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Summary. We show that a Dedekind complete Riesz space which contains a weak unit
e and admits a strictly positive order continuous linear functional can be represented as a
subspace of the space L; of integrable functions on a probability measure space in such a
way that the order ideal generated by e is carried onto L.,. As a consequence, we obtain a
characterization of abstract M-spaces that are isomorphic to concrete Ly -spaces. Although
these results are implicit in the literature on representation of Riesz spaces, they are not
available in this form. This research is motivated by, and has applications in, general
equilibrium theory in infinite dimensional spaces.

1. Introduction

Bewley’s seminal work [12] on general equilibrium theory with infinitely many com-
modities is set in the space Lo, (p) of (equivalence classes of) essentially bounded mea-
surable functions on a (finite) measure space (2, X, u).! This work has been immensely
influential, but subsequent work has made it clear that L.,(x) is a very special environ-
ment, both economically and mathematically. As we shall see here, although the space
L., appears to be special, it turns out that many other spaces that are employed in

* We thank Robert Anderson and Neil Gretsky for several useful conversations. The third author
also gratefully acknowledges financial support from the Deutscheforschungsgemeinschaft, Gottfried
Wilhelm Leibniz Forder preis, the National Science Foundation, and the UCLA Academic Senate

Committee on Research.

!Note that the space £, of all bounded sequences can be viewed as Lo, of a counting measure—and
also as Lo, of an appropriate probability measure.
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the economic literature can be viewed as L., (p)-spaces. Following the work of Alipran-
tis and Brown [3] and the subsequent work of Mas-Colell [22], Riesz spaces have ap-
peared as the most natural general environments in which to set infinite dimensional
general equilibrium theory.?

The objective of the present paper is to present a representation theorem that
connects the general Riesz space environment with the special environment L. ().
We believe that this representation theorem is a useful tool for economic analysis in
Riesz spaces—see Zame [31] and Anderson and Zame [9)].

A Riesz space (or vector lattice) is an ordered real vector space E which is also a
lattice in the sense that for every pair z,y € F the supremum (least upper bound)
and the infimum (greatest lower bound) of the set {z,y} exist in E, where as usual we
denote the supremum and infimum by the symbols

zVy=sup{z,y} and =z Ay=inf{z,y}.

The vector || = z V (—z) is known as the absolute value of 2. A vector subspace J of
a Riesz space E is said to be an (order) ideal if |z| < |y| and y € J 1rnply z € J. The
principal ideal generated by a positive vector e is the ideal

E. = {z € E: 3 ) >0 such that |z| < Xe}
= {z € FE: —le <z < )e for some A > 0}.

Our representation theorem has a natural economic motivation. Fix a Riesz space
E and consider an exchange economy with commodity space E and consumption sets
the positive cone E*. As Brown [13] was first to observe, all feasible consumptions for
such an economy lie between 0 and the social endowment e. In particular, all feasible
consumptions lie in the principal ideal E.. Since Pareto optimality and the core refer
only to feasible consumptions, it follows that these notions can be explored entirely
within E.. Moreover, besides its lattice structure F, has an important additional norm
structure. The formula

|z]|co = inf{A > 0: —Ae < z < Ae} = min{A > 0: |z] < Ae}
defines a norm on E.. If F is Dedekind complete, then with respect to this norm E. is

a Banach lattice® (in fact an abstract M-space), and hence by the classical Kakutani-
Krein theorem E. is lattice isometric to the space C(X) of continuous functions on

2 Aliprantis and Brown [3] introduced Riesz spaces into economics, and established the existence
of equilibrium for an economy specified by an aggregate excess demand function. Mas-Colell [22]
exploited the lattice structure further—particularly the Riesz decomposition property—to establish
the existence of equilibrium for exchange economies.

JRecall that a Banach lattice is a Banach space which is also a Riesz space and whose norm is
compatible with the lattice structure in the sense that |z| < |y| implies ||z|| < ||y||-
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some compact Hausdorff topological space X. In particular, the positive cone of E,
has non-empty interior (with respect to this norm).

As Mas-Colell [22] pointed out, non-emptiness of the interior of the positive cone is a
crucial property of L..(p),* because it guarantees that continuous, convex preferences
admit supporting prices. In spaces for which the positive cone has empty interior,
supporting prices may fail to exist; the properness condition (adapted by Mas-Colell
from a condition introduced by Chichilnisky and Kalman [15]) was designed precisely
to guarantee the existence of supporting prices. Since the positive cone £} has non-
empty interior (in E.), supporting prices (relative to E,.) exist. With appropriate
compactness assumptions this makes it possible to mimic arguments for L. (u) and
obtain an equilibrium with respect to consumptions in E, (that is, only consumptions
in F. are considered and priced). To obtain an equilibrium in the usual sense, one
can exploit properness of preferences (or some variant of it) and extend the supporting
prices from E. to E. In very special cases, the idea of finding an equilibrium with
respect to a restricted set of consumptions goes back to Malinvaud [21] and Peleg
and Yaari [26]; the general development and the exploitation of properness is due to
Aliprantis, Brown, and Burkinshaw [4, 5], Mas-Colell [22], Richard and Zame [27],
Yannelis and Zame [29], and Zame [30]. For additional information, see Aliprantis and
Border [2], Araujo and Monteiro [10, 11], Cherif, Deghdak, and Florenzano [14], Duffie
and Zame [16], Florenzano (17}, Khan and Yannelis [18], Mas-Colell [23], Mas-Colell
and Richard [24], and Zame [31]. More details and further bibliography can be found
in Aliprantis, Brown, and Burkinshaw [6] and Mas-Colell and Zame [25].

The point of departure for the present paper is the observation that the “appro-
priate compactness assumptions” actually entail a stronger conclusion about the order
ideal F,: In addition to being lattice isometric to some concrete space C(X) of con-
tinuous functions, it is actually lattice isometric to some concrete space L. () (so
that Bewley’s results—and not just methods—may be applied directly). This result
(indeed, a characterization of Riesz spaces which are isomorphic to some L (y)) is a
consequence of the main result of this paper, which provides a simultaneous concrete
representation of a Riesz space E and a principal order ideal E, of E: we can repre-
sent E as a subspace of the subspace L,(u) of all integrable functions on a probability
measure space (£, %, u) in such a way that E, is represented as L., (p).

We claim little originality for these representation results; similar results are known
in the folklore of Riesz spaces, and close relatives have been established by Vulikh
and Lozanovsky [28] and by Lindenstrauss and Tzafriri [19, Theorem 1.b.14, p. 25].
However, the formulations we give here seem most suitable for economic applications.

4And, in fact, this property (with a few minor extra assumptions) characterizes the C(X)-spaces;
see [1, Section 7.5, p. 256] for details about the non-emptiness of the positive cone.



For general information about Riesz spaces and Banach lattices, we refer the reader
to Aliprantis and Burkinshaw [7, 8]. Aliprantis, Brown, and Burkinshaw [6] and Mas-
Colell and Zame [25] provide surveys of the uses of Riesz spaces in general equilibrium
theory, and extensive bibliographies.

2. The representation theorem

Recall that a Riesz space E is Dedekind (or order) complete if each non-empty subset of
E which is order bounded from above has a supremum. A lattice norm || - || on a Riesz
space E is said to be an M-norm (resp. an L-norm) whenever ||y V z|| = max{||y|, ||z||}
(resp.|ly + 2| = |lyl| + ||z||) holds for all y,2z € E*. An abstract M-space, in short AM -
space (resp. AL-space), is a complete M-space (resp. L-space).

If E is a Riesz space, then as mentioned before, the principal ideal E, generated by
x 1s the vector space

E, ={y € E: 3 X >0 such that |y| < A|z|}.
The real function || - ||o: Bz — R, defined by
1ylleo = inf{A > 0: [y} < Azl},

is a lattice seminorm on E, whose closed unit ball in (E,, || - [[) coincides with the
order interval [—|z|,|z|]. If E is either Dedekind complete or a Banach lattice, then
Il lloo s a lattice norm and (E,, || - ||o) is @ Banach lattice and, in fact, an AM-space;
see [8, Theorem 12.20, p. 187].

Now if a Banach lattice has an order unit e (i.e., for each y € F there exists some
A > 0 such that |y| < Xe), then E, = E and so the norm || - || and the original norm
on E are equivalent; see [8, Corollary 12.4, p. 176]. An AM-space with unit is a Banach
lattice with an order unit e and whose norm coincides with the || - ||o norm determined
by e. By the above discussion, if E is either a Dedekind complete Riesz space or a
Banach lattice, then every principal ideal E, with its || - | c-norm is an AM-space with
unit. If £ is an AM-space with unit e, then there exist a (unique) compact Hausdorff
topological space ) and an onto lattice isometry T: F — C(Q) such that Te = 1,
where 1 denotes the constant function one on @); see [8, Theorem 12.28, p. 194).

An ideal is said to be a band if for any net {z,} C B that satisfies z, T z in E we
have z € B.> An element e > 0 in a Riesz space F is said to be a weak unit if the band

5The symbol z, T # means that the net {z«} satifies £, > zg whenever o > 8 and sup, o = .
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B, generated by e (the smallest band with respect the inclusion that contains e) is all
of E. It turns out that B, = {z € E: |z| A ne T |z|}; see (8, Theorem 3.4, p. 31].

A linear functional f: £ — IR is said to be positive (resp. strictly positive) whenever
z > 0 implies f(z) > 0 (resp. f(z) > 0). A positive linear functional f on a Riesz
space E is said to be order continuous if z, | 0 in E implies f(z,) | 0 in RR.

A linear topology 7 on a Riesz space E is order continuous if every decreasing to
zero net also converges topologically to zero, i.e., z, | 0 implies z, = 0. A Banach
lattice E is said to have order continuous norm if its norm topology is order continuous,
or, equivalently, whenever z, | 0 in £ implies ||z,]| | 0 in R.

An element £ > 0 of a Banach lattice E is said to be strictly positive (or a quasi-
interior point) whenever 0 < &’ € E' implies z'(z) > 0 (or, equivalently, whenever z
considered as a functional on the norm dual E’ of E acts as a strictly positive linear
functional). Every strictly positive vector is a weak unit but a weak unit need not be
a strictly positive vector; see [8, p. 259].

And now we are ready to state and prove a representation theorem for a certain
class of Riesz spaces.

Theorem 2.1 Let F be a Dedekind complete Riesz space E with a weak unit e > 0
admitting a strictly positive order continuous linear functional ¢. Then there exist a
probability measure space (2, X, 1), a norm dense order ideal F' of L1(p) and an onto
lattice isomorphism T: E — F such that:

1. Te=1.
2. T:(Ee, || “ loo) = (Loo(p)s || - lloo) s an onto lattice isometry.

Moreover, if T is any Hausdorff locally convez-solid topology on E and ¢ € F',
where E' = (E,1)" is the topological dual, then the mappings

3. T (E’T) - (Ll(/‘)a “ ’ “1) and T: (EvU(EvE/)) - (LI(N)vU(Ll(/‘)vLOO(ﬂ))

are both continuous.
If, in addition, T is order continuous, then the restrictions

4. T: ([07 6]77-) - ([Ov 1]7 H ) Hl) and T ([0’ e]’U(Ev El)) - ([07 1]7U(L1(”)’L00(/‘))
are both homeomorphisms.

Proof: (1) & (2) Let p: E — IR be an order continuous strictly positive functional.
Replacing ¢ by S, we can suppose that ¢(e) = 1. Define a function || - ||: E — IR by
the formula

lyll = ¢(lyl), y € E.



6

[t is easily checked, that || - || is an L-norm on E which is order continuous (because
¢ is order continuous). Let L be the completion of E in this norm. Clearly, L is an
AL-space.

We claim that E is an ideal in L. Clearly, E is a Riesz subspace of L. We must
verify that whenever 0 < z < y € F and z € L, then z € E. Since E is norm
dense in its completion L, there exists a sequence {z,} C E converging to z; that is,
|zn — 2]| — 0. Since z < y and the mapping u — u A y is norm continuous, we can
assume (replacing {z,} by {2, Ay}) that 0 < z, < y holds for each n. Also, by choosing

an appropriate subsequence, we can suppose that ||z, — z|| < # for each n. Now let

k+m
Wem = \/ Ziy
i=k

and note that 0 < wy,, < y for all £ and m. Since E is Dedekind complete, there
exists some wy € E satisfying wgm Tm wi in E, and since || - || is order continuous we
have ||wg » — wi|| <5==> 0. From

k+m k+m k+m k+m
ok =2l = |V 2= 2= |V (z—2)| < V-2 <3 |z — 2,
1=k =k 1=k i=k

we see that |[wgm —2|| < T ||z —2|| < %> and 5o |lwp — 2| = limp—co |wkm —2| < 1

for each k. In particular, limg_o, ||wx—z|| = 0. Clearly, the sequence {wy} is decreasing
and bounded from below by zero. Using once more the Dedekind completeness of E,
it follows that wy | w holds for some w € E. Now from the order continuity of the
norm, we infer that ||w; —w|| — 0. But then ||z — w|| = limk_q ||z — wk|| = 0, proving
that z =w € E.°

Next, by the Kakutani-Bohnenblust-Nakano representation theorem (see [8, The-
orem 12.26, p. 192]), we can find a probability measure space (9, %, #) and an onto
lattice isometry m: L — Ly(u) such that x(e) = 1. Write F' = n(E) for the image of E
and T: E — F for the restriction of 7 to E. It is evident that T is a lattice isomorphism
and T'(e) = 1.

®Another way of proving that E is an ideal in L which requires some knowledge of Riesz space
theory goes as follows. Since || - || is order continuous, the norm dual A of (E,|| - ||) is an ideal in the
order continuous dual EY of E (and, of course, 4 is an AM-space). Now by a well known theorem
of H. Nakano (see [8, Theorem 5.5, p. 59]) it follows that the natural embedding of E into its double
dual (E,|| - ||)“ = A’ is an order dense Riesz subspace. Since E is Dedekind complete, it follows that
E is an ideal of the AL-space A’; see [8, Theorem 7.19, p. 100]. But then L = E, the norm closure
of E in A’. This shows that L is an AL-space containing E as an ideal and having e as a weak unit
satisfying ||e|| = p(e) = 1.
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Since E is an order ideal in L and e € E, it follows that E. = L., i.e., the order
ideal generated by e in E and the order ideal generated by e in L coincide. Since 7 is
a lattice isomorphism of L onto L;(p), it sends any norm dense ideal in L to a norm
dense ideal in L;(u), and hence F' must be a norm dense ideal in L;(g). Furthermore,
T(E.) = Lo (g) since T(e) = 1. The formulas defining the norms in E, and L. ()
guarantee that T: (E., | - ||lco) = (LZeo(t), || - |leo) 18 also a lattice isometry.

(3) Now let 7 be a locally convex-solid topology on E in which ¢ is continuous, and
let y, =0 in E. Since 7 is locally solid, we also have |y,| = 0 in E. The 7-continuity
of ¢ implies ¢(|y,|) — 0 in IR. But then:

1T (e )lly = lyall = #(lyal) = 0.

This shows that T: (F,7) — (Ll(,ug, ||,- ll1) is continuous, as asserted. To verify the
weak continuity claim, assume y, 2230 and let f € Lo (u). The 7-continuity of T
just obtained implies that the composition f o T is a 7-continuous linear functional on

E ie., foT belongs to E’. Therefore,

f(T(yo)) = (f o T)(ya) — 0,
for each f € Loo(p), proving that T(ys) —=1=%, 0.

(4) Now assume that 7 is also order continuous. To see that T: ([0, €], 7) — ([0, 1], ||]|1)
is a homeomorphism, it suffices to show that for every sequence {f,} C [0,1] with
| fulli — O there exists a subsequence {g,} of {f.} such that T~'(¢g,) = 0. To this
end, fix such a sequence {f,}. By passing to a subsequence, we can assume that
| f2]l1 < 4=" for each n. Let

A, ={w e fo(w) 227"} and B, =2\ A, = {w e N fr(w) <27},

and note that p(A,) < 27" for each n. If C,, = U2, A; then u(C,) < 2'=" for each
n and so the set C = N2, C; satisfies u(C) = 0. As T is a lattice isomorphism and
Cn | C, it follows that T7'(x¢c,) | 0 in E. Consequently, by the order continuity of =
we have so T7(xc,) = 0. From fxa, < x¢, and f,xB, <27 "1, we see that

0< T—l(fn) = T—l(anAn + anBn) = T_l(anAn) + T_l(f"XBn)
< T7(xe,) + 27" = 0,

from which it follows that T-!(f,) = 0, as claimed.”

"This conclusion can be also derived from the following (quite deep) theorem of I. Amemiya: All
Hausdorff locally solid order continuous topologies on a Riesz space induce the same topology on the
order iniervals; see [7, Theorem 12.9, p. 87].



Finally, to see that T:([0,¢],0(E,E")) — ([0,1],0(L1(¢), Loo(pt)) is a homeomor-
phism, note first that its continuity follows from (3). Since 7 is order continuous and
E is Dedekind complete, it follows that the order interval [0, €] is o( E, E')-compact [8,
Theorem 11.13, p. 170]. Since the weak topology o(Li(g), Le(x)) is Hausdorff, and
a one-to-one continuous mapping from a compact space onto a Hausdorff space is a
homeomorphism, we conclude that

T:([0,¢e],0(E, E)) = ([0,1],0(L1(g), Loo (1))
is indeed a homeomorphism, and the proof of the theorem is finished. [

For future references, we now isolate a special case of the preceding theorem which
is an important characterization of Dedekind complete AM-spaces with units.

Corollary 2.2 For a Dedekind complete AM-space E with unit e the following two
statements are equivalent.

1. There exists a probability measure space (2, X, ) and an onto lattice isometry

T:E — Loo(p) with Te =1.

2. E admits a strictly positive order continuous linear functional.

Proof: If (Q,X, 1) is a probability measure space, then L () is Dedekind complete
with order unit 1, and integration against u yields a strictly positive order continuous
linear functional on L., (u). Furthermore, if T: E — L () is a lattice isometry, then
the mapping ¢: E — IR, defined by ¢(z) = [, T(z)dp, is a strictly positive order
continuous linear functional on E. Hence (1) implies (2).

Conversely, assume that ¢ is a strictly positive linear functional on E. Since e is an
order unit, the ideal it generates is all of F; that is, £, = B, = E. Now Theorem 2.1
applies and yields the desired lattice isometry. ]

In light of these results, the reader might well ask for simple sufficient conditions
that guarantee Dedekind completeness, or the existence of a strictly positive element,
or the existence of a strictly positive functional. For Banach lattices, simple conditions
are well known:

e Every separable Banach lattice has a strictly positive element. (For, if {z;, z,,...}
1

is a countable dense set of non-zero elements, then z = 3277 | - - ﬁ-ﬁﬂh is a strictly
n

positive element.)

e Every Banach lattice with order continuous norm and every dual Banach lattice
is Dedekind complete; see [8, Theorem 12.9, p. 179]. (A dual Banach lattice is a
Banach lattice which is the norm dual of another Banach lattice.)
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o If F is a Banach lattice with order continuous norm and 0 < z € E, then there
exists a continuous (and hence order continuous) positive linear functional ¢ on
E which is strictly positive on the order ideal E,. If x is also strictly positive,
then ¢ is strictly positive on all of F; see [8, Theorem 12.14, p. 183].

The representation theorem tells us that an abstract Riesz space (satsifying appro-
priate conditions) can be represented as a space of equivalence classes of integrable
functions. The following result of G. Ya. Lozanovsky [20, Theorem 7] tells us that a
Banach lattice which is already presented as a space of equivalence classes of measur-
able functions can be realized after a “change of variable” as a space of equivalence
classes of integrable functions between L., and L;.

Theorem 2.3 (Lozanovsky) Let (0,X,u) be a finite measure space and let L°(p)
denote the Riesz space of all (equivalence classes) of measurable real functions on Q.
If E is an order dense ideal of L°(u) which is also a Banach lattice (with respect to
some lattice norm), then there exists a non-negative function h € L°(u) such that

Loo(p) ChE = {hf: f € E} C Li(p).
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