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ABSTRACT

This paper considers the types of unobservable stochastic djscoiunt factors and economic
structures that are compatible with a prediction of negative excess returns. Under fundamental pricing
for stocks and assumning the existence of a safe asset, sufficient conditions for the conditional expectations
of excess returns to be negative are derived. The paper also provides illustrations of the force of these
conditions by investigating the properties of the expected excess return function in the case of a number
of representative agent asset pficing models familiar in the literature. The effects of introducing
stochastic bubbles or money into the analysis are also analyzed. Finally, using a specification derived
from a particular representative agent asset pricing model with minimal restrictions on preferences, we
present new evidence on the statistical significance of predictions of negative excess returns for the value

weighted CRSP stock index.

JEL Classification: G12 (Asset Pricing), E44 (Financial Markets and the Macroeconomy). Gl4

(Information and Market Efficiency).
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1. Introduction

There is now a wide body of empirical evidence suggesting that excess returns on stocks, detined
as the difference between the return on a total stock market portfolio and a safe rate of rewrn. are
predictable.1 There is also a large literature gxamining whether stock prices are excessively volatile
compared to the volatility of fundamentals.> As argued by a number of authors, notably Cochrane
(1991), it is always possible to explain findings of excess volatility and predictability of excess returns
by a judicious choice of a stochastic discount factor in a general equilibrium framework. Since these
general equilibrium stochastic discount factors are inherently unobservabie it is difficult to statistically
assess the credibility of such explanations.

The line of research initiated by Mehra and Prescott (1985) focusses on explaining unconditional
moments of asset market returns and shows that simple representative agent general equilibrium asset
pricing models do not provide satisfactory explanations of these moments. This can be seen most clearly
in the general approach developed recently by Hansen and Jagannathan (1991). They calculate greatest
lower bounds of the volatility of the stochastic discount factors and argue that under arepresentative agent
asset pricing model the curvature of the agent’s utility function must be unrealistically extreme (0

simultaneously match the first and second unconditional moments of excess returns. It is possible to

adapt Hansen and Jagannathan’s approach to take account of conditioning information and, therefore,
relate it more directly to the evidence of predictability in excess return regressions (see Gallant, Hansen
and Tauchen (1990)). In this paper, we follow an alternative approach and focus on the conditional
moments of the excess return function.’ This approach is in line with empirical research carried out on

predicting excess returns in Breen, Glosten and Jagannathan (1990), Brock, Lakonishok and LeBaron

ISee, for example, Fama and French (1988), Breen, Glosten and Jagannathan (1990) and Brock,
Lakonishok and LeBaron (1992).

25ee, for example, the recent surveys by LeRoy (1989) and West (1988).

3n Gallant et al. (1990) conditioning information can be used to produce more efficient estimates of
unconditional moments, which is different from the approach adopted in this paper which focusses
directly on the conditional moments.



(1992) and Pesaran and Timmermann (1992) (BGJ, BLL and PT respectively hereafter). Further, we are
interested in examining the validity of the representative agent asset pricing model for conditional
moments when the model is capable of accounting for unconditional moments (i.e., the preference
parameters are chosen to fit the unconditional moments).

We provide characterization of the types of unobservable discount factors and economic
structures that are compatible with an equilibrium prediction of pegative excess returns, and are therefore,
able to provide an interpretation of the empirical evidence on predictability of excess returns found in
BGJ and BLL and in our own empirical work below. We construct equilibrium explanations of negative
expected excess returns by considering a dynamic stochastic general equilibrium asset pricing model with
minimal restrictions on preferences, technology and stochastic processes for the endowments.* We
analyze economies without and with money.

We find that in economies where asset payoffs are denominated in terms of a numeraire
consumption good and there exists a safe asset, the probability of observing negative expected excess
returns is positive if the stock market portfolio can have the property of acting as a hedge at certain times.
We argue, by developing a general expression for expected excess returns in terms of the "ex post rational
price” used in the excess volatility literature, that such a hedging property appears unlikely if the only
determinant of asset prices are "fundamentals.”

Inorder to relate our results more directly to the previous literature, we proceed to consider some
specific examples using representative agent asset pricing models. We consider two polar cases, when
the utility function in the Lucas (1978) "tree” model is logarithmic, but the dividend process is
unrestricted; and when the utility function is unrestricted but the dividend process is assumed to be
conditionally serially independent. In both cases we show that the expected excess return function is
always non-negative. We also consider an intermediate case and derive sufficient conditions for the non-

negativity of the expected excess return function for constant relative risk aversion (CRRA hereafter)

*Partial equilibrium asset pricing models are incapable of producing negative expected excess returns.
One merely has to consider the form of the security market line in the Capital Asset Pricing Model
(CAPM) to realize this.



utility functions and the dividend processes where the growth of dividends are conditionally log-normaily
distributed.

Of course, such specific asset pricing models assume that all risk is marketed and there is no
distinction between aggregate consumption, output or dividends. Therefore, itis possible to imagine cases
where the amount of non-marketed risk is large enough, and its correlation with the stock market is such
that a hedging property could occur. This is reminiscent of parts of the Roll (1977) critique of empirical
testing of the Capital Asset Pricing Model. We examine an alternative mechanism of introducing a
hedging element into the holding of the stock market portfolios, namely stochastic bubbies. The
requirement that the bubbles allo;av predictions of negative excess returns restricts their structure severely.
In particular, these bubbies have the interesting characteristic of implying large drops in stock market
prices that are unrelated to »fundamentals” in order to give the stock market portfolio a potential hedging
property.

We next turn to the case where asset payoffs are nominal (i.e., denominated in current money
prices) and there is no asset offering a unit of numeraire good next period for sure. Insuch economies,
the possibility of equilibrium predictions of negative nominal excess returns is increased, in the case that
inflation can be negatively correlated with the performance of the real economy. Thus, the source of the
hedging property is now the relative riskiness of the bond market as compared to the stock market. We
also show that the use of excess returns measured in current dollars biases empirical analysis against
finding evidence of negative expected excess returns compared to the use of excess returns measured in
real terms.

We base our empirical analysis on a functional form for the predicted excess return derived from
a representative agent asset pricing model where the logarithm of the (exogenous) dividend process
follows a geometric random walk. This assumption on the dividend process is frequently made in the
literature. However, we do not place any restrictions on the preferences of the representative agent within
the CRRA class. Under this model, the predicted excess return would be a positive linear function of the

dividend yield for all choices of the preferences of the representative agent, and hence no other variables



should prove significant in predicting excess returns. We provide statistical tests of both of these
implications. The latter implication is examined simply by testing the significance of additional
regressors in the excess return regressions.

Our main attention is focussed on the statistical evidence against non-negative predicted excess
returns. Previous empirical research by BGJ, BLL and PT have concentrated on examining the profits
earned on switching portfolios that move in and out of the stock market or the bond market depending
on the sign of the predicted excess return. We examine the statistical significance of the predictions.
(based on the dividend yield and other regressors) themselves rather than the success of the predictions
in correctly predicting the sigﬂ of the realized excess return. We view our empirical results as
complementing this earlier literature. The strength of our approach lies in the fact that it is not dominated
by particular outliers in the data. The negative skewness in stock market returns tends to over-reward
switching portfolios for moving out of the stock market for a small negative prediction, followed by a
large downward movement (for example, October 1987): this does not, however, apply to our work.
Here we utilize recursive estimation techniques and present time series of t-ratios for recursive
predictions of the annual, quarterly and monthly excess returns on the CRSP value weighted index. We
consider the statistical significance of these predictions rather than merely their signs.

It is found that over the whole sample (1954-1990) in addition to the dividend yield variable.
other regressors such as lagged nominal interest rates, and inflation rates are also significant. Nextitis
established that the evidence for predictions of negative excess returns is weak if one conditions only on
the dividend yield, the variable used by Fama and French (1989). However, once one conditions on an
interest rate, as in BGJ and PT, there is much stronger evidence in favor of predictions of negative excess
returns at certain periods.

The plan of the paper is as follows: Section 2 derives sufficient conditions for a nonnegauvity
restriction to hold on the conditional expectations of the excess retun in a general class of compeuuve
general equilibrium asset pricing models. Section 3 provides some specific exampies of restrnicuons

implied by the non-negativity condition. Section 4 proceeds to consider the role of stochastic speculause



bubbles in producing negative expected excess returns. Section 5 examines the excess return function
in the case where asset prices are quoted in nominal values. Section 6 sets out the statistical testing

framework for the nonnegativity restriction and presents the empirical evidence. Section 7 concludes the

paper.

2. Negative Expected Excess Returns in Dynamic Competitive General Equilibrium Models

In investigating the possibility of predicting negative excess returns in a dynamic general
equilibrium model we make the following assumptions:

1 expectations are rational;

(ii) asset portfolios with identical payoffs have the same price;

(iii)  all arbitrage possibilities are exhausted;

(iv)  payoffs have bounded second moments.

As shown in Hansen and Richard (1987) and Hansen and Jagannathan (1991) these assumptions allow
us to assume the existence of a (strictly positive) stochastic discount factor, ¥, that in conjunction with
the equilibrium expectations of the economy gives prices today to claims to future random payoffs.

It is also useful for the development of our later arguments to formally introduce a probability
space and a law of motion on this probability space. Once again we follow the approach of Hansen and
Richard. Let (Q, F, Pr) be a probability space. Let S be measurable, and a measure-preserving
transformation mapping of Q into itself. Let @ be an element of Q, then ® will be the state at time
zero and SYw) will be the state at ime t. Thatis, S' is the transformation S applied t times. Ve
assume that @ is not directly or indirectly observable by agents in the economy. Any random variable
in the economy is a function of the particular ® drawn from Q, though we will only explicitly state the
functional dependence on @ when it is necessary for avoiding possible confusions. The condiuvnal
expectations operator E,[¢] used below is conditioned on the information available to agents at umc !
when the draw from the sample space is .

We will work directly with rates of return and write the gx ante arbitrage condition in the capital



market as

Et[yt+l(R1+l - rt)] =0, (D

where
Qi1 * Dent
1+R, = ————— >0,
Q

and

l+r= L _>o

E{Yi.]

with Q, being the ex-dividend price of the stock market portfolio at time t, D, being the aggregate
dividend paid at time t and r, being the one period safe rate of return, that is the return on an asset that
pays a unit of the numeraire consumption good next period for sure.

Using the formula for conditional covariance we obtain the following expression for the predicted

excess return

-1 -1
COVI(YH-I' Rﬂ-l - rt) =

Cov, (% 1> Rear)- (2
El[‘ybl] Etwul] et R' l)

EfR,i -6l =

The above relationship shows clearly that equilibrium predictions of negative excess returns
require the stock market portfolio to have the potential of performing as a hedge against future bad times.
that is, covary positively with the stochastic discount factor. Before examining whether such a hedging
property is compatible with “fundamental” pricing, we note some properties of the conditional covariance
relationship when the stochastic discount factor can be given the interpretation of a marginal rate of

substitution for a consumer.



If one specializes to the case of a representative agent, single good economy with time separable
preferences we have ¥, = Bu’(c,,)/u’(c,), and the requirement for equilibrium predictions of negative
excess returns is that marginal utility of the numeraire consumption good [i.e., w'(c,)] can covary

positively with the realized return on the stock market:

- Cov [u'c,,y). Ryl
Et[u,(chl)] .

Et(RH-l )= (3

However, without further restrictions on the underlying stochastic processes of the economy non-
negativity of predicted excess returns is not necessarily ensured (as it is often presumed in the literature)
by requiring a positive conditional covariance between consumption and the return on the stock market.}
In order for Covy(Ry, , G,) >0 to imply that the conditional covariance in equation (3) is negative, one
needs stronger requirements on the conditional joint distribution of consumption and stock returns. One
possibility would be to assume that conditional on Q. ¢, and R, have a bivariate normal

distribution. In this case as shown, for example, by Rubinstein (1976, Appendix) we have:®

Cov,[u’(cm), Rt+1] = El[u"(ctd'l)] COV!(CH,l, Rt+l)’

and under the assumption that the utility function is strictly concave establishes the sufficiency of the
condition Cov,(C,,;, Ry,;) 20 for the non-negativity of the predicted excess returns. The assumption of
joint normality of consumption and returns is not, however, supported by the evidence. There is
substantial empirical evidence that the marginal distribution of stock returns display important departures
from the normal distribution.

An alternative assumption which delivers the same result is to restrict the conditional joint

distribution of (R, C;,;) to belong to the class of Positively Quadrant Dependent (PQD) distributions,

5See, for example, Abel (1992, p. 12).

6Also see Stein (1973).



namely that
Prob(R,,, S a, ¢, $b) 2 Prob(R,,; < a) Prob(c,,; <b),

for all a and b, where prob,(+) stand, for the probability operator conditional on information at time
t. The concepts of positively quadrant dependent and the related concept of negatively quadrant
dependence are originally due to Lehmann (1966). Unlike covariances, the property of positively
(negatively) quadrant dependence is invariant under non-decreasing (non-increasing) transformations.
Hence, the assumption that (Rt;l, Cr.y) is positively quadrant dependent simultaneously implies that
Cov,(Ryyp» Crap) 20 and Covi(Ry,, u'(cy, )] S0, with equality holding if and only if R;,, and c,, are
conditionaily independent.

Now, consider using the conditional covariance relationship (3) 10 develop a version of the capital
asset pricing model. It is standard to do this by assuming that, conditional on information at time ¢, the

return on the market portfolio is proportional to the marginal utility of consumption:
RH'], = 'B u'(CH,l), B > O.

Then if one is examining the excess return on the "market” portfolio it cannot be predicted to be negative.
Thus, it is clear that one possible explanation for prediction of negative excess returns is that the observed
market portfolio is not equivalent to the total portfolio that the consumer makes decisions over. For
example, if human capital is not marketed and its return varies with the marginal utility of consumption
negatively, then it would be possible for there to exist periods when the consumer holds the stock market
portfolio as a hedge against bad times.

Although the conditional covariance equality is used a great deal in the literature discussing the
properties of asset returns, it does not impose the condition of fundamental pricing: namely that stock

prices represent claims to future dividend streams only. In order to impose this condition and develop



its implications for predictions of negative excess returns we use a concept from the excess volatility
literature, the "ex post rational price.”
Assume that there exists an asset that pays out dividends equal to a weighted sum of dividends
from the N basic assets. Call this asset the "market portfolio” and let its "fundamental” price be Qf :
Q = E, 2 ,Hl ¥1u(@) | D@ €
7l

N

where D= Y wyDy, V5 and wy represents the weight of the k™ asset in the market
k=1

portfolio.” Define Q*(w) as the gx post rational price:

i
Q= Y| IT v, (@) | Dy (@) - )
j=1 \J=1
The dependence of Q¥*(¢) on @ emphasizes the particular realization of the dividends and the discount
factors used to calculate the ex post rational price, which is not revealed when the stock price is realized.®

The "fundamental” excess return is defined by

(@) +D,
Rfﬂ r = E [Qu. (@] + Dy, _ 1 _ 6)
QIF E[[Y[.[(w)]
However, Q¥(w) in (5) satisfies the forward recursion
Q*(@) = Y (W){QF,1(@) + Dy (W}, t=12,. )

Thus, substituting out the dividend and stock price attime (t+1) and taking conditional expectations with

"It is assumed that the conditional expectauons in (4) are well defined. Given our concentrauion n
excess returns this is not a crucial assumption. If necessary one could work with price dividend rauos
without affecting the later arguments.

$Notice that E[Q*(@)] = Qf.



respect to the information available at time t, yields

©))

Q(w) ) _ EQ/)]

1
(RF,, -rp)= — 1E .
FRen - f F ‘(Y,.l(w) ElY,.,(@)]

Q
Hence, in order to check for sufficient conditions under which the expected excess return is non-negative

one can examine the conditions under which

S E[Q, (@)]

2 , for all t ®
E[Y . ()]

Q, (w)
= ( Ytil(o:)) )

This form is suggestive of a Jensen’s Inequality argument that is used to prove the following Theorem:

Theorem 1: If assumptions (i) - (iv) above hold, and the price of the market portfolio is given by (4), a

sufficient condition for expected excess return function (1) to be non-negative is given by

Qt‘(ml) Q:(mz)
+ = Tt ® 2 —— + ( - Ye ( s
——Yul(ml) (10163 = Yepr(@p)} Y@y (Y1 (@) = Ve (@}

for all t and for all possible states of the world (@, ®).

Proof: By Jensen's Inequality, the expected excess retrn in (8) will be nonnegative if Q¥ (w)/y,,,(w)
is convex in [Q¥(®).¥,1(@)]. Theratio Q¥(w)/Y,, () is convex if for some A intherange (0.1). and

for all possible pair of states of the world at time t+1, (w,0,), we have

N ( Q@) )+ a-b ( Q/ (@) )2 AQ[ (@) + (1-M)Q/ (@)
Yul(wl) Ytol(mz) A"le((")l) +(1 ‘l)'Ym(mz)

Since ¥,,,(@) > 0, the above inequality can be written after some manipulations as

“(@)) (w,)
Q@) @ - Ter(@) 2 2

—_— —_— L V(@) - Ya(@)}
th(wl) Ym(“’z) {Y‘l 2 e

10



The intuition behind condition (10) is as follows: in situations where w, representa "“good" state

of the world relative 0 ®,, it is less costly in terms of period t consumption to transfer consumption
from t+1 into other periods and hence ¥,,(®;) < ¥,;(®,), and using (10) it follows that

Q[‘(a)l) > Q;(wz)

2 A similar result also holds if ®, represents a "bad" state of the world relative
ﬂ{tol(wl) "(“1(0.)2)

to @, Therefore, if bad times in the future tend to increase 7,,, but at the same time depress the stock
market, then expected excess returns always have to be non-negative to compensate agents for bearing
risk. However, if stock prices do not necessarily drop when the state of the economy is "bad" then it is
possible for agents to hold the stock market portfolio as a hedge against future “bad" times in the
equilibrium expectation that its return will be lower than the safe rate.

Under the restrictions that the equity premium (i.e., the unconditional expectation of the excess

return) is positive and fundamental pricing holds, then one can rule out cases where the inequality in (9)
is reversed for all (@, ®,). Therefore, predictions of negative excess returns must imply some conditional
switching in the relationship between excess returns and the stochastic discount factor. The frequency
of the switches will, however, be constrained by the positive sign and size of the unconditional mean of
excess returns. On the other hand, the possibility of such switching would increase the volatility of
predicted excess returns, thus making the second aspect of the equity premium puzzle, the volatility of
the stochastic discount factor emphasized by Hansen and Jagannathan (1991), easier to obtain.

If attention is restricted to economies where there is a strictly monotonically decreasing

relationship between aggregate dividends and the discount factor, a sharper result can be obtained.

Corollary: If there exists a strictly monotonically decreasing relationship between D,,, and Y., and
if the ex post rational price Q. () is once continuously differentiable, then a sufficient condition for

(9) to hold is given by
RL(®
D@

11



QL (@) - Q + Dyyy(@)

= is the ex post rational rate of return.
Q

where R¥ (W)=

Proof: Here we give a proof for the case where ¥,,;(®@;) > Y, (®p). A similar proof can be constructed

if Ym(“)z) < Yt+l(0')1)'

Using (7) we have

Q@) Q@

= * - 0O* D .D '
V(@) V(@) QY (@) - Qt1(@)] + [Py (@) - Dy (@) (11)

Also by the mean value theorem applied to the ex post rational price Qt(w) we have

. . 3Q(®)
Q. (o) - Qt () = _55_1—- {Dyy1(@y) - Dy, y(@)},
i+

where @ represents a state "between" ®; and ®, such that D,,,(®) lies in the interval [D,,;(w,),

D,,,(®,)]. Using this resuit in (11) now yields

Q) Qlwy Q. (@)
- - 1+ D+ 'D . ,
Yeur(@) Vo1 (@) 3D, {Dyyy(@)-Dy, (@)}

and hence, in the case where ¥,,,(6,) > ¥.,(®;), the sufficient condition for the expected excess return

to be non-negative is given by’

[1 + i%%l-(lg)—} {Dper(@y) - Dt+l(m2)} 20.
t+

However, under the assumption of the coroliary and in the case where Yor1(@2) > Yppp (@), we have

Note that in the case where ¥,,,(®;) > ¥,,(@). condition (10) in Theorem ! implies that
Q(‘(ml)/Y;.l(ml) 2 Q[.(wz)/Yg.l(mz)-

12



D,,,(®;) 2D, (®,), and the above inequality is satisfied so long as dQ*,,(w)/dD,, + 1>0. Now, using

the definition of ex post rational rate of return

Q2 (@)- QF+ Dy,y(@)
Qf |

RYa(@)=

we also have

IR, (@) 1 3Q,, (@) .1 1s0
aDttl . QlF aDhl

Simple equilibrium models of asset pricing in the literature tend to restrict consumption to be
equal or proportional to aggregate dividends and use marginal rates of substitution of aggregate
consumption between periods as the stochastic discount rate. Therefore, all of the models within this
class will satisfy the condition on the stochastic discount factor and the aggregate dividend. Hence, if the
ex post rational rate of return satisfies the condition in the corollary then such models are not capable of
producing predictions of negative excess returns. Note that the sufficient condition of the corollary is a
great deal weaker than the condition that the derivative of the ex post rational stock price being positive

with respect to the current period dividend.

3. Properties of Expected Excess Return Function in the Lucas "Tree' Model

In this section we focus on applications of Lucas (1978) asset pricing model, popularly known
as the "tree” model. We examine the class of utility functions and the dividend processes for which the
expected excess return function is non-negative 0 build intuition for cases where the sufficient condition
of Theorem 1 holds.

Consider first the simple case where tpe utility function is logarithmic, u(c) = log(c), and
suppose that the stochastic process for the dividends (or consumption) is such that the asset pricing

function (4) exists. Then standard techniques yield

13



Qxl: = B(I'B).lDt’ Yol = BD(/DH-I’
and hence using (6) we have

F _ -1 1

E(R{, -1 =E(Yiep) - m
which by virtue of Jensen’s inequality is non-negative for all dividend processes that generate a well-
defined price function. Therefore, for logarithmic preferences, irrespective of the stochastic process
generating the dividends, the expected excess return is always non-negative under fundamental pricing.

Consider now the polar case where the utility function (u’(c)>0, u"(c) < 0) is unrestricted within
the Von Neumann-Morgenstern expected utility function class, but the dividends D,,;, conditional on
the information at time t, Q,, are serially independent. Note that this assumption does not rule out time
variations in the conditional means and variances of D,,;. This case is a generalization of the example
discussed by Abel (1988) where he establishes the non-negativity of the expected excess return function
under constant relative risk-aversion utlity functions and log-normality of the conditional distribution
of the dividend process.'

Starting with the decomposition of the expected excess remurn function given by (8) we first note

that using ¥,,, = Bu’(¢,JA(¢) in (5),'" and recalling that in the Lucas tree model ¢ =D, we have:

E{B.‘:.) - i Bi-IE,

Y1 j=1

D,,u'(D,.)
u'(D,,,)

Similarly

10\ otice that in the derivation of the expected excess return function, Abel (1988) assumes that the
conditional mean and the conditional variance of the log dividend process are distributed independently
of the dividend process itself. This assumption. for example, rules out the specification of a geomeTic
random walk for the dividend process.

L1 For notational simplicity we have suppressed explicit references to @, the argument of Qliw: and
Yu-l(m) .

14



EQD e it {EdDt' D))

—_— B - 13
E (Y1) ,%: E,u'(D,, ] (13
Hence. using (12) and (13) in (8) yields
= D uw(D.)| E[D,uwD.p)]
Et(th:ﬂ'rt): _1_FE Bl 1 Et !’l i/ |t [’l t+i (14)
Q, i w'(Dy,p) E[u'(D,, ]
Under the conditional independence of D,,, and D, for i=2,3..., wehave
D,,u'(D,,) E [D,, u' (D)} ,
1 - ll = - - - ll = =El[Dl+iu (Dl+l)] Et 7 1 - 7 1
u' (D, ) E(u'(Dy, ] u'(Dy,y) E[u'(D,, )]

which are non-negative by virtue of the Jensen’s inequality, and noting that by assumption

D,,w(D,,;) > 0. Consider now the first term in (14). For i=1 we have

Et[Du-l“,(Dtol)] - -Covt[DM,u'(DM)]
Et[u'(Dul)] Et[ul(Dtol)] .

EI(DH-X) -

However, since w'(D,,,) is a monotonically declining function of D,,;, wehave Cov(D, . (D))
<0, and the first term of (14) is also non-uegative.12 Thus it is established that for all strictly concave
utility functions the expected excess return function will be non-negative so long as the dividend process
is conditionally independent over time.

Despite their relative generality, neither of the two polar cases discussed above are particularly

realistic. An alternative approach would be to confine the analysis to the class of constant relative nsk

25 simple proof of Cov(x,u’(x)) < 0 can be obtained using the property of Positively Quadrant
Dependent (PQD) distributions discussed in Section 2. Let y have the same distribution as x and note
that

Prob(xsa, y<b) = Max{Prob(x<a), Prob(y<b)} 2 Prob(x<a), Prob(y<b)
which establishes that (x,y) or (x,x) is PQD. Since u'(x) is a non-increasing function then (x. -u"x
is also PQD. Therefore, using Lemma 3 in Lehmann (1966) it follows that Cov(x, w(x)) > r
Cov(x,u’'(x)) < 0.

15



aversion utility functions
U(C) = e, a>0, (15)

where o is the relative risk-aversion coefficient, but consider a wider class of dividend processes that
allow for the serial dependence in the {D;} process that is observed in time series data. With this in

mind, let y,,, = Alog D,,, and suppose that

Yoot | @ ~ N, 03, (16)

where u, and of could be time varying, but are assumed to be distributed independently of the level
of the D, process. This specification contains the geometric random walk model, which is popular in the
finance literature, as a special case and also some recent models with Markov chains describing the
movement of the conditional mean and variance (see Abel (1992) for a discussion of this literature).

Under (15) and (16), the expected excess return function in (14) becomes

D .
ERE 0= |—¢ | T B X - Y Exp(E(ALD)
¢ iml

where

1 +
X = Exp{ 3 Viay,, +( 'a)yll*;]} ’
tei

Yt+i= Exp{% Vt[(l-a)y‘,l] - -;— V;[U-Ytq]},

Ary; = Hepp + (1-00(eeg + Hygs + -+ Bygids

16



t+i
Yier = Vi * Yie2 + ot Y

Hence, the non-negativity of the expected excess return function is ensured by the following sufficient

conditions on the growth rates of the dividend process:

i

V(Yeap) + (1-0) Ez CoVy(Yra1s Yeup) 200 for i=2,3,...

j=

It is clear that under o= 1 (the logarithmic utility case), as to be expected the above conditions are
satisfied. Another polar case where these conditions are satisfied is when o 1, but y,, =Alog D,
are serially uncorrelated. Thus, we can see that we need a combination of high risk aversion for the
representative consumer and high positive autocorrelation in dividend growth rates for the sufficient
condition to fail. However, using the techniques of Tauchen and Hussey (1991) we found that the
positive autocorrelationin dividend growthrates produced a prediction of excess returns that was negative
for all states of the world (see also Tauchen and Hussey’s own experiments with positively autocorrelated
growth).

In the case where {D,} follows a geometric random walk with a drift, the above results can be
used to derive an exact expression for the excess return function in terms of the dividend yield variable,

D/QF. Under the geometric random-walk dividend model, we have!?

E(RE,, - 1) = 0(D/QD), (7

where

uo- % o’ , a0’ _
0= Ae (e D and

1-AB

A= ehll-®e (1-wa

13 Notice that in this case i, = 1, 6, = O, and y, is serially independent.
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Note that for the price function (4) to exist it is necessary that AB < 1. Hence, in the case of this example
the expected excess return function is a non-negative function of the dividend yield and a switching
portfolio using predictions from excess return regressions based on the dividend yield will fail to

outperform the market portfolio.

4, Bubbles and Negative Expected Excess Returns

In this section we consider the effect of the introduction of a "non-fundamental” or a "bubble"
component into the equilibrium pricing function. Suppose that the market price is composed of two
components: |
1) The fundamental given by the expected discounted future stream of dividends from equation (4).
(2) An additive bubble component, B,, that is “rational” in the sense that the market price continues

to satisfy the intertemporal asset pricing condition.

Let

Q=B,+Q. (18)
Under (2) above we have

Q = E[%41(Qu1 + Dea)),
or

B, + Qlt: = Et[Yt+l(Ql:+1 + By, + D))
= ElfeBor] + Elteat(@Ca1 + D))
Now noting that QF is assumed to satisfy (4) we have
Qf = E11(Q(s1 + Du))
and hence the bubble component also needs to satisfy the condition B, = E,[Y,,1By,1]- Thus, the observed

market excess return becomes

F
Qui*Bei*Dy L (19)
Qf +B, Ef7cl

R1+l L=



After some manipulation one obtains the condition

2 0. (20)

Q:(w)} _ E([Q:((O)] . Et[Bto-lYlfl]

QE(Ry;-1p= = |E E/[B,,,] - —————
e { v 7o A R e

for the expected excess return to be non-negative.

The covariance properties of {B,,,} and (Y} can be seen more clearly by rewriting (20) as:

1 Q, (@)
ovt ‘Ylol’

R, -t]=- ———|C
Bl Rt - QE (Yl Yiat

] * Covl(Yl+l’ Bttl) . (21)

Comparing the above results with (8) of section 2, one can see directly the following properties
of the predicted expected return function if one allows for a "bubble" or a non-fundamental component
in asset pricing.

(D If {B,,,} is a deterministic sequence then neither the predicted, nor the realized excess returns
are affected by the presence of a bubble.

2) If {B,,} isconditionally independent of {Y,,;} then the presence of a bubble in the market
price does not affect the predicted excess return.

3 If conditionally {B,,;} and (Y.} covary negatively and (Qf Y1} satisfy the sufficient
condition of Theorem 1 then predicted excess returns must be non-negative.

C)) If conditionally {B,,;} and {Y,,} covary positively and {Q‘: Yes1} satisfy the sufficient
condition of Theorem 1, then it is possible for predicted excess returns to be negative.
Therefore, when the sufficient condition of Theorem 1 is satisfied, a prediction of a negative

excess return is consistent with asset market equilibrium only if the bubble covaries positively with the

discount factor. In these circumstances the introduction of a bubble allows the market portfolio to act as

a hedge in economies whose "fundamental” structure would not support such behavior. Posiuve

covariance between the bubble and the discount factor would tend to reduce volatility as it introduces

negative covariance between "good" states of the fundamental economy and the bubble. In order i
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illustrate the possibility that predictions of negative excess returns are compatible with economies
satisfying the sufficient condition of Theorem 1, but containing non-fundamental components in the stock
prices, consider the following construction:

Biot = Yiot Be+ My, | (22)
where B,>0 and Eft,i My, =0, Ef|my|]<=.
Then

CoVy(Biyps Yeo1) = ExBy + Yoo Myl - BtEt[Y:LllEl['Yul] - B[Y] Edmy, )
or

Cov(Bops Tewd) = (1 - El Yot JBIYon 1Bt - Bl JEr{1D, -

1
EfY..]
B,,; and ¥, one at least requires E(m,,,] <0. Note also that the larger B, is, holding the propertics

Hence to obtain a positive conditional covariance between

By Jensen’s inequality E[Y;.,]2

of (Y.} constant, the more negative must be the conditional mean of m,,, to produce a prediction of
negative excess returns.

Thus, predictions of negative excess returns in economies whose fundamental structure satisties
the sufficient condition of Theorem 1 are possible when one allows for non-fundamentals to affect asset
prices. Furthermore, one would expect to see large falls in stock prices in economies where prices contain

positive "bubble" components that are ex ante positively correlated with the discount factor.

§. The Use of Nominal Excess Returns

The construction of the expression for the predicted excess return of Section 2 did not rely
formally on all prices being denominated in a numeraire consumption good, however, the interpretauon
of ﬂ"xe results did strongly rely on assuming the existence of an asset paying a unit of the numerare
consumption good next period for sure. In economies with money, excess returns will be denomunares

in money prices. In order to aid interpretation, notational amend equation (1) to
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E1[7t+l(Rt+l - l")] =0, (23)

- t . . . .
where ¥, = Y1 —— and P is the money price of the numeraire consumption good. One can

t+1
proceed with exactly the same analysis as in Section 2 and rewrite condition (11) as

Q' (w,) *(w,)
= B (@) - T (@) 2 2@ Fer1(©0) - Frar (@) (24)

V(@) T (@)

Under the assumption that 7,,,(®,) > %,,(®,), a sufficient condition for the expected excess return

function to be nonnegative is

Q@) Fal@y)
Q@) Tw(®@d

which implies that

P, (@y) <{Q:(‘°1) Iyul(mZ)
Pa(@y) [Q:(“’z) [Yeer (@)

Hence, for example, Q*(,) > Q¥(w,) under the assumption ,,(®,) > %..1(®;) would ensure positive
predictions for nominal excess returns.

The main difference from previous expressions is that we now have an extra source of variation,
the price level, that can have different effects on the bond market compared to the stock market. In other
words, the bond market does not offer a method of ensuring a real unit of consumption good in the next
period. Inequality (24) is likely to fail if bad times at time (t+1) are associated with a high price level
attime (t+1). Intuitively we can think of the differing possibilities for the price level as representing a
potential tax that might be placed on holders of bonds next period. The stock market could become a
hedge if the tax is only implemented in bad times making bonds a relatively poor form of avoiding risk.

Note that if bad times are associated with a much higher price level then the assumption Fs1(@a) >
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%.1(@) will no longer be valid. In such circumstances predictions of excess returns could still be

positive even if

Q[‘(ml) > Q:(mz)
V@) Y@y

since the higher price level in state w, could produce

Ql‘((‘ol) < Q:(mz)
?ltl(ml) ?!«rl(mZ)

In the case where real excess returns are considered, (R‘f,,l - r)P/P,,,, the expression for

predicted excess returns would become

ca T | ELQr@E |t
Q@) 5— dQ (@)] 1h

P 1 +1
E (R&-r)-—‘-}-— E, ell-
l l: " Py Q‘F Y E 1]

A sufficient condition for this expression to be positive is (using a similar Jensen’s Inequality Approach

to Section 2)
Q (wy) Q (@y
= (Y@ - Y@} 2 S (om0 - Ta(@)).
qu(ml) 7!#1 mZ

Thus, in this case the sufficient condition is less likely to hold than the condition (24) obtained for
nominal returns.

Further, in economic environments where inflation can be negatively correlated with the
performance of the real economy, the equity premium calculated by adjusting nominal returns for
inflation will have a downward bias, that is it will underestimate the true premium on equities. Thus. if
the periods of conditional negative correlation between inflation and the performance of the economy are

important it will tend to exacerbate the "equity premium puzzle" of Mehra and Prescott (see Labadie
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(1989)).

6. Negative Expected Excess Returns: Some Empirical Evidence

There are two main approaches one could take to the empirical analysis of the expected excess
return function. If one knew both the correct form of the asset pricing model (e.g., representative agent
with constant relative risk aversion preferences) and the information used to predict dividends then one
could solve the model either analytically or numerically for an expression relating the expected excess
return to observables. Anexample of this approach is given in Section 3, and involves explicit modelling
of the conditional mean and the conditional variance of the growth of the dividends in terms of the
observable.!* One possibility would be to characterize the joint distribution of the dividend growth and
the other related variables by means of a vector autoregression. The properties of the expected excess
return function associated with this structural model can then be compared to unrestricted predictions
obtained, for example, by linear or nonlinear functions of the predetermined variables. An alternative
approach would be to approximate the expected excess returns by linear or nonlinear functions of the
predetermined variables, and then test the non-negativity property of the expected €xcess returns. In this
section we consider simple examples of both of these two approaches. Inlater work we intend to examine
the structural approach in more detail using the VAR techniques.

A simple example of the structural approach is given by the representative agent asset pricing
model with dividends following a geometric random walk and preferences in the CRRA class discussed
in Section 3. Recall that in the case of this model expected €xcess returns are linear functions of the
dividend yield alone, gnd do not depend on any other predetermined variables. This leads to the

following regression equation:

Ryt -6 = Yie =X+ U0y t=0.12...n (25)

14Gee equation 14 and the subsequent discussions.
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where 0 is 2x1 vector, x, = (1, D/Q)" and E[u,,}=0. In this simple case the empirical adequacy
of the underlying asset pricing model can be evaluated by testing for the significance of additional
predetermined regressors in (25).

The reduced form approach does not re:quire an explicit specification of the asset pricing model.
but assumes that adequate approximations of the excess return function can be achieved using linear
regression techniques. There is now a vast literature documenting the extent to which this can be done.
However, there is little agreement on the set of variables that should be used as predictors of excess
returns, or the importance of the linearity assumption. Our aim is not to resolve the question of the best
set of predictors or make an argument for the use of linear predictors, but rather just to document the
behavior of some simple predictors of excess returns of the CRSP value weighted index over the post-
Second World War period. What is different about our analysis is the emphasis placed on the negative
predictions and their individual statistical significance.

The previous studies by BGJ, BLL and PT that have concentrated on the negative predictions use
a switching portfolio to evaluate their economic impoitance. Our theoretical analysis has something to
say about the performance of such a switching portfolio if one of our sufficient conditions for non-
negativity holds. However, switching portfolios are not an efficient method of assessing the statistical
significance of predictions of negative excess returns. For example, if excess returns have negative
skewness (as they do) then a switching portfolio might show large profits from moving out of the stock
market based on only a weak and statistically insignificant prediction. Thus, our approach is 0
recursively generate predictions of excess returns and assess their statistical significance by means of
simple t-tests.

Suppose the excess return function can be approximated by a particular linear combination of
predetermined variables:

LY

Ry - =Y =X+, t=0.1.2...n N



where 0 and x, are kx1 vectors and E[u,,,x,] =0. Define w, to be the linear predictor of y,, based
onx,. If we recursively estimate (26) we have for each t>k:

w, =8, (27)

" t-1 , -l
where 6 = |Y xx, | ¥ XYoo
s=0

s=0
The construction of the standard error of the forecast will depend on whether the error term in (26) is

conditionally heteroscedastic. Since we do not find evidence of conditional heteroscedasticity in the full

sample estimates we compute the standard errors of the forecasts for the homoscedastic case:

SE(W,) = (65H;! %)% (28)

where 62 = (t-k)"! (z-l: el, H_ = [f: X, X,, &=7Y, -0x,. The recursive t-ratios are then
calculated as wsé,(\;:()). ”

The data for the estimation of the excess return regressions are taken from PT (1992) which
should be consulted for further details. We present results for annual, quarterly and monthly observations
from the start of 1954 to the end of 1990. The excess returns are calculated from the CRSP value
weighted index and the safe one period nominal interest rate for the relevant holding period. We carry
out our analysis for all the three data frequencies in order to ascertain the robustness of our results to the
choice of the holding period. The previous analyses of BGJ and BLL have concentrated on the monthly
and daily datagespectively. We are wary of results based on holding periods shorter than a month because
of the presence of transactions costs which we have abstracted away from. PT find that high ransacuons
costs prevent switching portfolios from being profitable compared to the market portfolio at the monthly
frequency. The very high frequencies, however, do have the advantage of reducing inflation risk and thus

allow us to assess the effect of inflation in negative predictions by comparing different frequencics
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We consider two basic sets of pre-determined regressors in addition to the dividend yield:15
Set(1): The dividend yield at same ¢, the interest rate variable used in the computation of the excess

return, the change in the shortest period interest rate available at time t, and the change in an

annual average of industrial productiqn at time t-1.

Set (2): The regressors in (1) plus the change in a long run inflation rate at time t-1.

The choice of regressors is motivated by a number of factors. Our theoretical development
suggests that the dividend yield alone is unlikely to produce predictions of negative excess returns but
is a potential predictor of excess returns. There is a well-documented negative correlation between
interest rates and excess returns. Therefore, we wish to see whether the correlation is strong enough to
produce statistically significant negative predictions. There are a large number of possible interest rates
one could choose, so to keep things simple we chose the interest rate used in the excess return definition
and the change in the shortest period interest rate available at time t, when the forecast of the excess
return for time t+1 is made. The latter is designed to capture changes in the real economy and monetary
movements just before the start of the holding period. The change in industrial production is frequently
included in excess returns regressions to capture aspects of business cycle fluctuations not contained in
the dividend yield variable (Balvers et al. (1990)). Finally, we include a measure of “long run” inflation
to see if negative predictions are more likely during periods of stagflation when one might believe that
a worsening of the real economic situation could be associated with higher inflation. The second lags of
these latter two variables were included to allow for the fact that at the monthly and quarterly frequencies.
observations on these variables are announced with a lag, so that they are not in the public information
set attime t.

The full sample estimates of the regression coefficients are summarized in Tables 1, 2 and 3 for
the monthly, quarterly and annual frequencies, respectively. In all the regressions, the dividend yield has

a positive and statistically significant coefficient. The other variables that are statistically significant

15gxact descriptions of the variables are given at the foot of Tables 1, 2 and 3 where the full sample
regression results are summarized.
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;cross the equations are the level of the interest rates at the monthly and the quarterly frequencies. Apart
from the dividend yield most of the other variables enter the excess return equation with a negative
coefficient.'® Overall, it appears that even without restrictions on preferences the geometric random
walk model (for the dividend process) is not supported by the data.

We now turn to the assessment of whether the recursively generated forecasts are significantly
negative. Figures 1, 2 and 3 present recursive t-ratios for the monthly, quarterly, and the annual
predictions, respectively. We initialize the recursive estimates with the observations up to 1960 (with the
exception of regression (ii) for the annual data which requires observations up to 1961). One can see by
examining the first graph in each figure that the dividend yield variable alone, although statistically
significant for the whole sample, is not capable of producing astatistically significant negative prediction.
Adding the extra regressors of set (i) above does produce some evidence of statistically significant
negative predictions. Further, inthe majority of cases statistically significant evidence of negative as well
as positive predictions are generally found during the volatile periods in the 1970s and 1980s.

The null hypothesis for the prediction of excess returas o be positive in a particular period, say
t, would be, Hy: w, 2 0. Of course, if one wanted to test for non-negativity of the function used to
approximate the conditional expectation of excess returns, then the null hypothesis of interest would
become, Hy: w, 20 for all t, and the alternative H,: W, <0, for some t. If the latter null hypothesis was
true we would expect to find violations if we checked each prediction individually at the rate of the size
of the test. One can bound from below the size of such a test that examines all of the predictions by using
a Bonferroni type procedure. A more appropriate technique would be to compare the constrained and
the unconstrained estimates of the expected excess return function. In this paper we present a series Of
t-ratios for the recursive predictions and quote a Bonferroni Bound for the test of Hy: w, 20 against
H,: w, <0, forsome t.

A simple application of the Bonferroni Bound procedure works as follows: Let P,,....Py bethe

16Notice that the diagnostic tests for conditional heteroscedasticity support our use of the standard
error of the forecast constructed under the assumption of an homoscedastic error.
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p-values corresponding to the M test statistics for each w,, t=1,2,..,m, the recursive predictions
centered at zero. Let Py,..., Ppg De the ordered p-values. One would reject Hy atthe a level if Py,
< /M, therefore, a =M Py, (see Savin (1980) for more details). It is clear that the procedure can be
very conservative if there are many small p-values and ignores information in the joint distribution of the
predictions.

The (one-sided) Bonferroni Bounds at the 5 percent significance level are -3.64,-3.35 and -2.95
for the monthly, quarterly and annual frequencies respectively. Only the monthly recursive predictions
based on regression equation (1) violate the Bonferroni bound. The periods that are associated with this
finding are from the end of the 1970s to the beginning of the 1980s. These results are suggestive of the
explanation advanced in Section 5. The switch in monetary regime in the United States during this period

might have been associated with a belief that worsening states of the economy would be associated with

higher levels of inflation.

7. Conclusions

In this paper we show that general equilibrium asset pricing models must have a very special
structure to generate predictions of excess returns that are negative. By special we mean something
different from the recent literature, which has focused on the possibility of matching the unconditional
moments of excess returns implied by representative agent general equilibrium asset pricing models with
the estimates of these moments obtained from historical observations, without needing to resort t0
"implausible" values for the preference parameters. Our theoretical results show that for predictions of
negative excess returns to be consistent with the predictions of intertemporal general equilibrium asset
pricing models it is necessary for agents to hold the stock market portfolio as a hedge, which runs counter
to a long tradition of viewing the stock market as a leading indicator of economic activity. It is shown
that this conclusion is reasonably robust to the choice of preference parameters and holds even for
implausible values of the preference parameters. so long as asset prices reflect fundamentals only. Two

possible explanations of the hedging property are advanced in the paper, namely non-fundamental pricing
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and the presence of risk in the bond market which is hedged in the stock market. We intend to investigate
the empirical importance of these possible explanations more fully in future research.

Under assumptions that are common in the literature of CRRA preferences and a geometric
random walk for dividends, the expected excess return is a non-negative linear function of the dividend
yield. Furthermore since we did not restrict preferences within the CRRA class such a specification of
the expected excess return function is capable of explaining the equity premium puzzle of Mehra and
Prescott. In the present paper we are able to generate negative predictions of excess returns using linear
regression techniques when the regressors contain predetermined variables in addition to the lagged
dividend yield. These predetermined variables are also statistically significant over the whole sample.
If we had merely considered unconditional moments of the excess return, such as the equity premium,
no evidence against the dividend yield specification of the excess return function would have been found.
In using conditional moments of the excess returns not only was evidence found against the particular
specification of the asset pricing model. but also against all asset pricing models that restrict the expected

excess return to be non-negative.
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TABLE2

QUARTERLY EXCESS RETURN REGRESSIONS™*

{Sample Period 1954(1)-1990(4)

(i) EVW,, = -0.077 + 9.800 YVW,
0.032) (3.232)
R2=0059, R?*=0.053, 6=0082, DW=171
2 2 2 2
xie (@) = 423, x2e (1) = 0.01, x4 (2) = 2254, x5 (1) = 001

{0.376] [0.922] (0.000] [0.936]

@) EVW,, = -0.091 + 183 YVW, - 0011 I3 + 0001 All, - 0.179 AJP_,
0.03) (3597 0.002)  (0.010) (0.125)

R2=0189, R?*=0.166, 6=0075, DW =184

Ko@) - 2763, xE() = 0374,  xnu(@ = 2644, X5 (1) = 1.995
[0.598] [0.541] (0.000) [0.158]

@ EVW,, - -0.105 + 20.19 YVW, - 0.0085 I3, - 0002 All, - 0262 AP, - 0.389 &P,
0.032) (3.758) (0.003) (0.009) (0.134) (0.240)

R2=0204, R%=0.176, &4=0075, DW=183

Co@ =318, () =110,  xx@ = 2303, X2 () = 217
[0.529] [0.295] (0.000) (0.141)

EVW,,, is the quarterly value CRSP portfolio excess return,

YVW, is the quarterly dividend yield variable,

I3, is the three month T-bill rate measured at the end of the quarter,

All, is the change in the one month T-bill rate from the middle of the quarter to the end of the
quarter,

A, is the fourth difference operator,

IP, is the logarithm of the 12 month average of industrial production,

P, is the logarithm of the 12 month average of the producer price index.

T See Table 1.



(i)

(iii)

TABLE 3

ANNUAL EXCESS RETURN REGRESSIONS™"

(Sample Period 1954-1990)

N\
EVW,,, = -0210 + 7.081 YVW,
(0.108) (2.763)

2-0.158, R®=0.134, &=0.135, DW=2.09

Co) = 0173, xge() = 0046, Xy (@) = 0477, K5 (1) = 0477

[0.678] [0.830] (0.788]

EVWM - -0.227 + 1021 YVW, - 0.015 112, - 0.030 All, - 0.176 AIP_,

(0.107) (2.781) (0.010) (0.037)

=0.348, R}=0266, &=0.125, DW =225

{0.491]

(0.392)

Lo = 2714, %) = 0151, Xy (@) = 2342, x5 (1) = 1793

[0.099] [0.698] [0.310]

EVW,,, = -0.266 + 10.94 YVW,_ - 0007 112, - 0.046 AIl - 0332 AIP,

0.112) (2.844) (0.012) (0.040)

R?=0373, R?*=0272, 6=0.124, DW=242

[0.181]

(0.414)

Co(l) = 6711, yi(D) - 1465, xn(2) = 2.395, x5 (1) = 4351

(0.010] [0.226] (0.302]

EVW,,, is the annual weighted CRPS portfolio excess return,

YVW, is the annual dividend yield variable,

112, is the twelve month T-bill rate at the end of January,

Dll is the change in the one month T-bill from December to January,
Ais the first difference operator.

IP, is the logarithm of industrial producton,

P, is the logarithm of the producer price index.

See Table 1.

(0.037]

- 0.881 AP,
(0.782)
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