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1 Introduction

Aspiration solutions for cooperative games with side payments were intro-
duced by Cross (1967) (who used the term “supercore”). They have been
re-discovered, and different selections from the set of aspirations have been
suggested as solutions, by Albers (1974, 1980), Bennett (1983) and Turbay
(1977); extensions to games without sidepayments have been made by Ben-
nett and Zame (1988), and to spatial games by Albers (1980), Bennett and
Winer (1984) and Sharkey (1992).! Aspirations also arise as solutions of
non-cooperative bargaining models. In the context of games with sidepay-
ments, such a model was described and analyzed by Selten (1981), who used
the framework of recursive games. In Selten’s model, the actions of play-
ers are to make, accept and/or reject proposals. Bennett (1988, 1991a) cast
Selten’s proposal-making model in the framework of extensive form games,
and extended the analysis to the context of games without sidepayments. In
both cases, aspirations define precisely the outcomes that can be supported
in a stationary subgame perfect equilibrium.? An axiomatic characterization
of aspirations has been given by Moldovanu and Winter (1994). Aspiration
solutions also arise in fair division problems (see Moulin (1990)), in compar-
ative statics analysis of core payoffs (see Engl and Scotchmer (1992)), and as
multilateral solutions (see Bennett (1986)). For more detailed bibliography,
see Bennett (1991a) and Moldovanu and Winter (1994).

Missing from these analyses is a model of how aspirations arise; the pur-
pose of this paper is to provide such a model, in the context of cooperative
games without sidepayments (NTU games, for short). The formalization we
give is motivated in part by the Albers and Selten interpretation of aspira-
tions as vectors of demands, and by the behavior of subjects in experimental
games, observed by Albers (1987), Albers and Laing (1991) and Laing (1991).
Given an NTU game and an (arbitrary) initial vector of demands, we sup-
pose that players make adjustments based on the availability of coalitions

! Albers and Selten used the term “semi-stable demand vectors;” the aspiration termi-
nology is due to Bennett.

2Stationarity is crucial to this result. In its absence, Bennett (1991b) obtains a folk
theorem: Every individually rational outcome can be supported in a subgame perfect
equilibrium.



that support their demands. We assume only three things about the adjust-
ment process:

(i) only one player adjusts at a time

(ii) a player will increase his demand if some coalition can support the
larger demand, given the demands of others

(iii) a player will decrease his demand if no coalition can support his current
demand, given the demands of others

Note that we make no assumption about which player will adjust his demand
at any particular point in time, or about the size of any of the adjustments.
Thus, the adjustment process gives rise to a set-valued dynamical system, of
the kind introduced by Maschler and Peleg (1976). It is shown that, starting
from an arbitrary vector of demands, and no matter how the process evolves,
it always converges; under a mild restriction, it converges to an aspiration.
If each player only makes adjustments which are as large as possible, the
process ends in an aspiration in a finite number of steps. Moreover, each
aspiration is a stable point (in the sense of Lyapunov) for this dynamical
system.

Following this Introduction, Section 2 collects basic terminology about
NTU games and aspirations. Section 3 describes the adjustment process as
a set-valued dynamical system, and establishes its basic properties. Conver-
gence is addressed in Section 4, and stability is addressed in Section 5.



2 NTU Games and Aspirations

A game in characteristic function form with non-transferable utility (an NTU
game) is a pair (N,V), where N = {1,...,n} is a non-empty set of players
and V, the characteristic function, assigns to each non-empty subset S C NV
(a coalition) a compact subset V(S) C IR; that contains the origin and is
comprehensive (that is,if 2 € V(S) and y € IRi with y < z then y € V(95)).
We restrict our attention to games for which each of the sets V(S) satisfies
the stronger property:

o Ifz € V(S),y € R and y < = then y € intV(S), the interior of V(S)
with respect to RS.3 (Equivalently: if z € V(S), and there is a vector
z' € V(8S) with 2’ > z then there is a vector z” € V(S) with 2" >> z.)

We say that the sets V(S) are strongly comprehensive if they enjoy this prop-
erty, and that the game (N, V) is strongly comprehensive if each of the sets
V(S) is strongly comprehensive. (Note that if V(S) is strongly comprehen-
sive, then the weak and strong Pareto boundaries of V(S) coincide, and are
equal to the topological boundary of V(S) with respect to IRf_) We do not
require that the sets V(.S) be convex or that the game be superadditive.*

If T is a non-empty subset of S, we write z7 for the restriction of z to T
(thinking of vectors in RS as functions from S to R). Fori € S, z € R®
and t € R, we write (z_;,t) for the vector in RS whose i-th coordinate is ¢
and which agrees with z in every coordinate except the :-th. For z,y € RY,
we write |z| = ) |z;| and d(z,y) for the Euclidean distance from z to y.

We interpret a vector in V(.5) as a vector of utilities which the coalition S
can achieve without the cooperation of players not in §. Comprehensiveness
of V(S) means that we allow for free disposal of utility. Strong compre-
hensiveness means that, at each feasible utility vector for a coalition, it is

3Here and elsewhere we write, for z,y € RS: z <yifz; <y;foreachie€ S;z<yif
z<yandz#y,andz << yifr; <y;foreachieS.

4NTU games are sometimes formalized so that V(.S) is a subset of IRY, unrestricted in
the coordinates not belonging to S, but we find the present formalization more convenient
for our purposes.



possible for each player whose utility level is strictly positive to improve the
utility of all other members of the coalition at the (possible) sacrifice of some
of his own utility.

We regard vectors z € IRJI as vectors of demands, so that z; is player
v’'s demand. We say that player ¢’s demand is realizable at z if there is a
coalition S containing ¢ such that 5 € V(S). The vector z of demands is
realizable if each player’s demand is realizable. We say that player i’s demand
is mazimal at z if there does not exist a coalition S containing ¢ and a vector
y° € V(9) such that y¥ > z;. The vector z of demands is mazimal if each
player’s demand is maximal. An aspiration is a demand vector that is both
realizable and maximal for every player.®

SWe follow the terminology of Bennett (1983) and Bennett and Zame (1988); Selten
(1981) and others use the term semi-stable demand vectors, rather than aspiration.
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3 The Adjustment Process

We begin by recalling some notions from Maschler and Peleg (1976). Let X
be a complete metric space with distance function d. A (set-valued) dynam-
ical system on X is a correspondence ® : X — X with non-empty values. A
trajectory of ® is a sequence z°, z!,... such that z'*! € ®(z!) for each t; we
say that this trajectory starts at z°, and that z° is the initial point of the
trajectory. An endpoint of ® is a point z such that ®&(z) = {z}.

Given a game (N, V), we define a dynamic demand-adjustment process
in the following way. Set X = IRf , and let d be the usual Euclidean distance
function. Define functions ¢; : X - Ry, ¢c: X — ]Rf, and \; : X — IRf by:

ci(z) = maxscnes{t: (z_i,1)° € V(S)}
c(z) = (al(z),...,cn(z))
Ai(z) = (z-ic(z))

The number ¢;(z) is the highest realizable demand that player ¢ could make,
given the demands of other players. The vector A;(z) is the vector that results
from z if player 7 changes his demand to c;(z) and all other demands remain
unchanged; ¢(z) is the vector that results from « if all players simultaneously
change their demands. When c¢;(z) < z;, player ¢’s demand is not realizable;
when ¢;(z) > z;, player i’s demand is not maximal. Bennett and Zame (1988,
Theorem 1) show that the functions ¢;, c, A; are all continuous.®

Define the demand adjustment process ® by
O(z) = {shi(z)+ (1l —s)z:0<s<1,i € N}

When ¢(z) = z, each player’s demand is realizable — so no player needs to
adjust his demand — and maximal — so no player will be able to adjust
his demand; in this case ®(z) = {z}. When ¢(z) # z, ®(z) is the set of all

vectors obtained when one player adjusts his demand.

As suggested in the Introduction, the intuition behind this adjustment
process is quite simple. Suppose the current vector of demands is z, and

SThis is a consequence of strong comprehensiveness.
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that player i contemplates adjusting his demand. (We assume throughout
that players are polite, in the sense that only one player at a time can adjust
his demand. It would be easy to allow for the possibility that more than one
player might adjust at a given time, and our results would not change in any
substantial way.) We suppose that player ¢ will increase his demand if there
is some coalition that can support the larger demand, and that player : will
decrease his demand if there is no coalition that can support his current de-
mand (given the demands of others). Thus, if player 7 adjusts his demand, he
will necessarily adjust it in the direction of ¢;(z), so the new demand vector
must be a convex combination of z and the vector A\;(z) = (z_;, ci(z)). Tak-
ing the union over all players, we see that ®(z) is precisely the set of demand
vectors that can arise from = when a single player adjusts his demand.

The basic properties of the demand adjustment process are contained in
the following simple result.

Proposition 1 ® is a lower hemi-continuous correspondence with non-empty,
closed values. The set of endpoints of ® is the set of aspirations.

Proof: Evidently, z € ®(z) for each z, so that ® has non-empty values.
Since ®(z) is the union of a finite number of closed line segments, ® has
closed values. To see that ® is lower hemi-continuous, consider a sequence
" — z, and a vector y € ®(z). Write y = sA;(z) + (1 — s)z. For each n,
set y* = sA;(z") + (1 — s)z". The definition guarantees that y* € ®(z")
for each n, and continuity of A; guarantees that y* — y. Hence ® is lower
hemi-continuous, as desired. Finally, note that z is an endpoint of ® if and
only if ¢;(z) = z for each ¢; that is, each player’s demand is realizable and
maximal, so that z is an aspiration. O



4 Convergence of Trajectories

In this section, we study convergence of trajectories of the adjustment process
®. We show first that every trajectory converges. In general, a trajectory
need not converge to an endpoint, but we identify a natural family of trajecto-
ries (maximal trajectories) which do. In general, convergence of trajectories
requires infinitely many steps; we identify a natural family of trajectories
(greedy trajectories) which converge in a finite number of steps.

We find it convenient to first construct a Lyapunov function for the dy-
namical system ®; that is, a continuous function L : X — IR, that decreases
along trajectories and is 0 precisely at endpoints.

Forz € X = ]Rf_’ , define two sets

Iz) = {o:c(z) >z}
J(z) = {t:c(z) <z}

Clearly, these sets are disjoint and their union is N; either of these sets may
be empty. We repeatedly use two simple facts about the sets I(z), J(z):

o if £ <y then I(z) D I(y) and J(z) C J(y)
o if 2 € ®(z) then I(z) D I(2) and J(z) C J(z)

The first of these facts is obvious from the definition and strong compre-
hensiveness of the sets V(S). To see the second fact, assume without loss
that z # z, and recall that only one player adjusts his demand at a time,
so there is a unique index k such that z; # ;. If zx > x4, then the first
fact guarantees that I(z) D I(z) and J(z) C J(2). Suppose therefore that
zr < Tk, so that player k lowers his demand. The definition of ¢ guarantees
that z5 g V(S) for each coalition S containing k. Thus, for j € J(z) and T
any coalition containing j, either k£ ¢ T in which case 2T =27, or k € T, in
which case 27 ¢ int V(T). In either case, j € J(2), as asserted.

For r € X and ¢ € N, define
hi(z) = min{d(z®,V(S)): all S, i € 5}
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and
L(z)=n Z:)[c,(z) — ;] + (Z) hi(z)
I{z J(z

(We follow the usual convention that the empty sum is 0.)

Proposition 2 The function L satisfies the following properties:

1. L: X — R, is continuous

2. L(z) =0 if and only if  is an endpoint of ® (an aspiration)
3. L(z) — o0 as |z| = oo

4. ify € ®(z) and y # z then L(z) > L(y).

5. ify € ®(z) and y > z then L(z) — L(y) > d(=z,y)

Proof: L(z) is non-negative, since it is the sum of non-negative terms. To
see that L is continuous, note that d(z,V(S)) = 0 whenever z € V(S5), so
that an alternative expression for L is

L(z) = n Y [e(z) =zt + 3 hi(o)
tEN iEN

Thus, L is the sum of continuous functions, and is therefore continuous. To
see that L(z) = 0 precisely when z is an endpoint, note that L(z) = 0
precisely when all the terms making up L are 0. Hence L(z) = 0 precisely
when, for each player ¢, ¢;(z) < z; (that is, z is maximal for player i) and
hi(z) = 0 (that is, z is realizable for player 7). Hence L(z) = 0 exactly when
T is an aspiration. To see assertion 3., consider a sequence {z*} such that
|z%¥| — co. We can partition the entire sequence {z*} into finitely many
subsequences {y*}, each having the property that y¥ — oo for some fixed
index . Clearly, then, h;(y*) — oo, whence L(y*) — oco. Since this obtains
for each of the subsequences into which we have partitioned the original
sequence {z*}, we conclude that L(z¥) — oo, as desired.

To see that L decreases along trajectories, fix z € IR]I and y € ®(z) with
y # z. Since only one player adjusts his demand at a time, there is a unique
index k such that y; # zx. There are two cases to consider.
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Case 1: y < z. By definition, y; < zx so c(z) < z4. We claim that
I(z) = I(y) and that ¢;(z) = ¢(y) for ¢ € I(z) = I(y). To see this, note
that the first fact above shows that I(z) C I(y). To obtain the remainder
of the claim, fix | € I(y). By definition, ¢;(y) > yi, so there is a coalition
S containing ! for which y° € int V(S). If k¥ € S then z° ¢ V(S) (because
cx(z) < zx); since y < , it follows that y° ¢ int V(S), which is a contra-
diction. Hence k ¢ S, so that 5 = y% € int V(S) and ¢(z) > z;. Thus,
l € I(z), so I(z) = I(y). This argument also shows that if [ € § and either
z5 or y° belong to int V(S), then both z% and y° do, and k¥ ¢ S, so that
25 = y5. Tt follows that ¢;(z) = ¢/(y).

Since I(z) = I(y), taking complements implies that J(z) = J(y). For
Jj € J(z) = J(y), strong comprehensiveness and the fact that y < = imply
that d(y5,V(S)) < d(z5,V(S)) for each coalition S, whence k;(y) < h;(z).
Moreover, hi(y) < hi(z) since yx < z.

Putting all of this together with the definition of L, we conclude that
L(y) < L(z), as desired. This completes the argument in case 1.

Case 2: y > z. We assert that, in moving from z to y, player k’s
contribution to L decreases by precisely n(yx — zx), and that every other
player’s contribution to L either decreases or else increases by at most (yx —
zx). Since there are n — 1 players other than player k, this will yield the
desired inequality: L(z) — L(y) > d(z,y).

Because player k is the only player to change his demand, it follows that
ce(z) = ck(y). If yr < ck(z) = ck(y) (so that player k does not increase his
demand as much as possible), then cx(z) = ck(y) > yx, so k € I(y) and

[ee(z) — zk] — [ck(y) — vl = yx — 24

If yx = ci(z) = ck(y) (so that player k does increase his demand as much as
possible), then k € J(y) but hx(y) = 0. In either case, we see that player &’s
contribution to L decreases by precisely n(yx — zx), as asserted.

To estimate the change in other player’s contributions to L, consider first
a player ¢ € I(y). Since y; = z; and y > «z, it follows that : € I(z) and
ci(y) < ci(z), so that player i’s contribution to L does not increase. Finally,
consider a player j € J(y). If j € J(z), then player j’s contribution to
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L increases by h;(y) — hj(z); if j € J(z), then player j’s contribution to
L increases by at most h;(y). For each coalition S such that j € S and
yS & int V(S), it follows from the triangle inequality that

d(y®,V(8)) < d(z°,V(S5)) + d(z,y)

Noting that d(z,y) = yx—z and applying the definition of k;(y), we conclude
that player j’s contribution to L increases by at most y, — zk, as asserted.
Combining the change in player £’s contribution with these estimates of the
changes in other player’s contributions yields L(y) < L(z). This completes
the argument in case 2, and with it the proof of Proposition 2. O

Following Maschler and Peleg (1976), we say that the trajectory z°%,z!,...
is a-mazimal if a > 0 is a positive real number and

d(z**!, z%) > o max|c(z) — z;
1}

for infinitely many indices t. We say that the trajectory z°,z?,... is mazimal

if it is a-maximal for some a > 0. If we interpret z; as player i’s current
demand and ¢;(z) as player i’s new demand, then |c;(z) — ;| is the magnitude
of the change in player i’s demand, and max; |¢;(z) — z;| is the maximum
magnitude of all these changes. To say that the trajectory is a-maximal
means therefore that at least the given fraction a of these maximal changes
is implemented infinitely often.

We are now in a position to show that all trajectories converge and that
maximal trajectories converge to endpoints (which are aspirations).

Theorem 1 Every trajectory converges. Every mazimal trajectory converges
to an aspiration.

Proof: Let 2% z1,... be a trajectory, so that z'*+! € ®(z*) for each t. Con-
vergence of the sequence {z'} is equivalent to convergence of the series
Y [z* — z**]. To establish convergence of this series it is convenient to write
U for the set of indices t such that z'*! > z!, and D for the complementary
set of indices. We claim that each of the sums

Z[xt -zt and Z[IIIt — 't
D

U
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is convergent — in fact, absolutely convergent. To see this, observe that
the first of these sums is composed entirely of non-positive terms, while the
second sum is composed entirely of non-negative terms; hence to establish
absolute convergence of these sums it suffices to show merely that they are

bounded.

Proposition 2 guarantees that L(z') — L(z**') > d(at,z'*!) for t € U,
and that L(z') — L(z**!) > 0 for every t. Since only one player adjusts his
demand at a time, d(z*,z'*!) = |¢* — z**!| for every t. Hence

|Z[xt _ $t+1” S Z |:11t _ .’L‘t+1|
U U
< Y [L(zh) = L(z")]

U

o0

< D [L(") = L(=*h)]
t=0
This last series telescopes; since L is non-negative and decreasing along tra-
jectories, it converges to
0 . t
L(z”) - tlivrg) L(z")
Thus, the summation over U is bounded.

To see that the summation over D is bounded, note that the entire sum-
mation telescopes; a typical partial sum is

T
E[xt _ $t+1] — 130 _ IT+1
t=0

Since L decreases along trajectories, L(z7*!) < L(z°). Since L tends to oo
along unbounded sequences, it follows that the partial sums above remain
bounded. The partial sums of the summation over D are differences of these
partial sums and the partial sums of the summation over U, and are thus
bounded.

We conclude that the summations over U and over D are bounded, and
hence absolutely convergent. We may then write

i[zt _ zt+l] — Z[zt _ .’J:H'l] + ED:[xt _ xt+1]

U
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and conclude that the series ¥ [z' — z'*1] converges, and hence that the
sequence {z'} converges, as desired.

Finally, assume that z° z',... is a maximal trajectory, and hence is a-

maximal for some a > 0. If 2 — z and z is not an aspiration, then ¢;(z) # ;
for some 1, so
|C,'(:I:) — J),'l >6>0

for some 8. Continuity of ¢; implies that |c;(zt) —zf| > 6 for each t sufficiently
large, and a-maximality implies that d(z'*',z*) > aé for infinitely many ¢.
On the other hand, since 2! — z, it follows that d(z*,z**') — 0, so we have
arrived at a contradiction. This completes the proof. O

This result shows that our demand adjustment procedure always con-
verges, and converges to an aspiration provided that a fixed fraction of the
maximum of demands is satisfied infinitely often. Such convergence, how-
ever, could be arbitrarily slow.” In particular, convergence may require an
infinite number of steps. However, if each individual adjustment is as large
as possible, we can show that convergence occurs in a finite number of steps.
To make this precise, let us say that the trajectory z°,z!,... is greedy if for
each ¢, either z! is an aspiration or there is a player k such that % # z}' and
! = A\ (z?) (equivalently: zit! = ck(z!)); of course this means that the
player who adjusts his demand actually adjusts as much as possible. Note
that the set of greedy trajectories forms a proper subset of the set of all tra-
jectories, so we should expect the set of limit points of optimal trajectories

to be a proper subset of the set of limit points of all trajectories.

Theorem 2 If the trajectory z°, z', ... is greedy, then 23" ~! is an aspiration,
7 Y g y

and the trajectory is constant from that point on.

Before beginning the proof proper, it is convenient to isolate two lemmas.
The first of these represents a purely technical combinatorial portion of the
argument. If A is a finite set, a word on A is a finite expression of the form
w = 4143 . ..ap, where a,, € A for each m; we call M the length of the word

7If the adjustment at every step is a fixed fraction of the maximum possible at that
step, it is easy to show that convergence is at a geometric rate.
P & g
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w. (The empty set is a word of length 0.) If w;,w, are words, so is the
concatenation wyw,. We write W(A) for the set of words on A. If B C A,
we write W(A, B) for the set of words w € W(A) that contain every element
of B.

Lemma 1 If A is a non-empty set containingr > 1 elements and w € W(A)
is a word of length M > 27, then there are a proper subset B C A, an
element a € A\B, and words v € W(A, B),8 € W(B),( € W(A) such that

w = vaBa(.®

Proof: We proceed by induction on r. If r = 1, and w is a word of length
M > 2" = 2, we take B = 0 and 8 and ( to be the empty word, and write
w = (a-...a)aPal, where (a...a) has length M — 2.

Assume therefore that the Lemma is valid for all sets having at most
r — 1 elements; let A be a set with r elements, and let w € W(A) be a word
of length M > 27 > 4. Write w = ¢y, where ¢ has length 2"7'. If some
element of A does not occur in ¢, then ¢ € W(A’) for some proper subset
A’ Cc A. Applying our induction hypothesis to ¢, A’ allows us to choose a
proper subset B C A’, and words v € W(A', B),3 € W(B),( € W(A’) such
that ¢ = vyaBa(, whence w = yafa({y), which is the desired representation.
We may therefore suppose that every element of A occurs in ¢. Since w
has length 2" and ¢ has length 271, the word ¢ has length at least 2”7, so
the same argument shows that we may also suppose that every element of A
occurs in .

Let b be the last letter of ¢, so that ¢ = ¢'b and w = ¢'(b)). Since every
element of A occurs in 3, we can find words 3, v so that ¢y = fBbv, and b
does not occur in 8. (Simply take § to be the word consisting of all letters
preceeding the first occurrence of b in . If 3 begins with b, then 3 is the
empty word.) Hence w = ¢y = ¢'bBbv; if we take B = A\{b}, this is the
desired representation. O

The second lemma provides some information about the adjustment pro-
cess; we will also find this information useful in the next section.

8We allow for the possibility that B is the empty set, in which case 8 will necessarily
be the empty word.
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Lemma 2 Fizw € RY, z € ®(w) and j € N. Then:

(1) If c;(w) < w; then cj(z) < z;. Thus, a player who cannot raise his
demand now will never be able to raise his demand.

(ii) If c;(w) > w; then cj(z) < ¢;(w). Thus, a player who can raise his
demand now will never be able to raise his demand above the level to
which he can raise it now.

Proof: To verify (i), assume without loss that 2z # wj; let k be the unique
player for whom 2, # wi. If k = j the assertion is a tautology, so assume
that k # j. If k raises his demand (in going from w to z) then z > w and
¢;(z) < ¢;(w) because c; is a decreasing function. On the other hand, if &
lowers his demand, then the vector w is not realizable for k, so there does not
exist a coalition S containing k with w® € V(S). If ¢j(z) > zj, then there
is a coalition T C N containing j such that 27 € intV(T). In view of the
previous comment, the coalition T cannot contain player k, so that wl =27
and ¢;(w) = ¢;(z) > z; = wj, which is a contradiction. This yields (i).

The argument for (ii) is similar. Assume without loss that z # w; let k be
the unique player for whom wy, # 2. If k = j the assertion is a tautology, so
assume that k # j. If k raises his demand (in going from w to z) then z > w
and c;(z) < c¢;(w) because ¢; is a decreasing function. On the other hand, if
k lowers his demand then the vector w is not realizable for k, so there does
not exist a coalition S containing k& with w® € V(S). The definition of ¢;(2)
means that there is a coalition T’ containing j such that (I}, ¢;(2)) € V(T).
The previous comment means that the coalition T' cannot contain player k,
so that wT = zT, whence (w},¢j(z)) € V(T) so that ¢;(z) < ¢;j(w), which is
the desired result. This yields (ii). O

With these lemmas in hand, we turn to the proof of Theorem 2.

Proof of Theorem 2: Fix a greedy trajectory {z'} = {°2',...}. If z*
is an aspiration then no player can adjust his demand, so z!*! = z'. In
particular, once the trajectory hits an aspiration, it is constant from that
point on. Conversely, if ! is not an aspiration, greediness guarantees that
z*t! # z; let k(t) be the unique player who adjusts his demand at z*.

14



Suppose that z2"~! is not as aspiration. In the notation of Lemma I,

w = k(0)k(1)...k(2" — 1) is a word in W(N) of length 2". Lemma 1
guarantees that there is a coalition S C N, a player £k € N\S, and words
v € W(N,S),8 € W(S),{ € W(N) such that w = vkBk¢. Write p for the
length of v and ¢ for the length of 3. We may then write w as

w = vk(p)Bk(p + ¢+ 1)¢

where k(p) = k(p + ¢+ 1) = k. We proceed to obtain a contradiction.

We claim that, although the first price adjustment for each player may be
either upward or downward, all subsequent adjustments by the same player
are downward. To see this, fix a player ¢ and times ¢t < ' at which ¢ adjusts
his price. There is no loss of generality in assuming that ¢,t' are successive
times of price adjustment for player i; that is, ¢ does not adjust his price
at any time between ¢ and ¢. If : has lowered his price at time ¢, Lemma
2 guarantees that he cannot raise it at time t. That is, if ¢;(z') < z! then
ci(z¥) < z¥'. If i has raised his price at time ¢, Lemma 2 guarantees that
he cannot raise it to a higher level at time #'. That is, if ¢;(z*) > z! then
ci(z¥) < ¢i(z!). Greediness means that ¢;(z!) = zf*!, and the assumption
that ¢ does not adjust his price between times t and ¢ means that z!*! =zt
Combining these again yields c;(z!') < !, which establishes the claim.

Assembling the information now available will yield the contradiction we
seek. Recall that k is the player who is adjusting his price at time p and
again at time p+ ¢+ 1, so that k = k(p) = k(p+ ¢+ 1).

1. Consider indices ¢t in the range p+ 1 < t < p + q. By construction,
the word 3 belongs to W(S); that is, k(t) € S for each t in the given
range. In other words, in the range p+ 1 <t < p + ¢ only players
in S are adjusting their prices. Moreover, since the word « belongs to
W(N, S), each of these players has already adjusted their price at least
once before. In view of the claim established above, we conclude that

xp+1 > 2P+2 >0 > zP+Q+1

Hence
Ck(SEPH) < ck(:z:”“) <...< ck(x”+q+1)
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2. Greediness and the definition of the adjustment process yield

ce(z?) = a:i“ = ci(zPt?)

3. Combining these two inequalities yields

and greediness of the adjustment process gives

Ck(xp) — xz+1 < z£+q+2 — ck($p+q+l)
4. Applying the claim to player k yields
zz+¢1+2 < 2:zi‘(]-i'-l

5. By construction, k ¢ S, so between times p + 1 and p + ¢ player k is
not adjusting his price. Hence

Combining the last three inequalities yields
IZH“ > -’BZH — xz+q+1 > zi+q+2
Recalling that k = k(p) = k(p + ¢ + 1), we conclude that

PHet+2 — Lpt+e+l

2n—-1

But this means that zP*9*! is an aspiration, whence z is also an aspira-

tion, which is a contradiction. This completes the proof. O
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5 Stability

As we have shown in the preceding sections, aspirations are the endpoints
of the dynamical system ®, and every maximal trajectory converges to an
aspiration. The purpose of this section is to show that every aspiration is
a stable point of ®; trajectories beginning sufficiently near an aspiration z
remain near z forever. (Formally: for every aspiration z and every € > 0,
there is a 6§ > 0 such that if d(y, ) < 8, then every trajectory y = 3°,¢",...
starting at y has the property that d(z,y‘) < € for all ¢.)

Theorem 3 Every aspiration is a stable point of the dynamical system ®.

Proof: We first obtain a prior: upper and lower bounds on trajectories start-
ing at an arbitrary given point; stability of aspirations will follow easily from
these bounds.

Fix an arbitrary point y € IR]I . Renumbering if necessary, we may assume
that I(y) = {1,...,m} and that J(y) = {m +1,...,n}, with 0 < m < n?®
Set

7= (c(y)s--rCm(¥y)s Ymt1s---Yn)
and
y = min{y, ¢(¥)}

We claim that every trajectory y = ¥°,y!,... beginning at y remains forever
between y and ¥; that is,

ggy‘gy for each t

To establish this claim we proceed inductively. It is clear from the def-
initions that y <y = y® < 7. Now fix an index ¢t > 0 and assume that
y < y' <7; we must show that y < y**' < 7. Let k be the unique player
who alters his demand at time ¢, and consider two cases, according to whether
k raises or lowers his demand.

°If m = 0 then I(y) is empty; if m = n then J(y) is empty.
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(1) If k raises his demand at time ¢, Lemma 2 guarantees that he was able
to raise it at time 0 (so that k € I(y)), and cannot, at time ¢, raise
his demand above the level to which he was able to raise it at time 0.
Hence

vi Syt <ea(y') <ealy) =7

Since k is the only player who alters his demand and y < y* < 7, it
follows that
y<y' <yt <y

(2) If k lowers his demand at time ¢, then yi*' < yi < 7,. Moreover,
ck(y*) > cr(y) > y, (because ¢; is a decreasing function). Combining
these inequalities, and recalling that & is the only player who alters his
demand yields

y<yt <y <y

We conclude in either case that, if y satisfies the desired bounds, then y'*!
does so also. It follows by induction that the entire trajectory satisfies the
desired bounds.

Given these bounds, stability of each aspiration follows easily. Fix an
aspiration z and an € > 0. Each of the functions ¢; is continuous, and taking
the minimum of two vectors is a continuous function. Moreover, since z is
an aspiration, ¢;(z) = z; for each i. Hence, we can find a § > 0 sufficiently
small that if d(y,z) < 6 then d(7,z) < € and d(y,z) < e. Ify = 3% 4!, ...
is any trajectory starting at y, then y < y* < 7 for each t > 1. Thus, if
d(y,z) < 6 < €0, then d(y*,z) < € for each t >, as required. O
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