conditional on regressors X, and unknown
parameters 6 be given by f.(t. X,,8), with associated hazard function A(t. X,,6). The
probability of firm i not adopting in the k** interval given that it did not adopt in the
first (k — 1) intervals is given by

S(tk, X;,6)
S(tk—lv XHO)

- e:l:p[/ttk )\(u,X,-,H)du} = (X, 0) (1)

Pr(t Z tklt 2 tk_l;X.-,O)

where S(t, X;, 0) is the survivor function. For a completed observation, the probability
of firm ¢ adopting in the k** interval [t,_;, tx) is

S(te, Xi, ) il S(t;, X, 0)
[1 - S(tk—tha)] I [S(tj—tho)J

k-1
= [1 - ak(Xivo)] H [aJ(Xivo)] (2)

The likelihood for a sample of N firms is the product over i of terms in (2). Censoring in
the data is easily handled by introducing an indicator variable é; that equals one if the
observation is complete and zero if it is censored. Besides assuming that the censoring
mechanism is independent of the parameters 8 of interest, we make the assumption that
censoring, if it occurs, does so at the beginning of the last int~rval of observation. Clearly
some such assumption is required given that adoption of ATMs are grouped into annual
intervals. The log-likelihood for the data (¢,,6;, X;),2 = 1,..., N is given by

N ki—1
L(§) = Z {5; In{l — ax (X:,0)] + > In [aj(X.-,O)]} (3)
=1 i=1

Kiefer (1988) examines interesting links between the grouped duration data models and
the ordered discrete choice framework. These relationships provide insights into estima-
tion, testing and interpretation of such models (see Sueyoshi (1991a,b) for discussion and

extensions).
The time dependence of the hazard and the impact of covariates are embodied in

specifications for ax. I use the Cox (1972) specification for the hazard function

A(t, Xi, 0) = Ao(t) exp(Xi(t) B) (4)
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where Ag(t) is the baseline hazard and the .3 vector a subset of #. Note, this is strictly
speaking a proportional hazard only if the covariates are the same function of time for
all firms. The conditional probability of surviving interval k can now be written as

ar(X;,0) = erp{—exp(X, 3+ )} (3)

where v = [* Ao(u)du and 6 = (#,4'). The above specification leads to the following
grouped data log-likelihood

N ky =1
L(8) = Z {6,- In[]l — exp{—exp(XiB+ )}] — Z ezp(X,-B+7])} (6)

i=t

=1

Model estimation involves numerically solving the likelihood equations formed by setting

the score vector equal to zero. With fixed time intervals, only mild restrictions are

required on the censoring mechanism and covariate vectors for the score to have an

asymptotic normal distribution (see Kalbfleisch and Prentice 1980). The estimated vs

allow us to calculate a step function approximation to the underlying baseline hazard.
Note that Han and Hausman (1990) specify the hazard function as

In [/()t' Ao(u)du] = X8 + € (7)

where assuming ¢; takes the extreme-value distribution leads to an ordered-logit spec-
ification. They put In[ f3* Ao(7)dr] = &, and estimate these constants along with the
B coefficients. It is easy to show that these §; are related to the s used above by the
relation & = In[Y%_, ezp(7;)] and that the Han and Hausman approach in this case
merely leads to a reparametrization of the likelihood in (6).

The above approach is “semi-parametric” in the sense that the effect of covari-
ates takes a particular functional form while the baseline hazard is specified in a non-
parametric fashion. The estimation of the model is based only upon variations in the
covariates across observations. The temporal variation in the mean of the covariates is
absorbed by the baseline hazard. Consequently, in the likely situation that the explana-
tory variables differ more across observations than over time, the semi-parametric model
insures consistency at the expense of a small loss in efficiency (see Meyer (1990)). This is
a powerful feature of this approach, given the lack of a priori knowledge about the true
form of the baseline hazard. A parametric form for the baseline hazard would provide
inconsistent estimates if the assumed specification is incorrect. Also, the baseline hazard
implied by the v parameters is easily examined graphically. For example, if the Weibull
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hazard 15 an appropriate specification. the natural logarithm of the integrated hazard
In[3,<k €xp(7,)] plotted against n(t;) should yield a straight line.
The hazard rate conditional on unobserved heterogeneity ( is factored as

MEXB[C) = CAolt) exp(X,3) (%)

A convenient and frequently used distribution for  is the gamma since it yields a closed
form expression for the likelihood (Meyer (1990)). If ¢ is distributed gamma with mean
one (an innocuous normalization) and variance o2, then the log-likelihood function be-
comes

~1

/ k-1 o7
L(8,0%) = Z l:l + o erp(X,(j)B—#‘y])}

=1 j=1
-1

-6, [1 + o Z exp(Xg(j)ﬂ—{-‘yj)] ’ (9)

=1

It is likely that the effects of different firm and market characteristics on the proba-
bility of adopting a new technology change over the course of the diffusion process. The
above hazard framework is flexible enough to allow for some or all 3 coefficients to vary
across intervals (see section 4.2 below). The time structure of the 3 parameters can be
evaluated using likelihood ratio or Lagrange multiplier tests (Sueyoshi (1991)).

Heckman and Singer (1984) have criticized the use of parametric heterogeneity in the
context of parametric hazard specifications on the grounds that the coefficient estimates
may be very sensitive to the choice of a mixing distribution. They advocate instead, the
use of non-parametric specifications for heterogeneity. However, recent research indicates
that specification of the mixing distribution is not as important whereas an appropriate
(flexible) choice for the base-line hazard is crucial and the estimates of the parameters
are typically more sensitive to the latter. For instance, Manton, Stallard and Vaupel
(1986) find that the specification of the baseline hazard function is far more critical for
estimation than is the specification of the heterogeneity distribution (see, also Han and

Hausman (1990), Ridder(1986) and the discussion in Lancaster (1990)).

3 Data

The empirical analysis uses data pertaining to the adoption of ATM’s by a sample of
3,689 individual banking firms operating in either an SMSA or a county which has been
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judged to approximate a local banking market. From the extensive population surveys
conducted by the Federal Deposit Insurance Corporation (FDIC), we have information
on the timing of adoption of the first ATM (by year) for the period 1971-1979, which
represented the first nine years of ATM usage by banking firms. All 3,689 banks in the
sample were in existence for the entire 1971-1979 period and 739 of these banks had
adopted ATMs by the end of 1979. This represents an adoption proportion of 20%, as
compared to an overall rate of 12% reported for the entire national population of 14.314
insured commercial banks in 1979. [My sample is slightly smaller than that used by
Hannan and Mcdowell (1987). They had data on 3834 firms of which 750 had adopted
ATMs by the end of 1979. Despite best efforts the information on the firms representing

the difference in the samples was not retrievable.]
In addition to year of ATM adoption, the dataset contains detailed information on

many firm and market/environment characteristics that may be relevant for a firm-level
analysis of ATM adoption. The following (time-varying) covariates are used in the study

SIZE firm size as measured by total assets (in millions of dollars)

GROWTH annual growth in market deposits in the previous year

MIX product mix, defined as ratio of each bank’s demand deposits to its total deposits
BHC dummy variable indicating ownership by a bank holding company

URBAN dummy variable indicating operation in an SMSA

WAGE prevailing hourly market wage rate for each year

ATMSHAR a dummy variable to indicate operation in a state which requires some
form of sharing of ATM systems

OFFPRM a dummy variable to indicate operation in a state where branching is either
prohibited or restricted but where off-premise ATM’s are allowed

CR. the three-firm concentration ratio, measured as the proportion of total market de-
posits accounted by the three largest banks

PROPN the proportion of banks headquartered in the market that had introduced an
ATM system as of the end of the previous year. Note that the variable PROPN
refers to proportion of firms in a specific banking market not to the industry as a

whole.



Interstate banking in the US is restricted and commercial bank operations are geo-
graphically constrained. Hence. the above data set documents a convenient experiment
which enables us to examine the adoption decision by different firms operating under dif-
ferent market conditions in the same industry. One drawback is that data on supply-side
factors (e.g prices, changes in technology) is not available.

The pattern of adoptions is shown in table 1 and the empirical hazard function which
is the fraction of non-adopters at the beginning of a year that adopt ATM technology
in that year, is displayed in figure 1. The empirical distribution function and it's 95%
confidence band are depicted in figure 2.

Table 2 contains the time-varying mean values for the firm covariates. Table 2(A)
presents them for all the 3689 banks in the dataset, where as Table 2(B) does the same
for those banks who had not adopted ATMs by the beginning of a particular year. This
summary itself is revealing. For example, a comparison of the values for SIZE over the
period suggests that the larger banks were earlier adopters since the mean values in Table
2(A) are greater than the corresponding entries in Table 2(B).

4 Results

4.1 Time-Invariant Coefficients

The estimates of the 3 coefficients obtaired from maximizing the likelihoods in (6) and
(9) are presented in tables 3 and 4 respectively. It is quite striking that the coefficient
estimates and the likelihood values in these two tables are virtually identical. The only
difference is that taking account of unobserved heterogeneity leads to the same or lower
standard errors for all covariates in table 4. The results show that besides ATMSHAR,
the dummy for operation in states which mandated some form of sharing of ATM systems,
all the other included covariates had statistically significant impacts. Model 5 reveals
that the coeficients of size, the wage rate, dummy for whether the bank was owned by
a bank holding company, the concentration index, proportion of prior adopters and the
interaction of the last two factors are significant at the 1% level, and the coefficients of
the others are significant at the 5% level.

The effects_of firm size and concentration are decidedly Schumpeterian. Much of the
theoretical and empirical work on technology diffusion at a disaggregated level suggests
that firm size is a critical factor as it serves as a proxy for risk aversion, economies of
scale and research and development activities. However, empirical results on the question
of whether larger firms are more “innovative” than their smaller counterparts (i.e., early



adopters) have heen mixed (see Thirtle and Ruttan (1987)) . While these differences in
results .nay be attributed to alternative indicators of firm size (e.g.. number of employ-
ees versus total assets) in addition to methodological differences. an increasing amount
of evidence suggests that these results will differ depending upon the innovation under
consideration. The results here indicate that both firm size and the concentration index
have a positive impact on the hazard. Further, differences in the structure of banking in-
stitutions are important - subsidiaries of holding companies as opposed to “independent”
banking firms had a significantly higher conditional probability of adoption. Firms with
a higher proportion of demand deposits to total deposits, operating in urban markets
experiencing faster growth were early adopters of ATMs. Banks that have a high value
of the MIX variable are liable to benefit more from the introduction of a flexible retail
banking technology. The urban dummy is possibly a proxy for greater demand for ATM
services as well as less resistance to new ways of doing things.

A key reason for using ATMs is that they can perform a wide variety of retail banking
services at lower cost than human tellers. Clearly, this substitution effect will produce
greater cost savings in high wage banking markets. The positive and highly significant
coefficient on WAGE is in accord with the above reasoning. This is in contrast to the
Hannan and McDowell (1987) result where the wage rate had a negative influence on the
hazard rate.

As noted earlier the variable PROPN refers to prior adopters in a specific banking
market in which a bank is headquartered. It captures more the strategic interaction
among competing firms, and in our context should not be interpreted as a proxy for
the usual communicaton and informational effects that result as the use of a technology
spreads in the industry. In our empirical specification the latter effects are captured by
the base-line hazard. The estimates indicate that PROPN is an important explanatory
variable and for a particular firm the conditional probability of introducing ATMs in-
creases as it’s competitors adopt the technology. The interaction between PROPN and
CR reveals that the concentration index has a positive effect on the hazard rate if the
proportion of prior adopters in the market is less than 0.24(=1.814/7.62). For larger
values of PROPN, the concentration index has a negative effect. [Note that this result is
similar to that obtained by Hannan and Mcdowell (1987) although it is based on different
values for the coefficients]. Similarly, the interaction between PROPN and ATMSHAR
suggests that for PROPN < 0.24(=0.207/0.848) requiring banks to share their ATM
systems has a negative impact on the hazard since part of the first mover advantage is
eroded [see Fudenberg and Tirole (1985)].

Government regulations affect the adoption and use of new technologies. The positive
coefficient on OFFPRM implies that firms operating in states where branching is pro-
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hibited attempt to circumvent this restriction by the use of ATMs. Also. the mandated
sharing of ATM systems in some markets slowed down the rate of diffusion and especiallv
(as argued above) had a negative effect on the earlier adopters.

Table 5 reports the estimates from commonly used parametric hazard models, both
when the annual grouping of the data is taken into account and when this feature of
the data is ignored. The exponential models give similar estimates of the coefficients for
almost all the covariates. However, this is not true for the Weibull models. A comparison
of models 9 and 10 shows that the coefficients of five covariates - GROWTH, URBAY.
WAGE, OFFPRM, PROPN - and the estimate of the duration dependence parameter
change quite substantially. In fact the effect of PROPN more than doubles, and that
of GROWTH and WAGE reverse their sign. [Notice that model 7 is nested in model 9,
and model 8 is nested in model 10. The results indicate that in terms of log-likelihood
values the Weibull models do better. However, GROWTH has negative coefficients in
the exponential models but positive ones in the Weibull models; WAGE has a positive,
highly significant effect in models 7 and 8, a much smaller but still significant positive
effect in model 10, but a negative effect under model 9.]

A comparison of model 2 (non-parametric base-line hazard) with model 8 (exponen-
tial accounting for grouping) shows that the coefficients of GROWTH, URBAN, WAGE,
ATMSHAR, OFFPRM, and PROPN are substantially different; model 10 (Weibull ac-
counting for grouping fares slightly better in such a comparison with the effects of
GROWTH, ATMSHAR, and OFFPRM showing dramatic differences. The results clearly
indicate that not accounting for the grouping of the adoption data and/or using para-
metric specifications for the base-line hazard may lead to severely biased estimates of the
coefficients.

The baseline hazard may be interpreted as capturing the effect of time after correcting
for covariates. To the extent that we do not include supply side factors (like price changes,
or introduction of new generation of machines), the baseline hazard also partly reflects
the impact of such factors. Table 6 contains the estimates of the ¥ parameters from some
of the models. The baseline hazard calculated from model 5 and it’s 95% confidence
band is also shown. Again note that the effect of allowing for unobserved heterogeneity
in model 5 as compared to model 2 is to decrease the standard errors while leaving the
coefficients virtually unchanged.

The estimated baseline hazard function from model 5 is ;lotted in figure 3. The
diagram begs the question: Why was there an increase in the hazard rate in 19767 One
possible explanation is that around 1974-1976 the retail banking capabilities of ATM
systems dramatically improved and “since 1976, in addition to dispensing cash, ATMs
have performed loan transactions, deposits to any account, transfers between accounts.
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and payments for mortgages and other debts” [see Baker and Brandel. Ch 6. pg 10].
Also, this increase in adoptions took place despite an increase in the real price of an
ATM in 1976. An index for real ATM prices calculated by taking the average price
quoted by the four largest ATM companies (source: various issues of The Magazine of
Bank Administration) deflated by the CPI, shows that if 1971 is taken as the base year.
the index was 62.2 in 1975, 67.7 in 1976, 63.7 in 1977 and 43.7 in 1980. Further, 1976
was the only year in which this index increased over the preceding year.

For comparison the estimates of the baseline hazard from the parametric specifica-
tions and (semi-parametric) model 5 are also displayed in figure 3. The parametric forms
uniformly overestimate the impact of time on the conditional probabilities of adoption. A
graphical analysis of the integrated baseline hazard from model 5 can also be quite reveal-
ing. Under the exponential model (y1 = 72 = ... = 7) a plot of the integrated baseline
hazard, ¥";<xezp(vi), versus ¢k should give a straight line through the origin. Similarly,
the Weibull model imposes the constraints ¢ = constant + In{ts—1* — "} on the 4
parameters. A graph of the natural logarithm of the integrated hazard In[Tickezp()]
against In(t;) should give points on a straight line [see Cox and Oakes (1984), Lan-
caster (1990)]. Figures 4 and 5 depict the above plots using estimates of the integrated
baseline hazard. They clearly suggest that the exponential and Weibull assumptions are
inappropriate for modelling the conditional probabilities of ATM adoption in this data
set.

4.2 Time-varying Coefficients

The diffusion of a technology over time can be generally divided into three broad phases:
Phase I when the “innovators” adopt, followed by Phase II in which the majority begins
use of the technology, and lastly Phase III when the laggards adopt. Many diffusion
studies attempt a categorization of the adopters (see, Thirtle and Ruttan) to isolate
organizational characteristics that may help us to predict whether certain firms are likely
to be early or late adopters. However, as far as I know there has been no systematic
study of how firm characteristics, market structure and governmen: regulations affect the
adoption of a technology in different phases of the diffusion process.

An examination of Table 1 suggests that for ATMs, the adoption rate began to accel-
erate in 1979. Hence, a good prior guess is that Phase I was 1971-1978 and Phase II from
1979 onwards. In our empirical analysis this is captured by allowing the 3 coefficients to
vary across phases. The model of section 3 was estimated with each year from 1973 to
1979 taken to be the dividing line between the first and second phases. The log-likelihood
values obtained are presented below:
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Loglikelihood values as Phase Il beginning i1s varied

Year

1973

1974

1975

1976

1977

19738

1979

Loglikelihood

-3180.3

-3176.3

-3173.7

-3175.5

-3169.1

-3175.2

-31638.2

Table 7 presents the results obtained with 3 coefficients varying over Phase 1 (1971-
78) and Phase II (1979 onwards). A likelihood ratio test (yielding a value of 40.6 for a
chi-square variate with 11 d.f.) rejects the hypothesis that the 3 coefficients are the same
across the two phases. The estimates reveal that the impact of many of the covariates
changed over the course of ATM diffusion. The size of the banking firm and the growth
of deposits was much more important in the second phase of diffusion - the coefficient of
these covariates are much larger (two and a half to three times larger) and statistically
significant in the second phase.

Firms with a high proportion of demand deposits to total deposits operating in high
wage urban banking markets, especially in states that had branching restriction (OFF-
PREM=1), were the innovators. It is clear that these firm and market characteristics are
the ones for which the value of ATM adoption is likely to be the highest. Further, these
characteristics were not important in Phase II, implying that the reasons for adoption
and associated calculations may be different as the technology is more widely used. The
results also suggest that as expected, regulations regarding sharing of ATM systems are
liable to have a greater impact in the initial stage of diffusion.

The concentration index had a relatively greater effect in the first phase which one
can think of as the experimental period. Further, CR increases the hazard of adoption
in Phase I if PROPN < 0.25, and in Phase II if PROPN < 0.13. The proportion of prior
adopters in a specific market had a relatively greater impact in the second phase. This
is what one would expect given that once the experimental period for the technology is
over, and its benefits become more established and known, strategic considerations are
liable to become more important. The estimates also indicate that PROPN increased
the probability of adoption in Phase II, whereas this was true in Phase [ only if CR <
0.75.

Banking firms that are subsidiaries of holding companies were earlier adopters in both
phases of diffusion, highlighting the fact that organizational factors may be of paramount
importance and that further research using more detailed information on organizational
structures is clearly warranted.



5 Concluding Remarks

This paper attempts to go behind the well-known S-shaped curve for the diffusion of
technology to unravel the effect of firm characteristics and market structure. The ob-
served adoption rate in the aggregate depends on the impact of time and the time-varying
distribution of relevant firm and market variables in the population of potential adopters.
The paper shows that even with low penetration of the technology (the adoption rate
over the period covered was only 20% in our dataset) and only a year’s information on
the second phase of diffusion, behavioural hypotheses about adoption can be fruitfully
examined. Many datasets record the adoption data using reasonably large (e.g. annual)
intervals. It was demonstrated that it is important to use flexible baseline hazards, and
that the coefficients of interest may be quite sensitive to whether one accounts for the
grouping of data or not.

Clearly a more disaggregated analysis is required to answer questions like: Why larger
firms were quicker adopters? Was there an “informational advantage” in being owned by
a bank holding company? Or was some other organizational pecularity of bank holding
companies the key factor? For example, it is possible that the large fixed costs involved
in setting up an ATM system could only be profitably borne by big firms who benefitted
from economies of scale. Sharing of ATM systems mandated by some states did not
come into effect till 1975 and 19 states had such laws in 1979. This allowed easier and
cheaper access to the technology for relatively smaller banks and such institutions may
have adopted ATMs rapidly in the second phase of diffusion.

The US experienced an explosive growth in ATM installation starting in 1981. An
estimated 50,000 of the 64,000 machines in use by the end of 1986 were installed in the
period 1981-1986 [see Baker and Brandel (1988)]. The rate of adoption decelerated in
the late 1980s and reached near saturation levels especially in certain urban areas. If the
current data set could be augmented by information on the spurt and the subsequent
levelling off in ATM adoptions one could perform an analysis of this new technology in

all three phases of diffusion.
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Table 1
Empirical Hazard

Year | Potential | Adopters | Hazard | Standard
Adopters Rate Error
1971 3689 14 0.00380 | 0.0010
1972 3675 24 0.00655 | 0.0013
1973 3651 78 0.02159 | 0.0024
1974 3573 55 0.01551 | 0.0021
1975 3518 78 0.02242 | 0.0025
1976 3440 102 0.03009 | 0.0030
1977 3338 90 0.02733 | 0.0029
1978 3248 86 0.02683 | 0.0029
1979 3162 212 0.06937 | 0.0048

Note: All 3689 firms in the sample were observed over the 1971-79 period. By the end
of this period 739 firms had adopted ATMs.



Table 2(A)
Data Summary

1971 1972 1973 1974 1975 1976 1977 1978 1979 |
SIZE 10.033 11.184 13.228 15.755 16.349 17.315 19.246 21.854 24.81?}
(86.970) | (95.459) | (114.786) | (149.676) | (157.476) | (164.420) | (183.612) (211.259) | (241.759) |
GROWTH 1.15 1.15 1.12 1.10 1.08 1.07 1.10 1.12 1.ov |
(0.05) (0.05) (0.06) (0.06) (0.05) (0.05) {0.04) (0.05) (0.05) |
MIX 0.437 0.420 0418 0.396 0.378 0.357 0.344 0.349 0.337 f
(0.125) | (0.123) (0.118) (0.116) (0.114) (0.110) (0.107) (0.106) {0.105)
BHC 0.226 0.246 0.271 0.299 0.314 0.327 0.335 0.350 0.371
N 3689 3689 3689 3689 3689 3689 3689 3689 3689
Table 2(B)
Data Summary
1971 1972 1973 1974 1975 1976 1977 1978 1979 T
SIZE 10.033 10.696 11.959 13.660 14.048 14.591 15.123 17.235 19.349 |
(86.970) | (94.242) (111.626) | (145.153) (155.086) | (162.719) (176.659) | (206.729) (238.028)
GROWTH 1.15 1.15 1.12 1.10 1.08 1.07 1.10 1.12 1.07
(0.05) (0.05) (0.06) (0.06) (0.05) (0.05) (0.04) (0.05) (0.05)
MIX 0.437 0.420 0.418 0.396 0.378 0.356 0.343 0.348 0.335
(0.125) { (0.123) (0.118) (0.116) (0.114) (0.111) (0.108) (0.108) (0.107)
BHC 0.226 0.244 0.266 0.287 0.297 0.306 0.308 0.320 0.337
N 3689 3675 3651 3573 3518 3440 3338 3248 3162

Note: Standard errors are shown in parenthesis



Non-parametric Baseline Hazard Models

Table 3

Model 1 Model 2 Model 3

SIZE 0.247 0.254 0.309
(0.078) (0.077) (0.156)

GROWTH 1.669 1.589 1.565
(0.745) (0.753) (0.754)

MIX 0.774 0.751 0.736
(0.333) (0.333) (0.334)

BHC 0919 0.920 0917
{0.075) (0.075) {0.075)

URBAN 0.284 0.241 0.233
(0.121) (0.122) (0.122)

WAGE 0.093 0.093 0.091
(0.041) (0.041) (0.041)

ATMSHAR -0.109 -0.085 -0.207
(0.165) (0.165) (0.207)

OFFPRM 0.381 0.316 0.324
(0.163) (0.165) (0.166)

CR 1.238 1.836 1.814
(0.257) (0.314) (0.316)

PROPN 1.712 7.826 7.454
(0.364) (1.801) (1.859)

PROPN x CR A -7.884 -7.620
(2.324) (2.358)

PROPN x SIZE . -0.345
{0.901)

PROPN x ATMSHAR 0.848
. . (0.860)

LOG-LIKELTHOOD -3194.465 | -3188.511 | -3187.942

Note: Standard errors are shown in parenthesis




Table 4

Non-parametric Baseline Hazard Models with Unobserved Heterogeneity

Model 4 Model 5 Model 6

SIZE 0.247 0.254 0.309
(0.078) (0.078) {0.156)

GROWTH 1.669 1.589 1.56%
(0.731) (0.718) (0.723)

MIX 0.774 0.751 0.736
(0.335) (0.319) (0.319)

BHC 0.919 0.920 0.917
(0.075) (0.075) {0.075)

URBAN 0.284 0.241 0.233
(0.118) (0.113) (0.117)

WAGE 0.093 0.093 0.091
(0.040) (0.037) (0.040)

ATMSHAR -0.109 -0.085 -0.207
(0.153) (0.136) (0.202)

OFFPRM 0.381 0.316 0.324
(0.155) (0.148) (0.163)

CR 1.238 1.836 1.814
(0.254) (0.309) (0.310)

PROPN 1.712 7.825 7.454
(0.364) (1.757) (1.817)

PROPN x CR . -7.883 -7.620
(2.268) (2.304)

PROPN x SIZE . -0.346
(0.483)

PROPN x ATMSHAR 0.848
. . (0.865)

HETEROGENEITY -9.056 -9.653 -9.044
PARAMETER (16.154) (11.806) (11.148)
LOG-LIKELIHOOD -3194.465 | -3188.511 | -3187.942

Note: Standard errors are shown in parenthesis




Table 5
Parametric Models: Exponential and Weibull Baseline Hazards

Model 7 Model 8 Model 9 Model 10
ALPHA . ) 2.416 1.569
: . (0.118) (0.094)
CONSTANT -6.215 -6.241 -9.650 -7.875
(0.834) (0.831) (0.870) (0.942)
SIZE 0.209 0.239 0.223 0.243
(0.072) (0.076) (0.075) (0.076)
GROWTH -0.942 -0.972 0.793 -0.027
(0.680) (0.677) (0.700) (0.769)
MIX 0.767 0.804 0.918 0.884
(0.334) (0.333) (0.327) (0.330)
BHC 0.921 0.937 0.876 0.912
(0.075) (0.075) (0.075) (0.076)
URBAN 0.136 0.134 0.342 0.230
(0.121) (0.121) (0.122) (0.122)
WAGE 0.231 0.234 -0.051 0.105
{0.032) (0.032) (0.038) (0.038)
ATMSHAR -0.207 -0.213 -0.151 -0.187
(0.177) (0.177) (0.159) (0.168)
OFFPRM 0.537 0.554 0.311 0.457
(0.172) (0.171) (0.155) (0.164)
CR 1.845 1.885 1.782 1.893
(0.308) (0.309) (0.324) (0.316)
PROPN 8.984 9.379 4.451 7.395
(1.667) (1.684) (1.854) (1.782)
PROPN x CR -8.801 -9.191 -4.934 -7.395
(2.195) (2.216) (2.397) (2.315)

LOG-LIKELIHOOD | -3263.721 | -3245.747 | -3163.900 | -3222.826 |

Note: Standard errors are shown in parenthesis.
Model 7 assumes an Exponential hazard and does not account for grouping of data.
Model 8 assumes an Exponential hazard and accounts for grouping of data.
Model 9 assumes a Weibull hazard and does not account for grouping of data.
Model 10 assumes a Weibull hazard and accounts for grouping of data.



Table 6
Estimates of ¥ Parameters and the Non-Parametric Baseline Hazard

Year Estimates of vy Model 5
Model 1 | Model 2 | Model 5 | Hazard x 100 | Approx 95% Band

1971 | -9.518 -9.779 -9.779 0.0057 (0.0010, 0.0338)
(0.951) | (0.963) | (0.912)

1972 | -9.006 -9.264 -9.264 0.0095 (0.0016, 0.0549)
(0.937) | (0.950) | (0.897)

1973 | -7.834 -8.099 -8.100 0.0304 (0.0056, 0.1655)
(0.907) | (0.920) | (0.866)

1974 | -8.215 -8.497 -8.497 0.0204 (0.0038, 0.1092)
(0.897) | (0.910) | (0.856)

1975 | -7.891 -8.181 -8.181 0.0280 (0.0054, 0.1456)
(0.884) | (0.896) | (0.842)

1976 | -7.654 -7.960 -7.960 0.0502 (0.0098, 0.2584)
(0.878) | (0.891) | (0.836)

1977 | -7.937 -8.287 -8.288 0.0252 (0.0046, 0.1399)
(0.906) | (0.921) | (0.865)

1978 | -8.069 -8.415 -8.415 0.0222 (0.0039, 0.1255)
(0.930) | (0.944) | (0.858)

1979 | -7.157 -7.522 -7.522 0.0541 (0.0101, 0.2893)
(0.900) [ (0.915) | (0.856)

Note: Standard errors are shown in parenthesis




Table 7
Non-parametric Baseline Hazard Model with Time-varying Coefficients

Phase I. 1971-78 | Phase II: 1979
SIZE 0.176 0.445
(0.124) (0.175)
GROWTH 0.982 3.158
(0.878) (1.599)
MIX 0.637 1.097
(0.387) (0.671)
BHC 0.888 1.019
(0.088) (0.143)
URBAN 0.433 -0.099
(0.148) (0.224)
WAGE 0.106 0.093
(0.052) (0.068)
ATMSHAR -0.200 -0.055
(0.280) (0.222)
OFFPRM 0.587 0.100
(0.275) (0.219)
CR 2.097 1.415
(0.357) (0.704)
PROPN 6.249 10.955
(2.688) (2.748)
PROPN x CR -8.387 -9.140
(3.528) (3.581)
LOG-LIKELIHOOD ~3168.2

Note: Standard errors are shown in parenthesis



FIGURE 1
Empirical Hazard
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FIGURE 2
Empirical Distribution Function
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FIGURE 3
Baseline Hazard
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FIGURE 4
Plot of Integrated Hazard vs t

0.0025

0.002+

0.00157

0.001

0.0005+

o
- ]
N
w
H
(4]
(o)}



FIGURE 5
Plot of In(integrated hazard) vs In(t)
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