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Abstract

A number of authors have used formal models of computation to capture
the idea of “bounded rationality” in repeated games. Most of this literature
has used computability by a finite automaton as the standard. A conceptual
difficulty with this standard is that the decision problem is not “closed.”
That is, for every strategy implementable by an automaton, there is some
best response implementable by an automaton, but there may not exist any
algorithm for finding such a best response that can be implemented by an
automaton. However, such algorithms can be always be implemented by
a Turing machine, the most powerful formal model of computation. In this
paper, we investigate whether the decision problem can be closed by adopting
Turing machines as the standard of computability. The answer we offer is
negative. Indeed, for a large class of discounted repeated games (including
the repeated prisoner’s dilemma) there exist strategies implementable by a
Turing machine for which no best response is implementable by a Turing
machine.

JEL Classification C72, C73

Keywords repeated games, bounded rationality, computable strategies,
Turing machines



1 Introduction

Following a suggestion in Aumann (1981), a number of authors have used the
notion of computability to model “bounded rationality” in repeated games.
In most of this literature, “computability” is taken to mean computability by
a finite automaton (more accurately, Moore machine); Rubinstein (1986) rep-
resents seminal work in this genre (we discuss the literature more fully below).
In this paper, we investigate some consequences of adopting a more sophisti-
cated standard, computability by a Turing machine (an idealized computer
with a finite description but infinite memory). For infinitely repeated games
with discounting, we show that even the adoption of the Turing machine stan-
dard (arguably the most sophisticated computation standard possible) leads
to fundamental “incompleteness” results: in general, there will exist com-
putable strategies admitting no computable best responses, and the problem
of choosing a best response (even when computable best responses do exist)
does not have a computable solution. We believe these results have serious
implications for the analysis of repeated games.

Our focus on computability by a Turing machine as a standard is not at
all arbitrary. It is generally accepted in the mathematical and computational
literature (although see below) that the notion of partial recursive function
is the correct embodiment of the informal notion of computable function,
a point of view usually referred to as Church’s Thesis.! Interest in Turing
machines stems in part from the fact that every partial recursive function
can be computed by a Turing machine, and every function computable by
a Turing machine is partial recursive; thus, Turing machines can compute
“everything that can be computed” - at least if we accept Church’s thesis.?
By contrast, finite automata can compute only a proper subset of the partial
recursive functions. Binmore (1987), for example, argues on this basis that
Turing machines provide the “right” computational model of the absolute

1The partial recursive functions are those which can be built up from the identity func-
tion, the projection function, the zero function and the successor function by composition,
combination, exponentiation and repetition; see Odifreddi (1987), for example.

2Turing machines are also attractive because of their close resemblance to modern
digital computers. Neural networks represent quite a different computational model, and
are attractive in part because they resemble human brains, but they have precisely the
same computational power as Turing machines.



limits of rational play.

What does it mean to insist on computability in game theory? One pos-
sibility is that we insist that strategies themselves be computable, but make
no requirements about how players are to arrive at these strategies. (This
limits the complexity of strategies but not the rationality of players.) An-
other possibility is to insist that the decision problems of players actually be
computable. (This limits the rationality of players.) We establish “incom-
pleteness” results for each of these interpretations. Specifically, we show first
that for a large class of two-player stage games (including the familiar pris-
oner’s dilemma) there exist computable (i.e., Turing machine implementable)
strategies which do not admit computable best responses.®* Although the
strategies we use are necessarily somewhat complicated, they meet the min-
imal test of being part of an equilibrium — indeed, of a subgame perfect
equilibrium. That is, there exist pure behavioral strategies s;,s; with the
following properties:

e the pair (s;, s2) constitutes a subgame perfect equilibrium
e s, is computable®

e no best response to s, is computable

As a reader familiar with computability will anticipate, our construction
involves building a version of the “halting problem” into the strategy of
Player 2. The construction is slightly delicate because, with discounting, it
is almost true that a player can determine what to play after any history
simply by optimizing over a long enough finite horizon.

Second, we show for the same large class of stage games that players’
decision problems do not have computable solutions. That is, there is no
Turing machine which, given the description of a Turing machine used by

3The particular structure we assume for the stage game simplifies our arguments sub-
stantially, but we conjecture that similar resuits will hold for neatly all infinitely repeated
games.

40f course, in the discounted framework, best responses always exist.

5In fact, s; can be computed by a Turing machine that requires only polynomial time
to perform its calculations.
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one player, computes a best response for the other player. Of course, this
follows from our previous result, since a computable solution to the decision
problem would necessarily produce a computable strategy. In fact, we show
that there is no computable solution to the decision problem for a player
even tf we insist that the opponent choose among computable strategies which
do admit computable best responses.

We point out that our results apply only to ezact best responses, and
not to approrimate best responses. Indeed, given a computable strategy s,
and any € > 0, it is easy to find a computable strategy s, which is an &-
best response. (That is, no response to s, improves on s; by more than ¢.)
Moreover, the procedure for finding such a computable e-best response is
computable (simply optimize over a sufficiently long finite horizon). Thus,
the computability problems we identify do not necessarily have important
consequences for payoffs. However, these computability problems do have
important consequences for paths of play, because the path of play specified
by an e-equilibrium may be very different from that specified by an exact
equilibrium. In a sense, strategies implementable by Turing machines are
intrinsically vulnerable to certain types of “trembles” which can cause ob-
served play to depart substantially from what one would predict if players
truly optimized.

Of course, our results do not bear on the ezistence of subgame perfect
equilibria in computable strategies. (Indeed, the Folk Theorem can be de-
rived using only computable strategies; see, for example, Ben-Porath and
Peleg (1987).) However, our results have some relevance for attempts to
formalize how (boundedly) rational players might come to play a Nash (or
subgame perfect) equilibrium in the first place. Computability problems will
become still more severe if players have non-degenerate beliefs, as would
typically be the case in learning or evolutionary environments; see Nachbar

(1995).8

Given the negative character of our conclusions, it is natural to enquire
whether we have chosen the wrong model of computation. Perhaps Turing
machine computability is either too restrictive or too permissive. We consider

In the present paper, beliefs are degenerate, in the sense that each player places
probability one on a single strategy of its opponent.



these in turn.

Turing implementability is too weak. As we have noted earlier, the Tur-
ing computable functions are exactly those which are partial recursive, the
mathematical benchmark for “computable.” There are other models of finite
computation, but all are either equivalent to Turing machines, in the sense
of also implementing exactly the partial recursive functions, or weaker, in
the sense of implementing a proper subset of the partial recursive functions.
What about models of non-finite computation? At this writing, there is dis-
agreement as to whether non-finite computation is possible even in principle.
Penrose (1989) represents a leading attempt to argue for the possibility of
non-finite computation, but while we are sympathetic to Penrose’s point of
view, it is sobering to realize that his argument rests ultimately on conjec-
tures about an as-yet-unformulated quantum theory of gravity.

Turing implementability is too strong. If we weaken the computability
standard to computability by a finite automaton, then the problem of im-
plementing a best response disappears: for every strategy implementable by
a finite automaton, there is a best response which is implementable by a
finite automaton (indeed, by a finite automaton of the same “complexity”);
see Stanford (1989). However, the decision problem still has no computable
solution: no finite automaton can compute a best response (or even an e-best
response, for ¢ > 0 small) to every possible finite automaton. Solving the
decision problem requires a Turing machine (or at least some machine with
infinite memory).”

It is sometimes argued that computability by a finite automaton is more
“realistic” than computability by a Turing machine, but we question this
argument in the context of infinitely repeated games. The only difference
between a Turing machine and a finite automaton is that a Turing machine
has unbounded memory; for both machines the set of instructions is required
to be finite. In an infinitely repeated game, it seems strange to us to rule
out the possibility of adding additional memory. It should also be kept in
mind that, in an infinitely repeated game, unbounded memory is already

"Indeed, one might have hoped that enlarging the computability standard from finite
automaton to Turing implementability would “close” the model; our results show that this
is not the case.



required in order to keep track of the history. Of course, one might insist
on limits to the computational complexity required in each period, but the
Turing machines we require are quite efficient: the number of steps (hence
the amount of memory) required by one of our machines in order to compute
the action in the n-th period grows only as a polynomial in n. We conjecture
that our results could be obtained using only a Turing machine for which the
number of steps required to compute the action in the n-th period grows only
linearly in n. Such a machine would require, in the n-th period, memory of
only the same order as that needed to record the history up to that point. It
seems very hard indeed to justify restricting attention to machines simpler
than this.

Our results are closely related to those of Knoblauch (1994), who consid-
ers computability of best responses in the context of the infinitely repeated
prisoner’s dilemma with payoffs evaluated as long run averages, rather than
discounted present values as here. When payoffs are calculated as long run
averages, there are computable strategies which do not admit any best re-
sponses at all — computable or not. Knoblauch shows something stronger:
there are computable strategies which do have a best response, but for which
no best response is computable. Our paper provides the parallel result for a
large class of discounted repeated games.

More generally, our paper contributes to research on computer imple-
mentation of repeated game strategies. There is a fairly large literature on
automaton implementability in repeated games; in addition to papers already
cited, see Kalai and Stanford (1988). The papers in the automaton litera-
ture closest in spirit to the present exercise are Gilboa (1988) and Ben-Porath
(1990), who investigate the complexity of the procedure for choosing a best
response in undiscounted games with automaton implementable strategies.
In particular, Gilboa shows that the procedure for computing a best response
can be implemented by a polynomial-time Turing machine provided, as here,
that the game and opposing automaton are known in advance.

By contrast, relatively little work has been done on Turing implementabil-
ity in repeated games. Aside from Knoblauch (1994), some other papers in
the general area include Megiddo and Wigderson (1987), Gilboa and Samet
(1989) (a hybrid, combining both automaton and Turing implementability),



Fornow and Whang (1993), and Anderlini and Sabourian (1993).

Finally, our paper complements a line of research, begun by Binmore
(1987) and pursued by Anderlini (1990) and Canning (1992), in which the
idea of a player “thinking through” a game is explicitly formalized by mod-
eling each player’s decision procedure as a Turing machine which receives as
input a description of the game and the program encoding the other player’s
decision procedure.® Because of the built-in self-reference (each player de-
cides what to do based on his calculation of what the other player decides to
do, based on ...), computability problems arise even for finite games. In the
present paper, we assume away this particular self-reference; in our formula-
tion, a player has beliefs directly over its opponent’s strategies, rather than
over its opponent’s decision procedures. In our formulation, no computability
problems would arise for finite games.

Following this Introduction, Section 2 provides the basic facts about re-
cursive functions, Turing machines and computability. Although we refer to
the literature for details, the material provided in Section 2 should provide
enough information for the neophyte. Section 3 recalls the basic facts about
repeated games with discounting. Section 4 presents a computable strategy
which admits no computable best response. Section 5 establishes that there
can be no algorithm for computing best responses, even when computable
best responses exist.

8This basic setup had been employed earlier by McAfee (1984) for a different purpose.
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2 Turing Machines

A Turing machine is an idealized computation device with a finite description
but unbounded memory. We offer here a brief description of Turing machines
and their operation. The treatment we give is informal, and not intended
to be complete, but we hope it will provide adequate background, even for
the uninitiated. As will become clear, precise knowledge of the structure
and operation of Turing machines is not necessary for understanding the
remainder of the paper. In part this is because we follow a convention,
standard in the computation literature, of asserting that a Turing machine
can be constructed whenever it is “clear” that the relevant calculations can
be carried out as a finite sequence of discrete steps. This elision, which saves
an immense amount of detail, is based on an appeal to the fact that the set
of Turing computable functions is exactly the same as the set of flowchart
computable functions; see Theorem 1.7.12 in Odifreddi (1987). Readers who
want a more comprehensive and systematic treatment of Turing machines
are directed to Hopcroft and Ullman (1979) or Cutland (1982).

A Turing machine consists of

(i) an infinite processing tape which is divided into squares
(ii) a read/write head

(iii) a processing unit with a finite number of internal states

Each square on the tape may be marked with either 0, 1 or b (blank).®

The action of a Turing machine may be described in the following way.
At the beginning of a computation, the read/write head is positioned over
some square of the tape, say zo, and the tape is filled from zo rightwards
with a finite string (possibly empty) of 0’s and 1’s (i.e., a binary string), the
input. The remainder of the tape is filled with &’s. At the beginning of step
k in its computation, the machine is in some state ¢ and the read/write head

9 Although it is usual to work with a three-symbol alphabet, an alphabet of two symbols
would in fact suffice; of course modern digital computers use a two-symbol alphabet.
However, allowing for blank squares avoids some unpleasant technicalities.
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is positioned over some square z. According to the current state and the
content of the square, four things are determined:

(i) whether the current square is to be overwritten (with a 0, 1 or b) or
left alone

(ii) what the machine’s new internal state will be

(ili) whether the read/write head is to remain where it is, or to move one
square along the tape to the left, or to move one square along the tape
to the right

(iv) whether the machine is to continue or to halt (stop)

We identify the completion of these four items as a single computational
step. Note that we allow for the possibility that the machine does not halt.
If the machine does halt, the output of the computation is the binary string
(possible empty) beginning at the read/write head and extending leftward
until the first . Since each computational step alters at most one square,
and the number of computational steps executed before halting is finite, the
output of any computation is finite.

We write (0 +1)* for the set of all finite binary strings of 0’s and 1’s. The
input of a Turing machine is a string w € (0 + 1)*; presented with such an
input, the machine M either halts with some output written on the tape or
fails to halt. If we write W for the set of inputs on which M halts, then the
Turing machine M computes (or implements) a function

em: W —(0+1)

If M halts on all inputs then W = (0+1)* and we say that the function @ is
total; otherwise, s is partial. Let DM be the set of functions computed by
Turing machines. Since each Turing machine has a finite description, M
1s countably infinite. Of course, the set of all (partial) functions on (0 + 1)*
is uncountably infinite, so “most” functions cannot be computed by a Turing
machine.

There are standard schemes for using binary strings to encode (i.e., un-
ambiguously represent) natural numbers, paired natural numbers (hence ra-
tional numbers), formal logical expressions, English words, and so forth. Of
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course, the same binary string will have different interpretations for different
codings. The statement in the introduction that Turing machines can com-
pute any partial recursive function means in particular that, with the proper
coding, we can construct a Turing machine able to execute standard arith-
metical operations such as addition, subtraction, multiplication, and raising
to a power.

We will be interested in whether certain sets can be enumerated by a
Turing machine. We say that a set W C (0+ 1)* is recursively enumerable if
there is a Turing machine M which maps the natural numbers N = {0, 1,...}
(properly encoded, of course) onto W. We say that a set W C (0 + 1)* is
recursive if both W and (0 + 1)* \ W are recursively enumerable. Typically,
we will be interested in W interpreted as a subset of IN; in this case, W is
recursive if and only if both W and IN \ W are recursively enumerable.!°

Because a Turing machine has a finite description, it is possible to encode
this description itself in binary; write m for the binary code of the machine M.
If the coding is done properly, it will be “machine readable” in the following
sense: There exists a Turing machine U such that py(m,-) = eam(-) (so
that the two functions have the same domain and have equal values on that
domain) for every Turing machine M.!' Any such machine U is called a
universal Turing machine; infinitely many universal Turing machines exist.
The action of U on (m,w) is not different in principle from the familiar
action of a general purpose computer running a software implementation of
a special purpose computer (such as a dedicated word processor). The novelty
here is that, because memory (the tape) is unbounded, U can simulate any
Turing machine no matter how complicated, including U itself. By contrast,
a computer with bounded memory (an automaton) can simulate another
computer only if the other computer is sufficiently small, in an appropriate
sense.

It is not hard to show that the set of Turing machine codes is recursively
enumerable (indeed recursive). Because of this, one can identify the set of
Turing machine codes with IN in a computable manner. In particular, one

19This actually requires proof (because of coding technicalities).
L10f course, (m, w) refers to a binary string which encodes the pair of strings m and w;
as usual, we skip over exactly how this coding is done.



can show that there exists a universal Turing machine U such that py(n,-) =
©1.(+), where T,, is the Turing machine identified with integer n.!?

The proof of our main theorem hinges on the nature of the following sets:

A = {n € IN:T, halts on input n and p,(n) = 0}
B = {n € N:T, halts on input n and @,(n) # 0}

For our purposes the crucial facts about the sets A, B are that they are
recursively enumerable but cannot be separated by a computable function
(and in particular are not recursive). It is convenient to separate the (quite
standard) arguments into two lemmas.

Lemma 1 The sets A and B are recursively enumerable.

Proof We sketch the argument for A and omit the parallel argument for B.

Note first that A is infinite. To see this, we construct an infinite family of
Turing machines which always halt and write 0. For each integer p consider
the machine which has p internal states, and operates in the following way.
The machine begins operation in state 1. Given any input, the machine
neither moves its read /write head nor writes, but transits to state 2; in state
2, it neither moves its read/write head nor writes, but transits to state 3, and
so forth. In state p the machine writes 0, leaving the read/write head over
the initial square x4, and halts. Clearly the index of this machine belongs to
the set A, and these machines are all distinct (because they have different
numbers of states), so A is infinite.!3

We now fix a universal Turing machine U. We construct a machine S
which operates according to the following algorithm. On input p, the machine
S “zigzags” through the list of Turing machines by using U to compute the

12That the Turing machines can be put in 1-1 correspondence with IN follows simply
from the fact that the set of Turing machines is countably infinite. The strength of the
claim above is that this correspondence can be implemented by a Turing machine. Since
there are countably infinite subsets of (0 + 1)* (and of IN) which are not recursively
enumerable, this assertion is not trivial.

13As we see here, a Turing machine is not characterized by the (partial) function it
computes. Indeed, each of this infinite family of Turing machines computes the 0 function.
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first step of machine Ty on input 0, then the first two steps of Ty on input 0,
then the first step of T} on input 1, then the first three steps of T on input
0, then the first two steps of T} on input 1, then the first step of T, on input
2, and so on. S halts the (p+ 1)-st time that it finds a machine, say n,, that
halts with an output of 0; S then returns the output n,.

To see that S enumerates A, we must show that s is a total function and
that its image is precisely A. Consider therefore the operation of S on the
input p. Since A is infinite, we can choose p+1 indices ny,...,n,4; € A. By
definition, the Turing machine T,, halts on input ny; let r(n,) be the number
of steps executed before halting. When given the input p, the machine S will
eventually simulate r(n,;) steps of the machine T, and r(n;) steps of the
machine T,,, ..., and r(npy4,) steps the machine T, ,,, and will halt at that
point, if it had not already halted before. Hence S is total. Clearly every
output of a computation by S is an element of A. Finally, the output of §
will be n; as soon as S simulates r(ny) steps of the operation of Ty, , so S
enumerates all the elements of A. O

Lemma 2 There is no computable total function ¢ : IN — {0,1} such that

(1 fneA
‘P(")‘{o ifneB

Consequently, neither A nor B nor AU B is recursive.

Proof Suppose such a total computable function ¢ existed. Let T be a
Turing machine that computes ¢ and let ny be the natural number encoding
T. Since ¢ is total, the machine T halts on the input nr, so its index
nt belongs to A or to B. If ny € B then p(nt) = 0, but by our coding
¢nr(nr) = @(nr) = 0, whence nr € A, which is a contradiction. On the
other hand, if ny € A then ¢, (n1) = ¢(nr) = 1, whence nr € B, which is
a contradiction. We conclude that no such total computable function ¢ can
exist.

To see that A is not recursive, suppose that it were; let ¢ be a com-
putable function which enumerates A and let ¢’ be a computable function
which enumerates IN \ A. Define a computable function ¢ as follows: In
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order to compute the value of i at n, compute the sequence of numbers
@(1),¢'(1),(2),¢'(2),. .. to the point where n first appears. Define ¥)(n) = 0
if n = ¢(k) for some k, and ¢(n) = 1 if n = ¢'(k). (This defines a com-
putable function precisely because ¢ and ¢’ are both computable and total,
and enumerate A and its complement IN \ A.) Since A and B are disjoint,
the function ¢ separates them. Since we have shown that no such separating
function exists, we conclude that A is not recursive.

A similar argument shows that B is not recursive. To see that AU B is
not recursive, note that an enumeration of IN\ A U B and an enumeration
of B could be interleaved to provide an enumeration of IN \ A, contradicting
the fact that A is not recursive. O

The requirement in Lemma 2 that ¢ be total is crucial; it is easy to use
the recursive enumerability of A and B to find computable partial functions
which separate A and B. We note that AU B is the set of indices of Turing
machines that halt on their own index; the failure of this set to be recursive is
a formal expression of the fact that the halting problem for Turing machines
(that is, the determination of which Turing machines halt) is unsolvable.

A Turing machine M is usually considered to be (relatively) simple if
there is a polynomial function ¢ : IN — IN such that, for every natural
number k, the machine M executes at most g(k) steps for any input string
of length k on which M halts. Turing machines which satisfy this condition
are said to be polynomial-time bounded.



3 Repeated Games and Computable Strate-
gies

We consider infinitely repeated 2-player games with discounting. Let G =
(A1, Az, u;,uz) be the stage game, so that A; is the finite action set and
u; : Ay x Ay = IN is the payoff function of player i.!* A finite history of
length T is an element of the T-fold cartesian product

HT = (A; X Ay) x...(A; x A,)

(There is a unique empty history of length zero.) We write H = Urso M7 for
the set of all finite histories. For € HT and 0 < t < T, the action profile
that occurred at date ¢ is denoted h[t] and is the projection of k onto its ¢
coordinate.

A path of play is an infinite sequence of action profiles. The set of paths
of play is denoted Z. Given a path of play z € Z, the projection onto the ¢
coordinate is denoted z{t], and the projection onto the first T' coordinates is
denoted z(T). Note that z(T') € H7 is a history of length 7.

We write G* for the game which consists of infinitely many repetitions of
the stage game G. In each period, players are informed of the actions taken in
earlier periods, so a pure strategy for player i in the infinitely repeated game
G is a function s; : H — A; which assigns an action following each finite
history. We write S; for the set of pure strategies for player : and S = S5; x5,
for the set of pure strategy profiles. A pure strategy profile s € S determines
a path of play z, € Z. If the discount factor is § then the payoff to player :
given players follow the strategy profile (s, s3) is:

o0

Vi(s1,82) = D_ 6 i (2[t])

t=1

As usual, we say that the pure strategy s; is a best response to the pure

strategy sg if
Vi(s1,82) 2 Vi(sy, 52)

14The restriction to payoffs which are natural numbers is designed to forestall trivial
computability problems.
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for every pure strategy s}. Since the set of pure strategies is compact in the
product topology the payoff function V] is continuous in the product topology
(because future payoffs are discounted), best responses always exist. We write
Bi(s;) for the set of best responses for player 1 to pure strategy s,.

The set of finite histories can be identified with IN in a computable manner
(the construction is similar to that used to encode Turing machine descrip-
tions). We may also identify the action set A; of player ¢ with a subset of IN.
We may therefore view a pure strategy for player ¢ as a (total) function on
IN such that for any history A (encoded as a natural number), s;(h) is the
natural number encoding the action taken at h. We say that a pure strategy
can be implemented by a Turing machine if the function s; : N — IN can be
computed by a Turing machine.

In view of our earlier remarks about the capacity of Turing machines
to compute anything that is computable, we shall identify a “computable”
strategy as one that can be implemented by a Turing machine. Assuming
that player ¢ has at least two actions, the set of all pure strategies for player
¢ is uncountable. On the other hand, the set of strategies implementable by
a Turing machine is countable. In particular, there are many strategies that
are not implementable by a Turing machine.

14



4 Non-Computable Strategies

Throughout this section we restrict attention to stage games that satisfy the
following assumption. (This assumption greatly facilitates our argument, but
is probably not necessary for our conclusions; see Nachbar (1994).)

Assumption A There are action profiles (a:,X), (y,Y) € A; x Ay such that

e (y,Y) is a Nash equilibrium of the stage game G

e the payoff from (z, X) strictly Pareto dominates the payoff from (y,Y)

Prisoner’s Dilemma is a familiar example of a game satisfying this assump-
tion.

Our principal result is:

Theorem 1 Assume the stage game G satisfies Assumption A. Then there
is a rational number § > 0 such that for every rational discount factor é
with § < 6 < 1, there is a (pure strategy) subgame perfect equilibrium profile
(81,82) of the infinitely repeated game G for which:

(a) s can be implemented by a Turing machine

(b) no best response to s; can be implemented by a Turing machine

Before proceeding with the details of our construction, it may be helpful
to outline briefly the basic logic. The strategy s; and the set of best responses
to sy will be (almost) completely described in terms of (1) a prescribed path,
the path the players are supposed to follow, (2) a relatively mild punishment
path P!, and (3) a harsher punishment path P2. (Our description is not quite
complete because of a complication stemming from the fact that certain types
of deviations are not immediately punished. We shall be careful about this
complication in the proof proper, but we simply ignore it for the moment.)
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The prescribed path involves an infinite number of “test dates,” each
followed by a “reward period” lasting K™ dates, followed in turn by an “ad-
justment period” lasting K°® dates. The first date is a test date, so tests
occur at dates 1, 2+ K"+ K°, ..., 1 +n(l + K"+ K?), ... The strategy s,
is constructed so that no Turing machine for player 1 can compute correct
play at every test date. If player 1 chooses incorrectly at some test date,
then play will eventually switch to the punishment path P!. (This part of
our construction is similar to that of Knoblauch (1994).) However, because
the strategy s; is required to be implementable by a Turing machine, com-
putability difficulties (for player 2) entail that deviations at test dates by
player 1 may not be detected immediately. Hence, the transition to the pun-
ishment path will not in general be immediate; if player 1 chooses incorrectly
at date t, the transition to P! will occur at date t + 7, and the length of the
delay 7 will depend on t.

This unavoidable delay in the transition to the punishment path entails
two difficulties:

(i) Because future payoffs are discounted, the present value of a delayed
punishment will be small.

(ii) Because punishment is not immediate, a player whose deviation at a
test date has not yet been detected has an incentive to deviate again.

The first of these difficulties is addressed by the adjustment periods. During
adjustment periods, player 2 gives player 1 a high payoff if player 1's payoff
to date has been low and a low payoff if player 1’s payoff to date has been
high. Because of this adjustment, player 1’s maximum discounted gain from
deviating at a test date is outweighed by the future punishment, no matter
how long the punishment delay. The second of these difficulties is addressed
by our use of reward periods and two punishment paths. A deviation at a
test date — which might remain undetected for a long period of time — is
punished by reversion to the relatively mild punishment P!, but a deviation
at any other date — which will be detected immediately — is punished by
reversion to the harsh punishment P?. If player 1 has deviated at the test
date t, he will still prefer to follow the prescribed play until the punishment
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date t + 7 and suffer reversion to the punishment path P!, rather than to
deviate at any intermediate date and suffer an immediate reversion to PZ.

We now proceed to fill in the details.

Proof of Theorem 1 As sketched above, s; and B;(s;) will be characterized
in terms of a prescribed path of play and two punishment equilibria, P! and
P2,

The prescribed path will consist of test periods at dates 1,1+ (1 + K™ +
K*),1+2(1+ K"+ K*°),...,1+n(1+ K"+ K?),..., interspersed by K" € IN
reward periods and K% € IN adjustment periods. We proceed recursively.
Let H! 4., C H' be the subset of t-period histories such that neither player
has yet deviated from the prescribed path. H_,., will typically not be a
singleton, since s; will allow Player 1 to play either of two different actions at
an infinite subset of the test periods. We will also have to consider histories
in which player 1 may have deviated in one or more test periods, but for
which punishment will not begin for at least another period. Formally, let
Hi,. C H be the subset of t-period histories such that the only deviations
that have occurred (if any) are deviations by player 1 in test periods, and
none of these deviations will be punished earlier than date t + 2. Of course,

7“(:\odev C H:est‘

Let A, B C N be the sets defined in Section 2. If datet +1 =1+ n(1 +
K™+ K*) is a test period and the current history h* € H!_,,, then prescribed
play is according to the following rules (where X, z, y are the actions specified
in Assumption A):

1. (z,X) if n € A;

2. (y,X)ifn € By
3. either (z,X) or (y,X)ifn ¢ AUB.

(The alternative, that A* € Hf,,, \ Hl,q.,. presents a bit of problem, to which
we will return below.) If player 1 fails to play either z or y in a test period,
or if player 2 fails to play X, then play switches next period to P2. P? will

simply be reversion to Nash equilibrium: (y,Y’) forever.
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Because A and B are recursively enumerable (Lemma 1), if player 1 de-
viates during a test period, player 2 will be able to detect the deviation in
finite time by stepping through the enumeration of A and B; we will specify
below exactly how player 2 does this. However, by Lemma 2, there is no Tur-
ing implementable function ¢ on the natural numbers such that p(n) = 1 if
n € A and p(n) = 0if n € B. It will then follow that player 1's best response
cannot be Turing implementable, since if it were, the implementing Turing
machine could be used to construct a Turing machine which implemented
. We will record this observation formally at the conclusion of the overall
proof.

The Turing machine implementing s2 checks for test period deviations
during test and adjustment periods, but not during reward periods. The
method for checking is as follows. In the beginning of period 2 + K", which
is the first adjustment period, player 2’s Turing machine simulates the first
instruction of Turing machine 0 operating on input 0. If, as a result of this
simulation, Player 2’s Turing machine finds that Turing machine 0 halts on
input 0, then player 2 compares player 1’s action in the first period with
©0(0). If ¢o(0) = 0 and player 1 played z, then player 2 judges that player
1 played correctly and so player 2 plays according to the prescribed path in
the current period 2 + K". Similarly if ¢o(0) # 0 and player 1 played y.
If player 1 is found to have deviated, on the other hand (say, if wo(0) = 0
but player 1 played y), then both players switch to P! in the current period,
period 2 + K'.

In period 34+ K", assuming no deviation is detected in period 2+ K", player
2’s Turing machine executes the first two instructions of Turing machine 0
operating on input 0 (or executes until Turing machine 0 halts, whichever
comes first). And so on. At datet =1+ n(l1+ K"+ K*)+ K" + T, where
T < K®+1, if no deviation has yet been detected, player 2’s Turing machine
executes the first n(1 + K°) + T instructions for Turing machine 0. It also
executes the first (n — 1)(1 + K*®) + T instructions for Turing machine 1,
the first (n — 2)(1 + K°) + T instructions for Turing machine 2, and so on
for the first n + 1 Turing machines (or executes for each machine until the
machines halts, whichever comes first). If @,(n) is defined, then eventually
the Turing machine implementing player 2’s strategy detects this, but there
is no a priori bound on when this detection occurs. If Player 2 detects
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multiple deviations, the punishment is still just P. A virtue of this test
procedure (which is essentially the same as that in Knoblauch (1994)) is that
the calculations performed by player 2 increase at most polynomially, even
if pn(n) is undefined.

We have omitted discussing what happens if h* € H!, \ H! 4oy, Which
is a history off the prescribed path. In a standard Folk Theorem construc-
tion, such histories would be of little consequence; players would immedi-
ately switch to a punishment path (assuming they weren’t on one already).
However, we do not have this luxury, because for such histories the Turing
machine implementing player 2’s strategy won’t know that play is off the
prescribed path. We handle this as follows. Until a deviation is detected, s,
directs player 2 to play as though no deviation has yet occurred. In partic-
ular, if ¢t + 1 is a test date, then s, directs player 2 to play X. We likewise
require player 1 to continue to play as prescribed at reward and adjustment
dates. However, we have little leverage over player 1 at test dates. To ensure
subgame perfection, we assume that player 1’s strategy directs player 1 to
choose optimally at test date £+ 1, but we do not specify what this optimum
is. Note that, under s;, player 2 will respond to the first detected deviation
from the rule “z if n € A, y if n € B.” This may not be the first deviation
committed by player 1.

We next turn to the adjustment periods. It is convenient to consider
discounted payoffs in current terms. For h € H!,,,, let (k) denote the value
of player 1’s payoffs over the first ¢ periods, discounted forward to date ¢ + 1.

Thus t
r(h) = %Z&“‘ul(h[i])

1=1
Let II* = {x € R: m# = w(h) for some A € H!,,}. Since I’ is finite, it has a
maximal element, 7, and a minimal element, ‘.

Let u(ay,a;) = min; u;(a;, a2) and u(a,, a;) = max; u;(a;,a;). Let

u = min  u(a;,a
- al€A1,02€‘42—( b 2)
and

= max u(ap,ay)

a1€A1,a2€A2
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Let p=u—-u>0.

If date t + 1 is an adjustment period, prescribed play following a history
h € Hiey is

1. (¢, X) if n(h) —x* < 1.

2. (y,Y) otherwise.
If either player deviates from this prescribed play, play switches in the next
period (t + 2) to the punishment equilibrium P?, (y,Y’) forever.

The following lemma records the fact that play in the adjustment periods
shrinks the payoff differential ¥ — x‘ by a discrete amount whenever the
differential lies between 7 and 37. Lemma 4 below will then verify that

7 — ! is indeed always less than 35 for é large enough.

Lemma 3 There is a 6, € (0,1) and an a > 0 such that for any (rational)
§ € (61,1), ift + 1 is an adjustment period and n < 7T — x* < 37, then

('7?‘ _Zr_t) _ (7r-t+l _Et+1) > a

Proof. Choose 6, to be any number in the interval

(l_ul(x,X)?);ux(y,Y),l) c (§1>

Since n < ® — x* and t + 1 is an adjustment period, ¥*! < (7' +
u1(y,Y))/6. (The inequality could be strict if the history corresponding to

7t contains a deviation detected for the first time at the beginning of date

t +2.) Similarly, z**! > (x* + uy(z, X))/é. Then

(%-t _ It) _ (ft+l _£t+l)

v
AL

— ) = 5 [7 2 + (e X) (@, V)

v

\Y
On| = On| = On| =
p—
3
fn

[(ur(z, X) —wi(y,Y)) = (F —z')(1 = 6)]
(2,X) — w(y, Y)) = 3n(1 — 8)

[(ur(z, X) = wi(y, Y)) —3n(1 - &)]

Y,
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The right-hand side is strictly positive provided 8; > 1—(u;(z, X)—u1(y,Y))/(37n),
as assumed. Then, since 6 < 1,

(ft —Et) _ (-ﬁ.-H-l _ 7rt+1) S

where a = (u;(z, X) — w1 (y,Y)) =3p(1 = 6,) > 0. O

Fix the value of §; in accordance with the previous lemma. The bound
a > 0 tells us how many adjustment periods it would take to reduce a
maximum deviation of 37 to a number below 7, a decrease of 2. Specifically,

set
K =2
a

where [z] is the smallest integer greater than or equal to z. K* depends on
stage game payoffs, but not on 4.

Before establishing Lemma 4, which justifies the assumption above that
7 — xt < 3n for all ¢, we must first specify behavior during reward periods.
In reward periods, players play (z, X) K™ times in succession. If either player
ever deviates, then play switches immediately to P2. KT is set to ensure that
player 1 has no incentive to deviate during any adjustment period and player
2 has no incentive to deviate during any period, test, reward, or adjustment,
even if player 1 has already deviated at a test period, so that play eventually
switches to P!. We choose K™ as follows. Suppose that it is the beginning of
date t and that an incorrect “answer” by player 1 at some earlier test date
will cause a switch to P! at date t + 7. Suppose further that a test period is
included amongst the T periods (the other possibility, that the next 7 periods
do not contain a test period, is considered in the proof of Lemma 6). Then,
by our construction, all K™ reward periods subsequent to that test period
must be included as well, since deviations are never detected during a reward
period. Therefore, 7 > 1 + K". Take K" so that it satisfies

u+ Kruy(z, X) + 2K°(y,Y) > (1+ K" +2K°) (Rui(z, X) + (3, Y))
u+ K'uy(z, X) +2K%(y,Y) > (1+ K™ +2K°) (%uz(z,X) + 3ua(y, Y))

The left-hand side gives the undiscounted worst case, which occurs when ¢ is
the first adjustment period in a sequence of K* adjustment periods, so that
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T includes a test period, a sequence of K™ reward periods, and {wo sequences
of K°® adjustment periods. Then

2uy(z, X) + uy(y,Y) — 3u 2uy(z, X) + ua(y,Y) — 3y_}
u(z, X) —w(y,Y) 7wz, X) —uay,Y)

K >4K“+ma.x{

Take any such K™ € IN. Then it is easy (if somewhat tedious) to confirm
that there is a §; € [6;,1) such that for any § € (6,,1), for any period ¢, if
the current history is in HiZt, if play switches to P! at date t + 7, and if
T includes a test period, then the average payoff to player ¢ over the next =
periods is at least (u;(z, X) + u;(y,Y))/2. By continuity, if no deviation has
in fact yet occurred, so “r = o0o,” then the average payoff to player ¢ is also
at least (u;(z, X) + ui(y,Y))/2.

With K7 thus defined, we can now verify that the maximum payoff dif-
ference ™ — =’ is indeed less than 37 for é large enough, which was the
hypothesis in Lemma 3.

Lemma 4 There is a 83 € [6,,1) such that for any (rational) § € (63,1),
7 —xt <3y forallt.

Proof. The argument is by induction on test periods. At the beginning
of period 1, the differential 7° — 7° equals 0. During the next K™ reward
periods, play is (z, X) for all histories in H;,,,. Therefore, at the start of the
first adjustment period, the differential is at most

1
§I+KT

This is less than 37 provided 63 > (1/3)/(+K") > 1/3,

Note next that if period t + 1 is an adjustment period and 7 — x* < 7,
then prescribed play is (z, X) for all histories in Hj,,,; hence

ottt N1
- T
The right-hand side is less than 37 provided 63 > 1/3.
Next suppose the induction hypothesis (7 — x! < 375) holds for test n,
which occurs at datet = 1+n(1+ K"+ A'*). From Lemma 3, the definition of
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K*°, the induction hypothesis, and the last observation, we have 7t —z' < 35
foreacht = 1+n(l+ K +K%,...,1+(n+ 1)1+ K +K°)-1=
(n 4+ 1)(1 + K™ + K®). Moreover, by the definition of K¢, at the beginning
of the (n + 1) test period, t =1+ (n + 1)(1 + K™ + K°):

F(n+H)(+K"+K®) _ 2 (n+1)(1+K7+K®) n

)

Hence at the beginning of the first adjustment period after test n + 1 (i.e.,

at datet =2+ K"+ (n+ 1)(1+ K" + K?%))
=1+K"+(n+1)(14+K"+K%) _ _1+K"+(n+1)(1+K"+K?) n 1
T T <[3+1)

The polynomial equation 36'*5" —§—~1 = 0 has a solution in ((1/3)}/(+K") 1);

call it 6*. Then the right-hand side, while greater than 27, is less than 35

provided 63 = max{é;,6*}. O

To complete our description, we must fill in two missing details. First,
we specify that the punishment equilibrium P! consists of play of (y,Y) for
3 periods, followed by one period of (z, X), followed by another 3 periods of
(y,Y) and so on. If either player ever deviates, player reverts to P? forever.
The average payoff of P! is thus

(1 - 6) §(1 - 5)]

~ Pl
v (8) = u;(z,X)l—_—ér + ui(y,Y) [1 1§

)

For 6 close to 1, this is approximately u;(x,X)} + ui(y,Y)2. In contrast,

the average payoff along the prescribed path of play is at least u,(z, X); +
ui(y,Y)$ while the average payoff along P? is 9P = ui(y,Y).
Second, and last, we must specify what happens following certain “bad”

histories in which both players deviate. Following such histories, we suppose
both players switch to P?.

We now must verify that we have indeed described a subgame perfect
equilibrium strategy profile (or actually set of profiles, because of the flexi-
bility player 1 has at tests n such that n € (A U B)°).

By the usual Folk Theorem argument, there is a 6, € [3,1) such that for
8 € (84,1), P! is a subgame perfect equilibrium. P? is a subgame perfect

23



equilibrium, since it is simply repeated play of a Nash equilibrium. It remains
to check that neither player has any incentive to deviate along the prescribed
path.

Lemma 5 There is a 85 € [64,1) such that for § € (6s5,1), Player 1 has no
incentive to deviate at a test date, if no deviation has yet occurred.

Proof. Suppose that the test date is ¢t and that punishment will begin at
date t+7. Then in date t+ 7 terms, the maximum payoff gain from deviating
is

R )

Choose 65 high enough so that this expression is negative. O

3n +

As for test dates when player 1 has previously deviated, recall that at
such test dates, we have stipulated that the player chooses optimally. This
optimal choice will be either z or y (although which we cannot say) for the
same reason, given below, that player 2 will choose X at every test date.

Lemma 6 There is a § € [65,1) such that for é € (8,1), neither player has
any incentive to deviate, following any history in Hi,, if deviation would
result in a switch to P? the following period.

est’

Proof. Explicitly, player 1 has no incentive to deviate in any reward or
adjustment period, and player 2 has no incentive to deviate in any period,
test, reward, or adjustment. To see this, suppose that the date is ¢t and
that play switches to P! at date t + 7. If 7 does not include a test period,
then the lowest possible average payoff from not deviating further is (1 —
65 Yu;(y,Y) + 65°5P"(6). Thus, the maximum possible average payoff gain
from deviating is less than

(1= 8)F + buily,Y) — [(1 = 8% )ui(y, ¥) + 6557 (8)]

We can find 8¢ € [6s, 1) such that for 6 € (6,1) this expression is negative.
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Suppose, on the other hand, that 7 does include a test period; hence
7 > 14 K". Then the the lowest possible average payoff from not deviating
further is (1 — 8"K")(wi(z, X) + wi(y,Y))/2 + 'K 5P (6) which is strictly
greater than the lowest possible payoff when 7 does not include a test period.
Hence 6¢ will work here as well. Finally, note that this argument applies also
in the limit as 7 goes to oo, which corresponds to the remaining case in which
player 1 has not deviated in a previous test period. Therefore, set § = é¢. O

It follows from Lemmas 5 and 6 that we have indeed specified a set of
subgame perfect equilibrium profiles. It remains only to verify that none of
player 1’s best responses are Turing implementable. Suppose player 1 had
a best response s; which was implemented by a Turing machine M. For
any n € N, s = (s;, ;) defines a unique history h € H:((,hjfr+K°), namely
z,(n(1 + K™ + K®)). Since both s; and s, are Turing implementable, one
can show that there exists a Turing machine, call it G, which implements the

total function g : N = IN
pG(n) = z,(n(l + K™ + K*%))
Represent z as 1 and y as 0. Then

1 fneA
enteatm) = { § Hn S5

Then there is a Turing machine D such that pp : N — {0,1} is a total
function defined by ¢p(n) = pm(wc(n)). But this contradicts Lemma 2.
This concludes the proof of the Theorem. O

As we have noted in the Introduction, the strategy s, can be implemented
by a Turing machine which operates in polynomial time (that is, requires at
each period t a number of steps which is bounded by a polynomial in t).
Although this is reasonably self-evident for most of our construction, the
number xf, used to define behavior in the adjustment periods, represents
a potential difficulty. In fact, however, x‘ has a simple, polynomial-time
characterization. Let g, = argmin, ,{u(z, X),u1(y,Y)}. It is easily verified
by induction that ! is the date t + 1 present value of the payoff stream to
player 1 generated by that element of H{,, in which player 1 plays g, at
every test date at which the correct action is not computed by date t + 1.
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Using this characterization, one can confirm that r‘ can be calculated in

polynomial time, and hence that s, itself can be computed in polynomial
time.
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5 The Decision Problem

Theorem 1 demonstrates the existence of computable strategies that do not
admit a computable best response. In this section we show that, even if we
restrict our attention to computable strategies that do admit a computable
best response, the problem of finding such a best response may not have a
computable solution.

This decision problem may be formalized in the following way. Let C be
the set of strategies for player 2 which are computable and let C' C C be the
subset of computable strategies which admit a computable best response. By
definition, each strategy s; € C’' can be implemented by a Turing machine,
and admits a best response s; which can also be implemented by a Turing
machine. An effective procedure for computing a best response to strategies
in ' is a Turing machine which, given as input the number of a Turing
machine which implements a strategy s, € C’, computes the number of a
Turing machine for Player 1 which implements some best response s; to s3.'°
The following theorem shows that, for discount factors sufficiently close to 1,
no such effective procedure exists.

Theorem 2 Assume the stage game G satisfies Assumption A. Then there
is a § > 0 such that for any rational discount factor 6 € (4,1), there is no
effective procedure for computing a best response to strategies in C'.

Proof. The argument is almost the same as the one given for Theorem 1,
so we will be sketchy. Take the strategy used for Player 2 in Theorem 1 and
modify it by stripping away all the test periods and reward periods except for
the first. Thus the prescribed path now consists of one test period followed
by KT reward periods, followed by adjustment periods which now stretch out
forever. Next, form from this modified strategy an infinite set of strategies,
which differ only in the “question” asked in the initial test date. Specifically,
strategy sj asks whether n € A or n € B, where A and B are as in the

151n fact, an effective procedure for computing a best response is equivalent to an ef-
fective procedure which, following any t-period history, computes the action chosen by a
best response in period t + 1.

o
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proof of Theorem 1. Each of these strategies s} is implementable; moreover,
each of these strategies has an implementable best response, since a Turing
machine can always be “hard-wired” to play correctly in Period 1.1®

An effective procedure for computing a best response to this set of strate-
gies would require a Turing machine which, for each n, computes whether
n € Aorn € B. Since A and B are recursively enumerable but not recur-
sive, no such Turing machine exists. Hence there is no effective procedure for
computing a best response to this set of strategies (and a fortiori no effective
procedure for computing a best response to the full set C’.) O

6Indeed, each of these strategies and a best response is implementable in polynomial
time.
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