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Abstract

This paper defines the notion of finitely effective equilibrium and pseudo-
equilibrium for infinite horizon economies with incomplete asset markets.
This notion generalizes the usual ones for finite horizon economies with in-
complete markets and for infinite horizon economies with complete markets.
Finitely effective pseudo-equilibria exist when assets are short-lived and de-
nominated in general commodity bundles; true equilibria exist when assets
are denominated solely in a single numeraire commodity, or in units of ac-
count. It is shown that the notion of finitely effective equilibrium coincides
with two other notions of equilibrium: equilibrium with loose, consistent debt
constraints and equilibrium with bounded debt.






1 Introduction

This paper provides a definition of equilibrium and pseudo-equilibrium for
infinite horizon economies with incomplete asset markets. This definition
generalizes the usual ones for finite horizon economies with incomplete mar-
kets and for infinite horizon economies with complete markets. We establish
the existence of pseudo-equilibrium when assets are short-lived and derom-
inated in general commodity bundles; we obtain a true equilibrium when
assets are denominated solely in a single numeraire commodity, or in units of
account. It seems to us that the notion of equilibrium we define is a natural
and compelling one; as evidence, we show that our notion actually coincides
with two other — apparently quite distinct — notions of equilibrium.

The crucial issue that divides the infinite horizon setting from the fi-
nite horizon setting is the nature of debt constraints. In the finite horizon
setting, the constraint that there be no debt following the terminal date,
together with the budget constraint, imply limits on debt at earlier dates.
In the infinite horizon setting, these terminal debt constraints — and the
implied debt constraints at earlier dates — are absent. If no additional debt
constraints were imposed, no equilibrium could possibly exist: all traders
would attempt to finance unbounded levels of consumption by unbounded
levels of borrowing. When markets are complete, such Ponzi schemes may
be ruled out by the simple requirement that debt at each date/event never
exceed the current value of future endowments; this is frequently called a
solvency requirement. Completeness of markets guarantees that solvency is
an unambiguous requirement. Moreover, in the presence of appropriate as-
sumptions about preferences and endowments, it is sufficient to guarantee
that an equilibrium exists (see Bewley (1972) for instance). However, when
markets are incomplete, solvency is no longer an unambiguous requirement.
When markets are incomplete, marginal rates of substitution for different
traders may not be equal at equilibrium; as a consequence, traders may not
agree on current value prices.!

In the complete markets setting, an alternative formulation of the sol-

1Magill and Quinzii (1992) construct a theory of debt constraints in which the debts
of different traders are evaluated according to different current value prices.



vency requirement is that, at each node, almost all the debt can be repaid
in finite time; this latter formulation has the advantage that it makes per-
fect sense in the incomplete markets setting as well.? We say that such debt
constraints are finitely effective. This condition expresses the same intuition
as the usual solvency condition and rules out Ponzi schemes. We show that
it also meets the basic consistency test of sufficing for the existence of what
we term finitely effective equilibrium (with appropriate assumptions on pref-
erences and endowments). Finitely effective equilibrium reduces to the usual
notions of equilibrium in the infinite horizon setting with complete markets
and in the finite horizon setting with incomplete markets.

Finitely effective debt constraints are not the only debt constraints that
will rule out Ponzi schemes. In a sense, however, they are the only debt
constraints that are compatible with equilibrium and with the minimal ability
to borrow and lend that we expect in our model. To make this assertion
precise, we identify a broad class of debt constraints (which even allows for
personalized constraints), and show that whenever one of these more general
debt constraints is compatible with an equilibrium, it necessarily reduces to
the finitely effective constraints.

The class of debt constraints we consider is suggested by the following
observations. The most straightforward way to repay current debt is to con-
vert all future endowments into current wealth; when markets are complete,
it is of course possible to accomplish this directly. When markets are incom-
plete, however, future endowments cannot be exchanged directly for current
wealth; the “optimal” strategy for converting future endowments into wealth
today may involve borrowing at many future date/events. Thus there is no
unambiguous way to require that current debt can be repaid without simul-
taneously specifying what constraints debt must satisfy at these (subsequent)
date events.

This suggests that we should view debt constraints as an entire system,
and specify debt constraints simultantaneously at all date events, rather than
individually at each date event.> Given such a system of debt constraints,

ZNote that, even in the complete markets setting, debt may never be entirely repaid
— or repayable — in finite time, although the date 0 value of debt will tend to zero.
3We formulate debt constraints as the spot value of debt that a trader may hold entering



an equilibrium consists of a list of asset prices, commodity prices, consump-
tion plans, and portfolio plans, such that the plans satisfy the usual market
clearing conditions and budget constraints and the given debt constraints,
and are utility optimal among all such plans.

We are interested in systems of debt constraints that satisfy two condi-
tions. Roughly speaking, a system of debt constraints is loose if liabilities
which satisfy tomorrow’s debt constraints can be acquired today. A system
of debt constraints is consistent if liabilities that do not exceed today’s debt
constraint can be satisfied without exceeding tomorrow’s debt constraints.
To say that a system of debt constraints is both loose and consistent is to
say that the debt constraint at each date event reflects an accurate summary
of relevant information about future debt constraints. In the finite horizon
setting, the implicit debt constraints are loose and consistent, and are the
only such debt constraints. Thus, the notion of a equilibrium relative to any
system of loose consistent debt constraints reduces to the usual one in the
finite horizon setting.

The finitely effective debt constraints are always loose and consistent. In
general, debt constraints which are loose and consistent need not be finitely
effective. However, if a system of debt constraints is loose and consistent and
is compatible with some equilibrium * then the debt constraints are necessarily
finitely effective. In particular, these two notions of equilibrium coincide.

Another way to rule out Ponzi schemes is to limit, not the level of debt
at each node, but rather the asymptotic behavior of debt; the most obvi-
ous requirement to impose is that debt remains uniformly bounded (over
all nodes). Remarkably, such a requirement again leads exactly to finitely
effective equilibrium.

In addition to debt constraints, there is an additional difficulty that we
must face: because we treat real assets, the dividend matrix may fail to have
constant rank. In this regard, the infinite horizon setting is no different from
the finite horizon setting; see Hart (1975). In this paper, we content our-
selves to follow Duffie and Shafer (1985, 1986) and establish the existence

a particular date/event; this has the effect of constraining the portfolios that a trader may
acquire at the preceding node.
40Or pseudo-equilibrium; see below.



of a pseudo-equilibrium. We conjecture that, as in the finite horizon set-
ting, pseudo-equilibria will generically be equilibria, but the precise notion
of genericity required seems to be a subtle one.

Because our main purpose here is to emphasize the role of debt con-
straints, we restrict ourselves to the case of short-lived assets. However, there
would be only notational difficulties in allowing for assets which have long
— but finite — lives; infinitely-lived assets — including consols — present
more serious complications.

To prove the existence of a finitely effective equilibrium, and the equiv-
alence of finitely effective equilibrium with the other two notions of equi-
librium, we find it convenient to first establish the existence of pseudo-
equilibrium relative to some system of loose, consistent debt constraints.
The argument, which follows Levine (1989), is somewhat involved, but the
basic idea is straightforward. Every suitable finite truncation of the econ-
omy has a pseudo-equilibrium (with no debt constraints other than those
implied by the constraint that there be no liabilities following the terminal
date). The limit of these finite horizon pseudo-equilibria provides a pseudo-
equilibrium for the infinite horizon economy, in which the debt constraints
are taken to be the limit of the implicit debt constraints for the finite hori-
zon truncations. We then show that equilibrium debt constraints which are
loose and consistent are necessarily bounded below, and that consistent debt
constraints which are bounded below can necessarily be repaid in finite time.
Combining these results yields the existence of finitely effective equilibrium
and the equivalence with equilibrium relative to a system of loose, consistent
debt constraints. Finally, a variation on the same arguments establishes the
equivalence with bounded debt equilibrium.

For short-lived numeraire assets (that is, assets denominated in a single
commodity), pseudo-equilibria are necessarily equilibria, so in this case we
obtain the existence of a true equilibrium.’ Since the case of short-lived
financial assets (that is, assets denominated in units of account) can be re-
duced to the case of numeraire assets, we obtain a true equilibrium in this

5The restriction to short-lived assets is important here; the rank difficulty identified by
Hart can occur even for numeraire assets that are long-lived.



case as well.®

Our approach to debt constraints is certainly not the only one possible,
and two recent papers dealing with infinite horizon economies with incom-
plete asset markets treat debt constraints in quite a different way. Hernandez
and Santos (1991) and Magill and Quinzii (1992) restrict the current value
of debt to be no greater than the current value of future endowments; Her-
nandez and Santos compute current values according to a special system of
current value prices, while Magill and Quinzii use personalized current value
prices that are generally different for each individual in the economy.

Our attention here is on infinite horizon economies populated by (a finite
number of) infinitely lived traders. In an infinite horizon economy populated
by finitely-lived traders — for example, an overlapping generations economy
__ the issue of debt constraints can be resolved exactly as in the finite horizon
setting: Each individual faces the constraint that he cannot have liabilities
after the terminal period of his life; debt at other dates is constrained im-
plicitly by this requirement and by the budget constraints. For the existence
of equilibrium in an overlapping generations economy (with purely financial
assets), see Schmachtenburg (1989).

SWe do not consider economies with long-lived financial assets, but the existence of
equilibrium for such economies should not be problematical.
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2 Infinite Horizon Economies

Time and uncertainty are represented by a (countably) infinite tree S. A
node s € S represents a finite history of exogenous events; we denote by #(s)
the length of that history. The root of the tree is denoted by s = 0; thus
t(0) = 0. The node immediately preceding s is denoted by s — 1, and the set
of nodes immediately following s is denoted by st.

There are L commodities 1, ..., L available at each node. Write p, € §Rf_
for the vector of commodity spot prices at the node s, p, for the price of
commodity [ at s, and p: S — R% for the function which assigns commodity
spot prices at each node. It is convenient to normalize so that the value of
the social endowment is 1 at each node.” A consumption plan is a bounded
functionz: § — RL; 50 X = (I2)* is the consumption set (for each trader).?
Write z, for the vector of consumption at node s, and z,; for consumption
of commodity /.

There are I traders 1,..., 1 characterized by endowments w' € X and
utility functions U* : X — R. We assume that endowments and utility
functions satisfy the following assumptions.

Assumption 1 Utility functions U’ are concave, monotonically increasing,
and continuous in the Mackey topology.®

Assumption 2 Endowments are strz'cvtly positive and commensurable, in the
sense that there is a constant p > 0 such that w! > pw! for each node s and
each pair of traders i, .

"We emphasize that the prices p, are spot prices, not present value prices.

8The restriction to bounded consumption plans is innocuous; after a re-scaling, we may
always assume that the social endowment is bounded, whence all feasible consumption
plans are bounded. Of course, traders do not take social feasibility into account when
they choose optimal plans. However, under extremely mild conditions, if a trader finds
that a given bounded consumption plan is dominated by an unbounded consumption plan
(satisfying appropriate constraints), it will also be dominated by a bounded consumption
plan (satisfying the same constraints). See Bewley (1972) for a similar discussion.

®Recall that, on bounded sets, the Mackey topology coincides with the product topol-
ogy, and that — given our assumptions — the set of feasible consumption plans is bounded.



Monotonicity and concavity are standard assumptions. Continuity in the
Mackey topology is an assumption about time preference: additional con-
sumption today is more desirable than additional consumption in the dis-
tant future. Time-discounted preferences certainly satisfy this assumption;
for a detailed discussion, see Brown and Lewis (1981). The assumptions that
endowments are strictly positive and commensurable serve three functions:
they guarantee that some short selling is always possible (independent of
prices), that income is strictly positive, and that debt constraints for dif-
ferent traders are commensurable (in the same sense that endowments are

commensurable).1%'1!

Intertemporal transactions and insurance are carried out through the
trade of short-lived (one period) assets. For notational convenience, we as-
sume that the number of assets M available at the node s is independent of
s. We write g, € RM for the vector of asset prices at node s, g, for the price
of asset m at s, and ¢ : S — RM for the function which assigns asset prices
to nodes. The portfolio of assets chosen by trader i at node s is denoted by
y'. A portfolio plan y : S — RM assigns a portfolio choice at each node s.

We treat real assets, so that each asset purchased at node s returns a
vector of commodities at each node o € s*. We write R, for the returns
operator at node o; thus, if y, is the portfolio held at the end of the node s
then R,y, is the commodity bundle promised by the portfolio y, at the node
o € st.

We make two assumptions about asset returns.

Assumption 3 (Positive Returns) For each node s there is a portfolio
ys > 0 such that R,y, >0 and R,y, # 0 for each node o € s*.

Assumption 4 (No Redundant Assets) For each node s and each pair
of portfolios y, # y', there is a node o € s* such that R,y, # R,Y,.

101t would actually suffice for our purposes to know that initial wealths are commensu-
rable. Such a condition is of course implied by commensurability of endowments, and by
various other assumptions.

11 Note that endowments are commensurable if they are interior to I, so our assumption
is weaker than that of Bewley (1972).



The first of these assumptions provides a financial connection between
dates. The second is purely for notational convenience; of course, redundant
assets can be priced by arbitrage.

In order to motivate our final assumption, it will be useful to establish a
lemma about intertemporal substitution. We first introduce some notation.
Let z and y be consumption plans, ¢ a real number, and s a node. By the
splice (z,c,y|s) we mean the consumption plan defined by

cl=(1,...,1) ifr=s
(z,c,y|s)r =14 yr if 7 follows s
T, otherwise

Lemma A For each trader i, feasible consumption plan z*, and node s, there
are real numbers ¢,6 with ¢ > 0 and 0 < é§ < 1, such that the consumption
plan (1 — 8)z* + §(z',c,w' | s) is preferred to z'.

Proof: Concavity implies that U* has right-hand directional derivatives at
z* in every direction. We claim that, for c sufficiently large, the right-hand
derivative (call it 3;) of U* at z* in the direction (z*,c,w'|s) — z' is strictly
positive. Assuming this claim, the remainder of the argument is simple. For
§ > 0, the definition of the right-hand derivative yields:

Ui((1 - 6)a* + 6(z',c,w'|s)) = U'(z' +68[(z',c,w’ | s) - z'))

= U'(a') + B.6 + o(6)
where 0(6)/6 — 0 as § — 0. Since 3. > 0, we conclude that
U((1 = 6)z' + 6(z',c,w' | s)) > Ui(z*)
provided that ¢ is sufficiently small, as asserted.

It remains to establish the claim. Write z* = (z,0,w'|s) — ' and
z =(0,1,0]s), so that (zf,c,w’|s) — ' = z* + cz. Concavity implies that
the right-hand derivatives are at least as large as the difference quotients:
Ui(z' + e[z* + cz]) — Ui(a*)

€

B2



for each € > 0. Setting € = 1/c and expanding yields

Ui(z' + (1/¢)fz" + ¢2]) — U'(a")
l/c

= c[Ui(e' + (1/0)z" +2) = U'(")]

B. 2

Since U* is monotonically increasing and is continuous at z*, it follows that
Ui(z' + (1/c)z* + 2) — Ui(z*) > 0 if c is sufficiently large, so that

B, > c[Ui(:ci +(1/c)z" + 2) — Ui(z')] = oo

as ¢ — oo. In particular, 8. > 0 for c sufficiently large. O

This Lemma says that, for each node s, there is a level of consumption
sufficiently large that a convex combination of this additional consumption
and a little consumption in the future is an improvement. Our final assump-
tion simply posits that this level of consumption can be chosen uniformly,
independently of the particular node.

Assumption 5 For each trader i, there is a real number ¢ > 0 with the
property:

for each feasible consumption plan z' and node s, there is a real
number 8§, with 0 < 6 < 1, such that the consumption plan
(1 — 8)z* + 8(z,c,w* | s) is preferred to <.

It is important to keep in mind that this is an assumption about utility
functions and endowments (and hence about feasible consumptions). Since
we have assumed endowments are bounded, this assumption is satisfied for
stationary discounted expected utility functions — that is, functions of the

form o o
Ui’y =6 3 m(s)u'(e'(s))

t t(s)=t

where 6§ < 1 is a discount factor and 7 is a probability distribution on the set
of nodes occurring at time ¢. On the other hand, it fails for non-stationary

9



utility functions of the form

Ui(mi) = Zét Z Wt(s)[l _ e—(l/t)z:z:f(s)]

t(s)=t
whenever endowments are bounded away from zero.'?

Given commodity spot prices p,, the portfolio y, yields a dividend of
Ps - R,y, (units of account) at the node o. It is convenient to write Vi(p) for
the dividend operator which maps portfolios at the node s to the vector of
dividends at nodes in s™;

(Va(p)ys)(0) = po - Roys

Since there are M assets, the dividend operator has rank at most M, but it
may have lower rank for some prices.

No production or intertemporal storage is possibile, and assets are in zero
net supply, so the social feasibility conditions for the economy are

PIEA-PLTH
1 $
>y, =0

Initial holdings of securities are zero. It is convenient to write y:_, = 0.
Thus, for every node s, trader i faces a budget constraint which may be
written as:

Ps - (z; - w;) +q Y, <P R,y,_1
(Note that this inequality is homogeneous in (ps,,), so that we are indeed
free to normalize so that the social endowment has value 1 at each node.)
The pre-budget set is the set B*(w',p, q) of consumption and portfolio plans
(z*,y") that satisfy this budget constraint at each node.

As we have noted, the constraints imposed to this point are not sufficient
to rule out unbounded levels of borrowing. To rule qut such Ponzi schemes

12This example is of some significance: if we begin with an economy in which endow-
ments grow linearly with time and rescale so that endowments become bounded, then a
stationary exponential utility function is transformed into one of this form.
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we need restrictions on the budget sets. We consider three such restrictions.
The first requires that, at each node, it should be possible to repay almost all
the debt in finite time; this is an endogenous requirement The second limits
debt at each node by an exogenously given system of debt constraints. The
third limits only the asymptotic nature of debt; this is again an endogenous
requirement.

It is most convenient to derive the first two restrictions from a common
framework. A system of debt constraints for trader : is a function

D': S —{0} = [~o0,0]

Given commodity prices p, the portfolio y, € RM satisfies the debt constraint
at o € st if
Va(p)ys = Ps° Raya 2 D;-

The interpretation we have in mind is simple. If trader ¢ holds the portfolio
y, at the end of node s, then he will owe a debt (liability) of V,(p)y, at each
node o € st; a debt constraint limits this debt, and hence implicitly limits
the set of portfolios that can be held at s. Write ¥, C RM for the set of
portfolios y, that satisfy the debt constraint at each node o € st.13

Of course, the role of debt constraints is to rule out (some) Ponzi schemes
in the infinite horizon economy. Notice that debt limits are non-positive —
that is, traders cannot be forced to save. As we have formulated them, debt
constraints could be identically —oo; of course, such debt constraints are
not compatible with any equilibrium. As we shall see, compatibility with an
equilibrium (together with other requirements we impose below) forces debt
constraints to be finite everywhere.

It is instructive to think about the role of debt constraints in the finite
horizon framework. In that framework, debt cannot be held at the end of the
terminal period, and this constraint gives rise to implicit debt constraints at
earlier nodes as well. The budget constraint forces repayment by the terminal
date, so the debt limit at any node s is the greatest amount of debt that the
trader could hold, entering node s, and still be able to repay by the terminal

13Note that there is no debt constraint at the initial node since there are no portfolio
choices prior to the initial node.
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date. In the infinite horizon framework there is no terminal constraint, so it
is necessary to impose a system of debt constraints to make these implicit
constraints explicit.

We find it convenient to express debt constraints in terms of the value
of the portfolio held at the beginning of the period, rather than at the end
of the period. To understand why, consider the implicit debt constraints in
the finite horizon model. With incomplete markets, the amount of debt that
can be held at the end of the period depends on the form in which it is held.
If a trader is short in securities which promise repayment in future states in
which his endowment is large, then a substantial debt can be repaid; if he
is short in securities which promise repayment in future states in which his
endowment is small, then he can repay very little. If debt were defined in
terms of end-of-period holdings, it would be necessary to distinguish various
portfolios of debt. Qur definition in terms of beginning-of-period holdings is
therefore convenient because it enables us to work entirely in terms of value.

Given endowments w*, prices p, q, and debt constraints D*, the consump-
tion/portfolio plan (z*, y*) belongs to the budget set B'(w', p, q, D*) for trader
¢ if for each node s:

e the budget constraint is satisfied at s; i.e.,
P (4 —wh) + o ¥h < ps- Rayiy
e the debt constraint is satisfied at s; i.e.,

V,(p)ys-l =p, - Roys—1 2 D.:

In this circumstance, we frequently say that the portfolio plan y* finances
the consumption plan z'.

An equilibrium relative to the debt constraints (D*) consists of prices p, g,
consumption plans (z*) and portfolio plans (y') such that

e consumption plans are socially feasible

e portfolio plans are socially feasible (i.e., ¥; 5} = 0 for each s)

12



e for each trader ¢, ' maximizes trader ¢’s utility over all plans belonging
to the budget set B*(w',p,q, D)

Unfortunately, an equilibrium may not exist in this setting. As noted
in the Introduction, the difficulty is a technical one, familiar from the finite
horizon setting: for some prices p, the dividend operator V,(p) may have rank
less than M. We shall be content in general to obtain a pseduo-equilibrium
(in two cases we shall obtain a true equilibrium); in this we follow Duffie and
Shafer (1985, 1986). Our formulation is different from theirs (we use spot
prices rather than present value prices), although the formulations are in fact
equivalent.

For each node s, we consider an M-dimensional subspace K, C R** of
income transfers, and a pricing functional @, : K, — R. An income trans-
fer plan is a family of vectors k, € K,. For o € s*, write k,(co) for the
o-component of k,. Given commodity prices p, the consumption/income
transfer plan (z, k') satisfies the budget constraint at s if

Ds - (3’; - w;) + Qs - ks < kymi(s)

As before, the pre-budget set B'(w',p, K,Q) is the collection of consump-
tion/income transfer plans (z', k') that satisfy the budget constraint at each
node. Similarly, (z°, k') satisfies the debt constraint at s if

k,_l(S) Z D:

Finally, (z*, k') belongs to the budget set B'(w',p, K,Q, D*) for trader i if it
satisfies the budget and debt constraints at each node. Again, we frequently
say that the income transfer plan k' finances the consumption plan ',

A pseudo-equilibrium relative to the debt constraints (D*) consists of prices
p, a family K of subspaces of income transfers, pricing functionals ¢, con-
sumption plans (z*), and income transfer plans (k*) such that

e consumption plans are socially feasible
e income transfer plans are socially feasible (i.e., _; ki = 0 for each s)

e for each trader 7, the plan (z, k') maximizes trader i’s utility over all
plans belonging to the budget set B'(w',p, K, Q, D*)

13



e for each s, the range of the dividend operator V;(p) is a subspace of K,

A pseudo-equilibrium is proper if, for each s, the range of the dividend op-
erator V,(p) is equal to K.

If trader ¢ acquires the portfolio y, at the node s, he will effect the in-
come transfers V,(p)y, at nodes ¢ € s*. Since the definition of pseudo-
equilibrium requires that the range of the dividend operator V,(p) be a sub-
space of the space K, of income transfers, allowing income transfers to lie
in K, expands the possibilites for each trader. Thus, the notion of pseudo-
equilibrium is more general than the notion of equilibrium. Moreover, proper
pseudo-equilibria are actually equilibria. More precisely, if

(p, K,Q, ("), (k"))

is a propef pseudo-equilibrium relative to the debt constraints (D*), then
there are asset prices ¢ and portfolio plans (y*) such that

(p,a, ("), (¥))

is an equilibrium realtive to the the debt constraints (D'). To see this,
we need only note that the pricing functional @, defines prices g, for asset
portfolios by the rule

Qs ' Ys = QsVs(p)

and that the income transfer plans k' define portfolio plans y* by the rule

Vi(p)y, = K,
It is straightforward to verify the equilibrium conditions.

The debt constraints of most interest to us are those we call finitely
effective. To define them, we proceed in the following way. Fix a system of
commodity spot prices p and pricing functionals ). Consider a trader ¢, a
particular node s, an amount of debt d < 0, and a finite time horizon T
We say that the debt d can be repaid in T periods from node s if there are
a consumption plan z* and an income transfer plan k' which meet the given
debt d at the node s, are budget feasible at every node o which follows s by
fewer than T periods, and leave 0 debt after T' periods. Formally:

14



o p,-xi+Q,-k:—d§p,'w§

© poTp+ Qo Ky S Py oy + kyy(0)
for every node o that follows s and satisfies t(s) < t(o) < t(s)+T

e ki_ (1) > 0 for every node 7 that follows s and satisfies t(7) = t(s)+T

The debt d < 0 can be repaid in finite time from node s if it can be repaid in
T periods for some T. The finitely effective debt constraints FE* for trader
¢ are defined by:

FE! = inf {d : d can be repaid in finite time from node s}

It is important to keep in mind that the finitely effective debt constraints
are uniquely and endogenously defined (of course they depend on commodity
prices and asset pricing functionals).

Note that our definition allows for the possibility that FE' = —oo for
some — indeed, for all — nodes s. As we have already noted however, such
debt constraints are incompatible with equilibrium. Indeed, we shall show
that finitely effective debt constraints that are compatible with equilibrium
(or pseduo-equilibrium) are in fact uniformly bounded below.

A finitely effective pseudo-equilibrium consists of commodity prices p,
subspaces K, asset pricing functionals @, consumption plans (z*) and income
transfer plans (k') that constitute a pseudo-equilibrium with respect to the
debt constraints (FE*). That is, |

e consumption plans are socially feasible
e income transfer plans are socially feasible

e for each trader i, the plan (z', k') maximizes trader i’s utility over all
plans belonging to the budget set B'(w',p, K, @, FE*)

e for each s, the range of the dividend operator V,(p) is a subspace of K,

Although finitely effective debt constraints seem quite natural, they are
perhaps not the only debt constraints of interest. We restrict attention here
to debt constraints satisfying two conditions:

15



e if debt can be acquired, then it can be repaid; that is, if the current
debt constraint is satisfied, then there is a plan that meets today’s
liabilities and satisfies tomorrow’s debt constraints

e if debt can be repaid, then it can be acquired; that is, if there is a
plan that meets a given liability today and satisfies tomorrow’s debt
constraints then the given liability satisfies today’s debt constraints

To formalize the first requirement, fix commodity spot prices p and pricing
functionals Q. The debt constraint D® is consistent at node s if for every
income transfer plan k!_, € K,_; that meets the debt constraint at s — that
is, k_,(s) > D} — there is an income transfer plan k} € K, such that

k:-l(s) +ps 'w.i - Qa ) k; 2 0

and ki(g) > D: for each o € s*. Since the only requirement on the income
transfer plan ki_, is that it meet the debt constraint at the node s, and it
is always possible to find such a ki_, such that ki_,(s) = Di, an alternative
formulation of consistency is: there is a plan ki € K, such that

D;+pa'w.i_Qa'kiZO

and ki(o) > D} for each 0 € s*. That is, it is possible to meet a liability
equal to or greater than today’s debt constraint by consuming nothing today
and acquiring an income transfer (that is, borrowing) that meets tomorrow’s
debt constraints. The system D' of debt constraints is consistent if it is
consistent at each node.

Note that consistency of the entire system expresses the idea desired: If
debt satisfies the limit at a particular node, and debt constraints are consis-
tent at that node, then debt can be rolled over to satisfy the constraints next
period. If the entire system of debt constraints is consistent, this process can
be repeated, so constraints can be satisfied at every future node. In other
words, the current constraint correctly summarizes future constraints.

The requirement that the system of debt constraints be consistent is im-
portant, but not limiting in itself: any given system of debt constraints —
consistent or not — can be modified to a system that is consistent and yields
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exactly the same budget sets. (Recall that the definition of budget sets in-
volves both budget constraints and debt constraints.)

However, merely to establish the existence of equilibrium with some sys-
tem of debt constraint§ — even some consistent system of debt constraints
— does not seem very satisfactory. There is, for example, an equilibrium in
which D! = 0 for every trader ¢ and node s, in which there is no intertem-
poral trade or insurance. (Zero debt constraints are clearly consistent.) In
the finite horizon model, the usual (implicit) assumption is that, if debt can
be repaid then it can be acquired; we want a similar property for the infinite
horizon model as well.

To formalize our second requirement, fix a node s and trader i. Consider
the set K of income transfers k, € K, such that ks(o) > D: for each node
o € s*; these are the income transfers that meet trader i’s debt constraints at
the next date. Selling the endowment w? at the spot prices p, and acquiring
the income transfer ki € K at the prices @, will generate revenue at s
equal to p, - w! — @, - k,, and hence can repay an amount of debt equal to
—ps - Wi + Q, - k,. To say that debt which can be repaid can be acquired is
to say that all debts which can be repaid meet the debt limits at the node s;
in particular,

_ps'wi'{"Qa'kazD:

We define the debt constraint D! to be loose at the node s if this inequality is
satisfied for every income transfer k, € K, that satisfies the debt constraints
ks(c) > D: at each o € s*. The system D' is loose if it is loose at every
node. ’

It is important to keep in mind that looseness and consistency are prop-
erties of a system of debt constraints, and that their validity depends on the
particular system of commodity spot prices and asset pricing functionals.

It is easily seen that the finitely effective debt constraints are loose and
consistent (because the plan which repays today’s debt in T periods can be
extended to repay yesterday’s debt in T + 1 periods). Indeed, the finitely
effective debt constraints constitute the least upper bound of all possible sys-
tems of loose, consistent debt constraints. At the opposite extreme, the debt
constraints that are identically —co are loose and consistent; of course debt
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constraints that are identically —co cannot be consistent with any equilib-
rium. (Note that the debt constraints that are identically 0 are consistent —
but not loose.)

In the finite horizon setting, the implicit debt constraints (that is, debt
at each node is constrained to the level that can be repaid by the terminal
period) are finitely effective, hence loose and consistent. In fact, the implicit
debt constraints are the only debt constraints that are loose and consistent
and repay all debt at the terminal nodes.

Because we work entirely with spot prices, we do not require any partic-
ular bounds on debt constraints, nor do we require any asymptotic behavior
in the distant future. As we shall show, however, our assumptions imply that
loose and consistent debt constraints that are compatible with equilibrium
are necessarily bounded below. We shall return to this point in the following
sections.

For a given system of prices, there may be many systems of debt con-
straints that are loose and consistent. Although this might seem troubling,
it should not. After all, we are not interested in debt constraints per se, but
rather in debt constraints and equilibrium. As we shall see, the requirement
that a system of debt constraints be compatible with equilibrium implies that
the debt constraints necessarily reduce to the finitely effective ones.

Either finitely effective debt constraints or the more general loose and
consistent debt constraints are sufficient to rule out Ponzi schemes. Another
way of achieving this is to place limitations, not on the debt at each node,
but rather on the asymptotic behavior of debt. In particular, we consider the
implications of requiring that debt be uniformly bounded across all nodes.
Define the bounded debt budget sets Bj(w', p, q, ) to be the set of consumption
and income transfer plans (z, k') that satisfy the budget constraint at each
node:

Po - (25 = w)) + Qs ko < Kaca(3)
and have the additional property that debt is uniformly bounded below:

inf{ki(c):s € S,0 € sT} > —0

A bounded debt pseudo-equilibrium consists of commodity prices p, subspaces
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K, asset pricing functionals @, consumption plans (z') and income transfer
plans (k') such that:

e consumption plans are socially feasible
e income transfer plans are socially feasible

e for each trader 7, z* maximizes trader i’s utility over all plans belonging
to the budget set Bj(w',p,q,)

e for each s, the range of the dividend operator V,(p) is a subspace of K,

It is perhaps useful at this point to briefly contrast our three notions
of pseudo-equilibrium. Each of these notions begins with the same pre-
budget sets: the consumption/income transfer plans satisfying the budget
constraints at each node. Finitely effective pseudo-equilibrium is based on
budget sets incorporating the additional requirement that debt at each node
be almost repayable in finite time. Note that this is an endogenous require-
ment, and that it represents an infinite family of constraints (one at each
node). Pseudo-equilibrium with respect to a system of loose, consistent debt
constraints is based on budget sets incorporating the additional requirement
that debt at each node be bounded by exogenously given constraints. Finally,
bounded debt pseudo-equilibrium is based on budget sets incorporating the
additional requirement that debt remain uniformly bounded; note that this
is an endogenous requirement, but that it is an overall constraint (not a
constraint at each node separately).

Our debt constraints are based on spot prices and on what a trader could
repay, not on present value prices and wealth (that is, the present value of
future endowment). A simple example, adapted from Hernandez and Santos
(1991), may illustrate why this is an important distinction. Consider a tree S
that has two branches at each node, so that each node s has two successors;
write st = {so,51}. Assume that there is a single commodity available for
consumption at each node, and a single one-period asset, which promises de-
livery of one unit of consumption at each successor node. Consider a trader
i whose endowment w' is given by w'(0) = 0 and w'(so) = 0,w'(sy) = 1
for each node s*. If (present value) prices are strictly positive, this trader’s
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wealth (that is, the present value of his future endowment) is strictly positive
at each node. However, the finitely effective debt constraints are identically
0 at each node; with such debt constraints, no borrowing is possible at any
node. Such zero debt constraints are perfectly sensible here: in any finite
horizon truncation of this tree, it will be impossible for this trader to borrow
at any node, since it might be impossible for him to repay his debt by the
terminal node. The implicit debt constraints in these finite horizon trunca-
tions are therefore identically zero at each node. Zero debt constraints in the
infinite horizon setting therefore correctly capture the finite horizon limit.

Of course, we do not assert that a sensible theory of debt constraints
cannot be based on present values, but our theory is not, and the distinction
is a real one. Indeed, Hernandez and Santos (1991) and Magill and Quinzii
(1992) offer notions of equilibrium that are based on (individualized) present
values.



3 Pseudo-Equilibrium
Our fundamental results are:

Theorem 1 Every infinite horizon economy satisfying Assumptions 1 - §
admits a finitely effective pseudo-equilibrium.

Theorem 2 In the presence of Assumptions 1 - 5, the notions of finitely
effective pseudo-equilibrium, of pseudo-equilibrium relative to some system
of loose, consistent debt constraints, and of bounded debt pseudo-equilibrium,
are equivalent. '

In the finite-horizon setting, Duffie and Shafer (1985, 1986) have shown
(with the additional assumption of smooth preferences) that, generically in
endowments and asset structure, pseudo-equilibria are in fact equilibria. We
conjecture that a similar result holds in our setting; however, giving a precise
meaning to “generically in endowments and asset structure” does not seem
an easy task in the infinite-horizon context. We are content here to show that
we can obtain a true equilibrium in two cases: if all assets are denominated
in a single commodity (numeraire assets), or if all assets are denominated in
units of account (financial assets).

Corollary 1 If all assets are denominated in a single commodity, then there
is a finitely effective equilibrium.

Corollary 2 If all assets are denominated in units of account, then there is
a finitely effective equilibrium.

The proofs of the theorems are rather involved, and we defer them to
the following section. However, the corollaries have quite simple proofs. To
obtain the first of these corollaries, observe that, for one-period numeraire
assets, the returns operator necessarily has constant rank M at each node, so
that the notions of equilibrium and pseudo-equilibrium coincide. To obtain
the second of these corollaries, observe that purely financial assets can be
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reinterpreted as securities denominated in units of the social endowment
(which, according to our normalization, always has price 1), and that the
returns operator again has constant rank M at each node (so that the notions
of equilibrium and pseudo-equilibrium coincide).
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4 Proofs

We find it convenient to isolate several lemmas. The first establishes the
existence of a pseudo-equilibrium relative to some system of loose, consis-
tent debt constraints. Note that this lemma and the next make no use of
Assumption 3.

Lemma B Every infinite horizon economy satisfying Assumptions I - 4
admits a pseudo-equilibrium relative to some system of loose, consistent debt
constraints. '

Proof: We construct a pseudo-equilibrium for our infinite-horizon economy
as a limit of pseudo-equilibria for appropriate finite-horizon truncations. To
this end, fix a time horizon T and consider the finite-horizon economy £(7)
obtained in the following way:

e time and uncertainty are described by the tree S(T') consisting of all
nodes s € S for which t(s) < T

e the commodities and assets available for trade at each node of S(T')
are the same as at the corresponding node of S, except that no assets
are available at terminal nodes of S(T')

e there are I traders; endowments at each node of S(T) are the same as
at the corresponding node of S

e trader ¢’s utility U:;p(:c") for the consumption plan z : S(T) — R is set
equal to his utility for the plan z* which coincides with z at each node
s € S(T) and with w} at each node s & S(T)

According to Geanakoplos and Shafer (1990), the finite-horizon economy
&(T) has a pseudo-equilibrium

E(T) = {p(T), K(T), Q(T), (z*(T)), (K(T)))
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with no debt constraints (other than the terminal ones).!

We would like to let T — oo and pass to a convergent subsequence. In
order to do this, we must first verify that the various components of the
pseudo-equilibrium E(T') all lie in compact sets. For some of these compo-
nents, this is a triviality:

e Commodity prices p,(T) are bounded (since the value of the social
endowment is 1)

e Subspaces K,(T') of income transfers lie in the compact Grassman man-
ifold of M-dimensional subspaces of R**

o Consumption vectors z!(T') are non-negative and bounded by aggregate
endowments

Passing to a subsequence if necessary, write p, for the limit commodity spot
prices, K, for the limit subspaces of income transfers, and z for the limit
consumption vectors.

o Income transfers k!(T') are bounded above.

For, if not, we could find a node o € s* for which ki(T)(c) is unbounded
above. For real numbers c, §, consider the consumption plans z*, 2'(T)

defined by
2 = (1-8)z'+6(z',c,w'|s)
2(T) = (1=6)z(T)+6(z'(T),c,w'|s)

14Geanakoplos and Shafer formulate pseudo-equilibrium in terms of present value prices,
rather than spot prices, but the notions are equivalent for finite horizon economies. They
also assume that the indifference surface through any interior consumption plan is a closed
subset of the strictly positive orthant, an assumption that we have not made. However, this
assumption is unnecessary. To see this, let U be any quasi-concave utility function having
the desired indifference surfaces; for each ¢ > 0, consider utility functions U} = U* + €U.
Evidently, the utility functions U? also have the desired indifference surfaces. Write £(T')
for the economy obtained by substituting these utility functions. Applying the result of
Geanakoplos and Shafer, we conclude that £ (7T') has a pseudo-equilibrium. Letting ¢ — 0,
and passing to the limit (of a subsequence, if necessary) we obtain a pseudo-equilibrium
for the economy £(T').

24



According to Lemma A (in Section 2), we can choose ¢, 8 so that z* is
preferred to z'. Continuity of utility functions in the product topology
entails that
U(2'(T)) = U'(2")

Hence, z*(T) is preferred to z*(T) for T sufficiently large. Since k(T (o)
is unbounded above, the consumption plan (z*(T),c,w’|s) is budget
feasible if T is sufficiently large.!® Hence z'(T) is a convex combination
of budget feasible plans, and therefore is itself budget feasible for T
sufficiently large. This is a contradiction, so we conclude that income
transfers are indeed bounded above.

e Income transfers ki(T) are bounded below, since they are bounded
above, and the sum of income transfers of all traders is identically 0.

e Prices Q,(T) are non-negative and bounded above.

Non-negativity is clear, since preferences are increasing. If the prices
Q.(T) are not bounded above, we may choose, for each T, a trader ¢(T')
such that k5)(T)(s) > 0; for notational convenience, we henceforward
suppress the dependence of i on T. As before, we can use Lemma A to
choose real numbers ¢, 8 with ¢ > 0,0 < § < 1 and define a consumption
plan

2 =(1=8)z +68(z',c,w'|s)
so that z* is preferred to z'. For 0 < r <1, set
7' = (1 - 8)z* + §(z', c,rw' | s)

Continuity of preferences guarantees that Z i i preferred to z*, provided
that r is sufficiently close to 1. Set:

ZH(T) = (1 - 6)z'(T) + §(c*(T), ¢, rw' | s)

Continuity again guarantees that Z'(T) is preferred to z'(T), provided
that T is sufficiently large. However, if T is sufficiently large, the
consumption plan (z*(T),c,rw’|s) is budget feasible. (To see this,

15That is, this is the consumption part of a consumption/income transfer plan in trader
7’s budget set.
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note first that, since only a finite number of assets A are available at
s, their payoffs at nodes in s* are bounded by some multiple of the
consumption vector 1 = (1,...,1); say A(c) < al, for each asset A.
Endowments are strictly positive, so w' > 31 for some § > 0. Choose
a real number € with 0 < ¢ < (1 — r)3/a. We have supposed that
prices @,(T) are unbounded above, so, for T sufficiently large, there
is an asset A* whose price is at least cL/e. The consumption plan
(z'(T),¢,rw' | s) can then be financed by the following plan of income
transfers: at the node s, sell € units of the asset A* at the node s (this
yields income sufficient to purchase c1); do nothing at nodes following
s (liabilities at o € s* arising from the sale of A* at s can be covered by
the fraction of endowment (1 — r)w}), and follow the income transfer
plan ki(T) at every other node 7. Thus, the consumption plan Z*(T') is
the convex combination of budget feasible plans, and therefore is itself
budget feasible if T is sufficiently large. This is a contradiction, so we
conclude that prices @,(T) are bounded above, as asserted.

Having established that the components of the equilibria E(T') lie in com-
pact sets, we may extract a subsequence converging to

E = (p.K,Q, (=), (k"))

The next step is to construct suitable debt constraints, as limits of implicit
debt constraints for each of the economies £(T'). To this end, fix a trader 2,
a node s and an index T > t(s). Define the implicit debt constraint Di(T')
for the trader i in the economy £(T') as:

Di(T) = inf{~p, - (Z) — w}) - Q, - .}

where the infimum is taken over all consumption and income transfer plans
(7', %) which meet the budget constraints (relative to commodity prices p(T’)
and pricing functionals Q(T')) at s and at every node T following 3.6

e The implicit debt constraints D(T) are bounded below (at each node).

16We make no restrictions on (F*,k ) at other nodes.
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If not, suppose that trader ¢’s implicit debt constraints are not bounded
below at the node s. For each T, choose a trader j for whom k?_,(T)(s) >
0. (We suppress the dependence of j on T According to Assumption
2, there is a real-number p > 0 such that w! > pw! for each trader
j. Arguing as before, we may find real numbers ¢, 8,7 with ¢ > 0,
0<é<1, 0<r<lsothatthe consumption plan

Zi=(1-6) + §(a?, c,rw’ | s)
is preferred to zJ. Continuity implies that
Z(T) = (1 - )(T) + 8(z(T), ¢,rw | )

is preferred to z?(T) if T is sufficiently large. We assert that ZI(T) is
budget feasible if T is sufficiently large. To establish this, it is suffi-
cient to show that (z7(T),c,rw’ | s) is budget feasible if T is sufficiently
large (since Z7(T) is a convex combination of (z/(T),¢,rw’ | s) and the
equilibrium consumption 21 (T)). By definition of the implicit debt con-
straint D(T), there is an income transfer plan h*(T) for trader : that,
beginning at the node s, repays the debt D!(T') (provided that trader ¢
consumes nothing at subsequent nodes). In other words, the plan A*(T)
yields the income —Di(T) at the node s, and involves no liabilities at
the nodes at time T. By Assumption 2, the endowments of trader :
and trader j are commensurable: wi > pw'. Hence, by following the
plan ph*(T), beginning at the node s, trader j can obtain the income
—pDi(T) at the node s, and still meet all his liabilities at subsequent
nodes (provided he consumes nothing). And if trader j follows the plan
hi = (1—r)ph*(T), beginning at the node s, he can obtain an income of
—(1 —r)pDi(T) at the node s, consume the portion rw’ of his endow-
ment at all subsequent nodes, and still meet all his liabilities. Define
the income transfer plan H’ by Hi =hifr=sorT follows s, and
Hi = ki(T) for all other nodes 7. This income transfer plan finances
the consumption plan (z’ (T), c,rw’ | s), provided that the income it
generates at node s is sufficient to purchase the consumption bundle
c1. The income generated by H? at s is equal to —(1=r)pDi(T). Since
we have assumed that D*(T) is is unbounded below, we conclude that
the consumption plan (z?(T), ¢, rw | s) is budget feasible, provided that
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T is sufficiently large. But then Z?(T) is budget feasible and preferred
to z7(T), a contradiction. We conclude that implicit debt constraints
are bounded below.

Having established that the implicit debt constraints are bounded below,
we may, passing to a subsequence if necessary, assume that
Di(T) — D}
for each trader ¢ and node s. This provides us with with a system of debt
constraints; it remains to show that these debt constraints are loose and
consistent, and that the tuple E constitutes a pseduo-equilibrium relative to
these debt constraints.

It is trivial to verify that that individual consumption plans and transfer
plans belong to the individual budget sets at each node, that consumption
plans and income transfer plans are socially feasible, and that the range of
each dividend operator lies in the appropriate income transfer subspace. It
remains only to verify that individual plans are optimal. To this end, suppose
that there is a trader ¢ and consumption/income transfer plan (a', k') for
trader 7 which belongs to the budget set at each node and has the property
that U*(a’) > U'(z*) + 6, for some § > 0. For each horizon T, consider
the consumption plan a'|T* which coincides with a' at each node s with
t(s) < T*, and is 0 at every node s with #(s) > T*. Continuity of preferences
and the definition of the utility functions Uy guarantees that

Ti(a'|T") = UH(@|T") > Up(a(T)) + 6/2

for all T > T*, provided that T* is sufficiently large. Set @ = (1 —€)a*|T;
continuity of preferences also guarantees that U*(a*) > U'(z*)+6/3 for € > 0
sufficiently small. Set A' = (1 — €)h’. Because endowments are commensu-
rable and the social endowment has value 1 at each node, individual wealths
are bounded away from 0. Hence, the consumption/income transfer plan
(a',h') has the property that the budget and debt constraints are satisfied
(for prices p, pricing functionals Q) with strict inequalities at every node.

For T > T* define an income transfer plan E(T) by letting ki (T) be
the point of K,(T) closest to h,. Because (a', k') satisfies the budget and
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debt constraints with strict inequalities at every node, convergence of income
transfer subspaces K.(T) — K, and commodity spot prices p,(T) — Ps
implies that, for T sufficiently large, the consumption/income transfer plan
(¢', ') strictly satisfies the budget and debt constraints (for prices p(T),
pricing functionals Q(T')) at all nodes s with t(s) < T*. Moreover, if T is large
enough, the plan (g, k') also strictly satisfies the implicit debt constraints
D (T) (for prices p(T), pricing functionals Q(T')) at every node s with (s) =
T=.

The definition of the implicit debt constraints guarantees that it is there-
fore possible to find a consumption/income transfer plan (A, H*) for the
economy &(T) that agrees with (¢, k') for t(s) < T* and satisfies the budget
constraints for the economy £(T') at every node. Since the consumption plan
' is 0 at every node s with t(s) 2 T*, monotonicity of preferences means that
Ui(A") > U(d'). Hence, for T sufficiently large, Up(A') > U (z(T)) + 8/5.
Since (A, H') is feasible for the economy &(T), this is a contradiction. We
conclude that the consumption/income transfer plans (z*,h') are optimal,
and hence that E* is a pseudo-equilibrium, as desired.

It remains to see that the debt constraints D' are loose and consistent.
To this end, note first that our construction guarantees that the implicit
debt constraints D¥(T) are loose and consistent at each node (with respect
to the prices p(T),Q(T)) at every node s with t(s) < T. To see that the
debt constraint D' is loose, fix a node s, an € > 0, and an income transfer
plan k! € K, which satisfies the debt constraints at every node o € st; e,
ki(o) > D; forevery o € s*. Assumption 4 (Positive Returns), together with
the fact that all commodity spot prices are strictly positive and the fact that
the range of the dividend operator V,(p) lies in the income transfer subspace
K,, implies that we can find an income transfer plan h € K, which strictly
satisfies the debt constraints at every node o € s* (i.e., hi(c) > D, for every
o € s*) and which differs from k' by at most € at every node o € st. As
before, write k' (T) for the income transfer plan in the subspace K,(T') closest
to hi. Convergence of prices guarantees that, for T > t(s) sufficiently large,
the income transfer plan h:(T) satisfies the debt constraints at every node
o € st ie., hi(T)(o) > D for every o € st. Because the debt constraints



D¥(T) are loose at s, it follows that
D(T) + ps(T) - wy = Qs(T) - A(T) < 0

Because D(T) — D}, py(T) = psy @s(T) — Qs, and hi(T) — ki, it follows
that . . '

Dy+ps-w,— Qs h, <0
Since h! differs from k! by at most € at every node o € s¥, and € can be
made as small as we like, we conclude that

D:'I'ps'w:—Qs'kiSO

That is, the debt constraint D' is loose at s. The argument that debt con-
straints are consistent is essentially the reverse of this argument; details are
left to the reader. This completes the proof. O

The next lemma provides one of the crucial links between the various
notions of pseudo-equilibrium. It is important to recognize that it represents
an assertion about all consistent systems of debt constraints, not only those
that are compatible with some equilibrium.

Lemma C In the presence of Assumptions -4, every consistent system of
debt constraints that is uniformly bounded below is also bounded below by the
finitely effective debt constraints.

Proof: We show that the debt constraints can almost be repaid in finite time.
Fix commodity spot prices p and pricing functionals @, let D' be a loose,
consistent system of debt constraints for trader ¢ (relative to these prices),
and let A < 0 be a uniform lower bound for D* (that is, D} > A for each
node s). For each node s, consistency of the debt constraint at s means the
amount of debt D! at node s can be repaid while meeting the debt constraints
at succeeding nodes. That is, there is an income transfer plan ki such that:

o psw;+D:=st;

e ki(o) > D: for each node o € s*
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Now fix a node so and an amount of debt d with 0 > d > Dj . The
income transfer plan k;o repays the debt D! ; to repay the amount d requires

80

at most the fraction 3(so) of the income transfer plan k} , where 3(so) solves
the equation

p30 ' w.io + d = Q30 ' (ﬂ(so)k;o)
Solving for ((so) yields
pSo : w:o + d
p-90 ’ wflo + D.io

B(s0) =

Since the income transfer plan k%, meets the debt constraints at each node
sy € s, the income transfer plan B(so)k;, satisfies

B(so)kiy(51) 2 B(s0) Dy,
for each s; € sg (keep in mind that D} is negative).

Now, at each node s; € sg, we can repeat the same process, using the
new debt limit 3(so) D%, . That is, we choose B(s1) to solve

p31 * w.i] + /B(SO)Dil = Q-’l : (ﬂ(sl)k;;l)
For each s; € s7, we then choose ((s2) to solve
Pz - i, + B(51)D5, = Quy - (B(s2)S,)

Continuing in this recursive fashion, we construct the coefficients B(3¢+1) to
solve

p3t+1 ) wiﬂ,l + ,B(St)D:H_l = Q3g+1 : (ﬂ(st-'-l)k:g.“)

Recall our normalization: the value of the social endowment at each node
is 1. Since endowments are commensurable, it follows that there is a g > 0
such that trader i’s wealth at each node is at least g. Choose an integer T
such that
g[l = B(O)]T + B(0)A > —g

We claim that the debt d at the node sy can be repaid in T + 1 periods. To
see this, it suffices to consider any sequence so, $1, ..., St (Where s; € s, for
each t > 0), and the associated income transfer plans B(s¢)k:, constructed
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above, and show that 3(sr)k: , leaves a next period debt so small that it can
be repaid frorn trader ¢’s endowment.

To this end, solve for 3(s;) in terms of 3(s:-1), and recall that wealth is
bounded below by g > 0 and debt constraints are bounded above by A < 0
to conclude

Ds, w;, + ﬂ(st—l)D:, < g + ,B(St_l)A
p-’t.w.i:-l-D.gg - g+A

Note in particular that 3(s;) < B(st-1), so that B(s;) < B(so) for all t.
Solving equation (1) for 3(s:)A and using this fact yields

B(s)A > gl = B(se)] + B(st-1)A
> g[1 — B(s0)] + B(s:-1)A (2)

Substituting ¢t = T in equation (2) and recalling the definition of T yields
Bls)A 2 gl - BOIT + BO)A > —g

By construction, the debt that remains at any node o € sf is B(sr)k} (o) >
B(sT)A, so this debt can be repaid from the endowment at o, and the debt
at any node following o will be 0, as desired.

B(s:) =

(1)

We conclude that any amount of debt d > D%, can be repaid in finite time.
The definition of the finitely effective debt constraint FE! as an infimum
implies that D* > FE!; since s is arbitrary, this concludes the proof. O

The following lemma establishes the desired connection between pseudo-
equilibrium relative to a loose, consistent system of debt constraints and
finitely effective equilibrium.

Lemma D In the presence of Assumptions 1-5, if (p, K,Q,(z"), (k') 1is
a pseudo-equilibrium relative to the loose consistent debt constraints (D*),
then these debt constraints (D') are necessarily uniformly bounded below
and coincide with the finitely effective debt constraints (FE'). In particu-
lar, (p, K,Q, ('), (k")) is a finitely effective equilibrium.

Proof: To see that the debt constraints (D*) are uniformly bounded below,
we argue as in the proof of Lemma B. For each trader j, the argument of
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Lemma B shows that, for each node s, there is a constant ¢, such that, for
6 > 0 and sufficiently small, the consumption plan

Z1(6) = (1 = 8)2 + §(z?, ¢y, | 5)

is preferred to the (pseudo-)equilibrium consumption plan z7. This argument
uses Lemma A. Recall that Assumption 5 provides a uniform version of the
conclusion of Lemma A. If we substitute Assumption 5 for Lemma A in this
argument, we may conclude that the constant ¢ may be chosen independently
of the node s (and independently of the trader j, since the number of traders
is finite).

Now suppose the debt constraints D' for trader i are not uniformly
bounded below. Consider his actual equilibrium debts — that is ki_,(s).
These actual debts are either unbounded below or bounded below. In the
first case, we may argue just as in Lemma B. When k!_,(s) is very negative,
trader : holds a large debt at the beginning of node s, so some other trader
J must hold a large credit. However, then trader j could afford Z7(6), which
is preferred to his equilibrium consumption. This is a contradiction, so we
conclude that trader i’s actual equilibrium debts cannot be unbounded be-
low. Then the differences between trader i’s actual equilibrium debts and
his debt constraints — that is, the quantities ki_,(s) — D} — must be un-
bounded above. Since trader 7 could repay the debt D! while satisfying the
next period’s debt constraints, he could also certainly adopt a plan which
would repay any fraction € > 0 of this debt. By adopting such a plan, trader
¢ would free up resources at node s equal to e(ki_,(s)—D?). Since these quan-
tities are unbounded above, we conclude that, for some s, trader i would be
able to afford the consumption Z:(§), which is preferred to his equilibrium
consumption. This is a contradiction, so we conclude that trader i’s actual
equilibrium debts cannot be bounded below, either. Hence, trader i’s debt
constraints must be uniformly bounded below, as desired.

In view of Lemma C, the consistent debt constraints D’ are bounded be-
low by the finitely effective debt constraints FE*. Since the debt constraints
D' are also loose, and the finitely effective debt constraints are the suprema
of all loose, consistent debt constraints, we conclude that D' = FE’ for each
2, so the proof is complete. O

33



With these results in hand, the proofs of the Theorems are quite simple.

Proof of Theorem 1: Lemma B guarantees the existence of a pseudo-equili-
brium relative to some system of loose, consistent debt constraints; Lemma
D guarantees that such a pseudo-equilibrium is necessarily finitely effective.
a

Proof of Theorem 2: As we have already noted, the finitely effective debt con-
straints are loose and consistent. Hence a finitely effective pseudo-equilibrium
is trivially a pseudo-equilibrium relative to a system of loose, consistent debt
constraints. Of course, Lemma D yields the reverse.

Consider any finitely effective pseudo-equilibrium E = (p, K, @, (z*), (k*));
we show that E is a bounded debt pseudo-equilibrium. Note first that Lemma
C guarantees that the finitely effective debt constraints are bounded below;
in particular, the consumption/income transfer plans (z*, k') belong to the
bounded debt budget sets. It remains to verify that the plans (', k') are
optimal among all plans with bounded debt. To this end, fix a trader ¢ and
consider a plan (7%, k') for which the debts k. are uniformly bounded below.
For each node s, write £ = min{k’,0}. It is evident that £ constitutes a
consistent system of debt constraints, so Lemma C guarantees that ¢ > FE:
for each s, whence & > FE! for each s. That is, the debts k' satisfy the
finitely effective constraints, so the plan (E‘,F) belongs to the finitely effec-
tive budget set for trader . Since the plan (z*, k') is optimal in the finitely
effective budget set, it follows that the consumption plan 7' is not strictly
preferred to the consumption plan z*. Hence E is indeed a bounded debt
pseudo-equilibrium, as desired.

Finally, let E = (p, K, Q, ('), (k')) be a bounded debt pseudo-equilibrium.
Since the actual debts are bounded, we may argue exactly as above to con-
clude that they satisfy the finitely effective constraints; hence the plans
(z', k') belong to the finitely effective budget sets. To see that they are
optimal, suppose not. Then there is a trader : and a consumption plan z
that strictly preferred to z* and is financed by an income transfer plan that
satisfies the finitely effective debt constraints. For each real number p < 1
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and each date T, define a consumption plan T(p, T ) by:

ozt i t(s) < T
0 otherwise

7 (p,T)s = {

Continuity of preferences guarantees that we can choose p sufficiently close
to1land T sufficiently large that T'(p, T) 18 strictly preferred to z'. Asin
the proof of Lemma B, we see that z(p,T) can be financed by an income
transfer plan which strictly satisfies the finitely effective debt constraints at
each node s with t(s) < T. By definition, the debt at date T nodes can be
repaid in finite time. Since 7(p,T) involves no consumption after date T —1,
we can in fact find an income transfer plan T that finances Z(p, T) and leaves
no debt from some finite time onward. Clearly such a plan has bounded debt,
$0 (?,F) belongs to the bounded debt budget set, and the consumption 7
s strictly preferred to z: this contradicts optimality of the plan (z', k) in
the bonded debt budget set. We conclude that (!, k) is indeed optimal in
the finitely effective budget set, sO E is a finitely effective equilibrium, as

desired. This completes the proof. &
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