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Abstract

In a model of an exchange economy with a continuum of agents, we show that
competitive equilibrium can be regarded as resulting from the elimination of arbitrage
possibilities. Arbitrage leads to a phenomenon we call the “flattening effect of large
numbers,” which provides a precise meaning to the statement that under perfect com-
petition individuals cannot influence prices. There is an attractive geometry associated
with arbitrage, which is highlighted in several figures.

We compare arbitrage equilibrium in a continuum economy to Walrasian equilib-
rium, the core, non-cooperative dynamic matching models, and to the existence of equi-
librium with unbounded short-selling. We also link the demonstration of equilibrium

through arbitrage with the logic of the marginalism.
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1 Introduction

The centrality of perfect competition in economics justifies the significant efforts made
to understand its foundations. The point of departure is typically the Walrasian model,
with its image of a perfect competitor as a price-taker. A more satisfactory model of a
perfectly competitive economy would have prices emerge endogenously. Core bargaining
represents one such effort (Edgeworth (1881), Shubik (1959), Debreu and Scarf (1963),
Aumann (1964), Hildenbrand (1974)). Another is the non-cooperative dynamic matching
and bargaining games initiated by Rubinstein and Wolinsky (1985), reformulated by Gale
(1986), and further analyzed by McLennan and Sonnenschein (1991), and Osborne and
Rubinstein (1990). Here we follow a different path toward the same goal; our path will
share some features in common with both the core’s static cooperative approach and the
above, dynamic non-cooperative approach. Using a model with a continuum of agents,
we show that competitive equilibrium can be regarded as resulting from the elimination of
arbitrage possibilities, rather than from the elimination of Walrasian excess demands.

A typical companion of the elimination of arbitrage possibilities is a phenomenon we call
the “flattening effect of large numbers,” which provides a precise meaning to the statement
that individuals cannot influence prices. The flattening effect is related to the “convexifying
effect of large numbers.” The convexifying effect always holds in models with a continuum of
agents and a finite number of commodities, but we shall show that the flattening effect only
holds generically; and we shall argue that in those exceptional cases where the flattening

effect does not obtain, the economy is not perfectly competitive.

THE USE OF THE TERM “ARBITRAGE.” Arbitrage means the opportunity to exploit dif-
ferences in quoted prices, a basic notion of competition among individuals. Modern for-
malizations of the idea that arbitrage leads to a law of one price are given in the finance
literature (e.g., see Ross (1976) and citations there). Here we propose a natural extension
of the idea: We allow arbitragers to seek out profit opportunites based on differences in
“reservation prices,” i.e., differences in individuals” marginal rates of substitution (MRS’s),
not just differences in observed market prices. To illustrate, suppose in a pure exchange
economy each individual of one type would be willing to pay 3 apples for 1 orange while
each individual of another type would be willing to sell 1 orange for only 1 apple. Evidently

there is an arbitrage profit to be gained—an opportunity to buy an apple at a low price and
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sell it at a high price—based on the differences in MRS’s. Further, with arbitrarily many
individuals of each type this profit could be multiplied to an arbitrarily large number. So, as
with differences in market prices, an arbitrage possibility based on differences in reservation
prices represents a money pump. It will be shown that if we extend the notion of arbitrage
to include exploiting differences in MRS;S, the elimination of arbitrage opportunities can

lead to competitive equilibrium.

ARBITRAGE CONES: FLAT AND OTHERWISE. Arbitrage may occur in any economy, small
or large, whether or not individuals have monopoly power. Clearly, it would be a highly
questionable result if arbitrage led to competitive equilibrium regardless of the economic
environment. This is not our claim. Rather, we show that arbitrage leads to competitive
equilibrium provided each arbitrager’s activities are at a scale that has no macroscopic
signficance. Formally, to capture this we will work in model with a nonatomic continuum of
individuals; but we will assume that any individual arbitrager can trade with only a finite
number of other market participants.

In this continuum setting, there is a distinctive and appealing geometry associated with
our arbitrage approach. This may be usefully separated into two parts. The first is that ar-
bitrage results in the formation of an opportunity set—the arbitrager’s budget set—which
is a convex cone. A similar condition characterizes arbitrage in financial markets where
traders are allowed unlimited short sales, and such a condition also is implicit in continuum
versions of dynamic matching models. The cone condition on trading opportunities differ-
entiates the arbitrage approach to competitive equilibrium from Walrasian price-taking and
the core: prices emerge as the supporting hyperplane to a convex cone, rather than as the
supporting hyperplane to a convex set.

Convex cones are “flatter” than convex sets, but they need not be flat, i.e., the cone may
be “pointed.” The second feature of the geometry is that, provided some agents’ preferences
are smooth, the boundary of each arbitrager’s opportunity set will be flat (linear). Let us
briefly explain the intuition. Imagine an outcome in which all arbitrage profit potentials
have been exhausted; and that at this allocation the preferences of at least some individuals
are smooth. Observe that each smooth trader would, to a first-order, be indifferent between
his allocation and any other alllocation sufficiently close to it on the tangent line to his

indifference curve. Now suppose some one individual cum arbitrager tried to trade to



another position at the terms-of-trade implied by the smooth trader’s MRS’s. Further,
to make the experiment interesting, suppose the arbitrager wanted to trade beyond an e-
neighborhood of the smooth individual’s original allocation. Since in the continuum there
are many individuals like this one smooth individual, by adding together many tiny trades
the arbitrager could achieve his desired trade without hurting anyone else (to a first-order).

This illustrates the principle that, when others’ indifference curves are smooth, the
boundary of an arbitrager’s opportunity set is enlarged by making small trades with many
individuals rather than large trades with a few. In the limiting ideal the arbitrager can trade
a small amount with a large number of individuals at terms-of-trade reflecting each one’s
marginal rate of substitution. Thus with many individuals of similar type, his opportunity
set, instead of being bowed, becomes linear with slope equal to any one of his trading

partners’ MRS’s.

FLAT CONES AS PERFECTLY ELASTIC DEMANDS AND SUPPLIES. In a perfectly competitive
economy no one individual can influence prices; that is, every agent faces perfectly elastic
demands and supplies (PEDS). Indeed, this is often taken as a defining feature of perfect
competition. The arbitrage approach adds to the tradition a very appealing concrete ratio-
nale why agents face perfectly elastic demands and supplies: PEDS results from the flattening
effect of large numbers, as explained above.

Observe how the arbitrage story yields a behavioral interpretation of the budget line as
opportunity set: there is enough “elasticity” in a perfectly competitive economy to actually
give the individual cum arbitrager any point on his budget line without affecting prices.
Notice that this conclusion depends on the presence of some individuals with smooth pref-
erences. If everyone had right-angled indifference curves at a Walrasian allocation, an
arbitrager could move nowhere away from his allocation—except trivially, by giving away
commodities—without hurting others (to a first-order); hence, his Walrasian budget set
would not coincide with his arbitrage opportunitics. In particular, in this case the arbitrage
cone would be right-angled rather than flat; hence his Walrasian budget line would not be
a true opportunity line. That is, individuals would not truly face PEDS at the Walrasian

prices. (See Example 2 below.)

The arbitrage approach is formulated in the following three sections. Of particular

interest is the geometry of arbitrage that is highlighted in several figures. In Section 5, we



compare the results of Sections 2-4 to Walrasian equilibrium, the core, dynamic matching
models, as well as to other uses of arbitrage in general equilibrium. In the concluding
Section 6, we contrast the interplay between marginal utility and price in Walrasian theory
and arbitrage. We argue that the arbitrage approach leads to a more complete marginalist

theory of value.

2 Preliminaries

It will be convenient to avoid boundary allocations. Accordingly, following Mas-Colell
(1985), we will identify each individual’s consumption set X with the strietly positive or-
thant Rf,_ +> and we will assume that each individual’s utility function u : X — R satisfies

the boundary condition:
o for every z € X, {y : u(y) > u(z)} is closed relative to R’

That is, all indifference curves are asymptotic to the axes. The interpretation of the bound-
ary condition is that some amount of each commodity is required for subsistence. The
utility function u is increasing if u(z) > u(y) whenever z > y, where z > y means z* > y*
(h=1,...,£) and  # y. Let U denote the set of all continuous, increasing utility functions
on X satisfying the boundary condition. Regard U as a metric space, with u, — u meaning
u, converges to u on compacta. ‘

In addition to her utility function, each individual has some strictly positive endowment,
w e RfH,. So her exogenous characteristics are a pair (u,w). We will restrict ourselves to
pure exchange economies, which can be described simply by the distribution of individuals’
exogenous characteristics. In particular, an economy & is any positive Borel measure on
U x Rﬁ_ + with compact support. For any (Borel) subset B C U x Ri+, E(B) should be
interpreted as the mass of individuals with characteristics B in the economy. The interpre-
tation of the compactness assumption on the support of £ is that individuals’ characteristics
are not too dispersed. Let E denote the set of all economies. Regard E as a product metric
space, with £, — £ meaning £, converges to £ weakly and the support of £, converges to
the support of £ in the Hausdorff distance.

An individual’s type is a triple t = (u,w,z) € U x Ri + X X consisting of the individual’s
preferences and endowment (her exogenous characteristics) plus her consumption decision

(her endogenous characteristic). 7 denotes the set of all possible types. Regard T as a



product metric space.

An allocation is any positive Borel measure u on T satifying the feasibility condition

/zdp,, =/wduw,

where p,; denotes the marginal distribution of u on the space X of consumption bundles
(the marginal u,, is defined analogously). The measure u is an allocation for the economy
£ if the marginal of u on the space of exogenous characteristics equals £. Let M denote the

set of all allocations for all economies £.

3 Arbitrage possibilities at u

For any set S and any two points z,y € S, y is visible from z if the line segment [z,y] C S.
S is star shaped (with center z) if every point in S is visible from z. All convex sets are star
shaped, but not conversely. To illustrate, the sets in panels (a) and (b) of Figure 1 are star

shaped with center z. But only the darker shaded portion of the set in panel (c) is visible

from z.

(a) (b) )

Figure 1:

Given any individual of any type t = (u,w, ), we will assume that the individual will
accept any trade offer that will leave her at least as well off as at z. But arbitragers can only
“see” those trades that are visible from z. Consequently, from an arbitrager’s perspective,

the set of possible trades with an individual of type t = (u,w, z) is given by
A(t) = {z:u(z — z) 2 u(z) & z — z is visible from z}.

Notice that the trades z € A(t) are described from the arbitrager’s point of view: if z* > 0

h

then the arbitrager recetves z* units of commodity A from an individual of type ¢t. The



restriction of A(t) to trades visible from 0 makes the analysis simpler while permitting
non-convexities. It can be motivated economically as being consistent with decentralized
knowledge: arbitragers only have “local knowledge” about others’ preferences.

A group is a vector of types, (¢1,...,t;,...t,). Given any allocation u, the set of pos-
sible groups that any arbitrager can form is denoted by G(u) and consists of all vectors

(t1,...,ti,...t,) satisfying
1. n < oo,
2. for any individual ¢, t; € supp u, and
3. for any type t, #{i:t; =t} > 1 only if u(t) > 0.

So G(u) includes any group consisting of only a finite number of individuals, having only
individuals with types in the support of x, and having several individuals of the same type
only if that type is an atom in p. The interpretation is that an arbitrager can make offers
to only a finite number of others, and he can locate “several” individuals of the same type
to trade with only if that type is an atom in u.

An arbitrager’s arbitrage possibilites at u are given by

K(u) = {z: for some group (t,...,t;,...t,) € G(u),

z= Z z, and each z; € A(ti)}.

i=1
That is, z is possible for an arbitrager if and only if he can assemble a group of individuals
willing to trade z with him in aggregate, where the acceptability of each individual trade
z; must be visible to the arbitrager starting from the allocation pu.
A fundamental fact is that the arbitrage possibilities at u form a cone. For any set S,
let cone S denote the smallest convex cone coutaining S. For any two sets S; and Sa, we

will say that Sy = S up to closure if cl S; = ¢l S.,.

Theorem 1 (characterization of arbitrage opportunities) The closure of K(u) is a

convez cone containing the origin. In particular. up to closure

n

K(p)=U(d_ cone A(t,),

=1

where the union is taken over all groups (ty,....t,... . t,) € G(u).
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(The reader may wish to skip the proof of Theorem 1 on first reading. If so, proceed to
the intuition underlying the result, which is presented immediately following the proof.)

Proof: The definition of K(u) implies 0 € K(u), since 0 € A(t) for each type t € supp u.

To show K(u) is a cone, suppose z € K(u), where z = Y. 2;, each z; € A(t;), and
each t; € supp u. We will show that |

(i) scaling down: az € K(u) for all a € [0,1], and
(ii) scaling up: 2z € cl K(u).

It readily follows that for any positive number r, z € K(u) implies rz € ¢l K(u). And hence
it follows that 2° € cl K'(u) implies r2° € cl K(u); that is, c] K(u) is a cone. (Consider a
sequence z¥ — 20 such that each zF € K(u).)

To verify (i), observe that since each z; is visible from 0, az; € A(¢;) for any a € [0,1].
Hence az = } ., az; € K(u).

To verify (ii), first observe that if each type t; were an atom in u then scaling up would be
straightforward since an arbitrager could simply form a group consisting of two individuals
of each type t;. More generally, observe that for any type t; € supp s having zero measure,
t; cannot by an isolated point in supp u. (This follows from the definition of the support
as the smallest closed set of full measure.) Consequently, there is a sequence of groups
{1y tiyee tasth, ot L ,t5)} € G(p) such that each t¥ — t;. So there is a sequence
of trades z* = 0, z; + ¥, 25 in K(u) such that each 2¥ - z; and hence z* — 22.

Next, to show cl K(u) is convex, suppose 7,Z € K(u) and a € [0,1]. By (i) above,
y=ajand z = (1 - a)Z are in K(u). We will show

cey+z=ajg+(l—a)z €c K(p).

It then follows, by a straightforward limiting argument, that 7% 2% € cl K(u) implies
aj® + (1 — a)z® € cl K(u) for any « € [0, 1].

Suppose y =3 T,y and z = L., .| zi, where each y; € A(t;) (i =1,...,m) and each
z € A(ty)) i=m+1,...,n). If {t1,...,tm} N {tms1,.--,tn} = O or if all these types are
atoms, an arbitrager could simply form the group (¢;,...,t,) and thus achieve y + z. Even
if {t1,...,tm} N {tm+1,...,tn} # 0 and some types are not atoms, since no zero-measure
type is isolated in supp u there is a sequence of groups {(ti,...,tm; tfn_,_l, .t} cGp) -
(t1,...,ts). Hence there is a sequence of trades y + z¥ — y + z where each y + z*¥ € K(u).
So at least y + z € cl K(u).



Finally we show that up to closure
n
Kp)=U (Z cone A(t;)).
i=1

Considering first the one-member groups (t) € G(u), from the definition of K(u) it should be
clear that A(t) C K(u). Hence, from the above, cone A(t) C cl K(u). Similarly, considering
the n-member groups (ty,...,%,...,t,) € G(u), we see that 3 I, A(t;) € K(u). Hence,

=jcone A(t;) C cl K(u). So, U(TF.cone A(t;)) C cl K(u). Conversely, z € K(u)
implies z € Y__; cone A(t;) for some group (t1,...t,) € G(11). So the two sets are equal up

to closure. O

Convex cones are flatter than typical convex sets. Thus Theorem 1 may be interpreted as
saying that, from any arbitrager’s perspective, there is a “flattening effect of large numbers.”
To illustrate the idea, consider an allocation u and a type t = (u,w,z) in its support.
Suppose individuals of type t have smooth, strictly convex preferences. The trades feasible

with any one individual of type t are illustrated below. Notice that if the arbitrager were to

..... MR\

cone A(t)

Figure 2: THE FLATTENING EFFECT OF LARGE NUMBERS

restrict his trading to only one individual of type t then z; would be feasible, as would be
all trades az;, a € [0, 1]; but the trade z = nz; (n > 1) would not be feasible. Nevertheless,
if t is an atom (u(t) > 0) then an aribtrager can achieve the trade z by trading z; with n
individuals of type t. Indeed, even if ¢ is not an atom, the arbitrager can find n types in the

support of u that are arbitrarily close to t. Thus he can achieve a trade arbitrarily close to



z, i.e., equal to z up to closure. (See the proof of Theorem 1 for details.)

More generally, let p(t) = Vu(z). So, p(t) equals type t’s reservation prices at z. From
the argument above, it should be clear that for any trade z in the interior of cone A(t), an
arbitrager can realize z by dividing it up into n smaller trades z;, where each z; = % -z and
n is sufficiently large. Thus the budget line p(t) - z = 0 is a true opportunity line for the
arbitrager: he can (up to closure) achieve any trade on the line by arbitrage. Alternatively
expressed, he faces perfectly elastic demands and supplies at prices p(¢) with individuals of

type t. So the closure of K(u) contains the cone spanned by A(t).

4 Eliminating arbitrage profits

At an arbitrary allocation u, people may have different reservation prices. Thus there may

exist profits to arbitrage: buying low and selling high.
DEFINITION: The allocation u is arbitrage free, denoted u € Map, if

K(wNRy =0.

So, in an arbitrage-free allocation the arbitrage possibilities set contains no “free lunches.”
Notice that since K'(u) is a cone, if z 3> 0 were in K (u) thenn-z € K(u) for any n > 0. So an
arbitrager could make unlimited profits. Evidentally, given the monotonicity of preferences,
the absence of such profit potentials is a necessary condition for equilibrium (i.e., for the
existence of utility-maximizing choices).

The polar cone of K(u) is defined as
K%w) = {p: pK(n) <0, p #0}.
Arbitrage-free allocations can be characterized in terms of the polar.

Proposition 1 (characterization of arbitrage free allocations) u is arbitrage free iff

K%u) # 0. In particular,

p € K%u) iff pA(t) <0 for all t € supp p (p # 0).

Hence, if at least one type in the support of u has differentiable preferences then dim K%(u) =
1 and so

cl K(p) = {z:pz <0}

10



for any p € K°(p).

Proof: u is arbitrage free implies, by definition, that K(u) N RfH_ = (. Hence, by the
supporting hyperplane theorem, there exists a p (p # 0) such that pK(u) < 0. Conversely,
pK(p) < 0 (p # 0) implies K(u) N RfH_ = 0 since R C K(u) by the monotonicity of
preferences.

In particular, p € K%u) implies pA(t) < 0 for all t € supp pu since A(t) C K(p).
Conversely, pA(t) < 0 for all t € supp p implies p3_ ", cone A(t) < 0 for all groups
(t1,...,tn) € G(p). Hence p[U (X1 cone A(t;))] < 0, where the union is taken as in
Theorem 1; which implies pK(u) < 0 by Theorem 1.

Now suppose there is at least on type t = (u,w,z) € supp u with differentiable pref-
erences. For this type, pA(t) < 0 and p’A(t) < 0 implies p and p’ must be colinear, since
both supports must be proportional to Vu(z). Hence, p,p’ € K%(u) implies p and p’ must

be colinear. O

K(p) will be called flat (respectively, pointed) if dim K%(u) = 1 (respectively, > 1).
While the elimination of arbitrage profits may result in pointed arbitrage cones, they are
exceptional in a topological sense. This follows from Proposition 1 and the fact that dif-
ferentiable utility functions are dense in U{. Formally, let M r(€) denote the set of all

arbitrage free allocations for the economy &, and let
Epeps = {€ € E : dim K%(u) =1 for all u € Mar(€)}.

Recall that a G; set is the countable intersection of open sets; hence dense G5 subsets are

large (i.e., generic) in a topological sense.
Theorem 2 Epgps is a dense Gs subset of E.

Proof: Let U™ denote the set of all u € U having, for every n < oo, an nth derivative
that is continuous in X.
FACT: U is dense in U.
(The proof is analogous to that of Proposition 2.8.1 in Mas-Colell, 1985.)

Using this fact, we first show that Epgps is dense in F, t.e., £ € E implies there is a
sequence {8"} C Epeps s.t. £¥ = £. Pick any £ and any (u,w) € supp £. The fact implies

there is a sequence u* — u with each u¥ € U®. Lect £F be the economy that adds a measure
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1/k of individuals with characteristics (u*,w) to €. That is, for every Borel subset B

EB)+t if(uF,w)eB
E(B) otherwise.

E¥(B) =

By construction &k 5 &; and by Proposition 1, each £ € Epgps.

We next show that Epgps is a G5 subset of E. Let
E.={E€E: forall u€ Mar(€), d(K°(n),p) < € for some r},

where d(K°(p), p) is the Hausdorf distance between the sets P(u) = {p € K%(u) : || ¢’ ||= 1}
and {p}. Notice that £ € Epgps iff £ € E, for all € > 0. That is,

Epeps = Mtz £y

Thus it will suffice to show E, is open for any € > 0.

Assume the contrary. That is, there exists an ¢ > 0, £ € E,, and sequence £¥ — &
s.t. each ¥ ¢ E.. By assumption, for each k there exists an allocation p* € M4p(E¥)
s.t. d(K%pk),p) > € for all p. But since {u*} is a tight family of measures, u* converges
weakly to a measure p on some subsequence, say s(k). [See Hildenbrand, 1974, pp. 49-50,
for a discussion of tight measures. To show that the family is tight, it suffices to show that
the two families of marginal distributions are tight. The tightness of the family {£!,£2,...}
follows from the fact that £ — £, and &, € are tight since each is a measure on a compact
metric space. The tightness of the family {u!.u2....} follows from the fact that £ — &
(in particular the aggregate endowment in £* converges to the aggregate endowment in &)
and each allocation u* is feasible.] Further, since each allocation u* is feasible for £* and
EF — £, 4 is a feasible allocation for £. Now observe that the sequence P(u**)) must
converge in the Hausdorf distance, at least along a subsequence, to some set P. Further,
since each P(u¥) C K%(u*) and ¥ = €, P ¢ K" (). [Proof: By Proposition 1, it suffices
to show p € P(u) implies pA(t) < 0 for all t € snpp p. Suppose the contrary, that for some
t = (u,w, z) € supp u and some z’' € A(t), pz' > 0. Hence, by monotonicity of preferences,
there would be a z € A(t) such that p(z — z) < pr and u(x — z) > u(z). But supp u C
Li supp p*®*). Hence, for k sufficiently large, there is a type t* = (uF,w*, z¥) € supp u* and
a p* € K%(u*) such that p*(z* - 2) < p*z* and u*(1* — z) > u*(z*). Thatis, z € A(t*) and
p*z >0, contradicting pFe Ko(y”).] KO%pu) # ¢ implies 4 € Map(E); and P(p¥) = P(p)

12



along a subsequence implies d(K%(u),p) > e for all p, contradicting our assumption that
E€E. O

We highlight allocations with flat arbitrage cones not only because of their genericity,
but also because for such allocations the supporting prices p € K%(u) reflect arbitragers’

true trading opportunities:

cl K(p) ={z:pz <0}

implies that any arbitrager can (up to closure) achieve any trade on the budget line p-z = 0.

Alternatively expressed,

o when K(u) is flat then all individuals truly face perfectly elastic demands and supplies
(PEDS) at the prices p € K°(u)

in the sense that any individual, acting as an arbitrager, can truly buy or sell as much as he
likes at these prices. Note that, by contrast, if dim K%(u) > 1 then any prices p € K%(u)
still define a separating hyperplane, but they do not define true terms-of-trade in the sense
of characterizing an arbitrager’s trading opportunities. Thus Theorem 2 may be interpreted
as saying that generically in large economies, once arbitrage profits have been eliminated,
everyone faces PEDS.

Let us examine this central fact a bit more closely. For simplicity we have used the
“distribution approach” to describe allocations, but there is an easy translation in terms
of the “agent approach” in which the economy is regarded as consisting of a nonatomic
continuum of agents. In particular, for any u there exists a measurable mapping f from
the interval [0, b] into 7 such that u = Ao f~!, where A denotes Lebesgue measure on [0, b]
and b = u(T) (see Hildenbrand {1974, p. 50]). Using this mapping, let

A(p) = / A (i) dAG).

A(u) represents the set of visible trades that individuals in aggregate would find at least as
good as remaining at u. For example, if the support of u consists of only one type t with
p(t) = 1, then A(u) looks identical to A(t) in Figure 1, but the trades in A(u) are of a
larger order of magnitude: each trade z; € A(t) is infinitesimal compared to the aggregate
trade z; - u(t) = z; - 1 € A(p).

Notice that A(u) is convex (by Liapunov’s Theorem), but it is typically not a cone.

Nevertheless, there is an interesting geometrical connection between the boundaries of A(u)

13



and K(p). Anindividual arbitrager’s trading possibilities are of the same order of magnitude
as the trades in any one set A(t). And indeed, from his perspective, K(u) is a “blow-
up” of A(u) around the origin. In particular, if A(u) is smooth at zero, K(u) will be
flat. See the figure below. To use a simile, the tiny arbitrager is like an infinitesimal
ship navigating around the origin of A(u); a blow-up of .A(u)’s local structure defines the

arbitrage possibilities he perceives. Formally:

cone A(lL)

Figure 3: K(u) 1S A “BLOW-UP” OF A(u) AROUND THE ORIGIN, WITH SLOPE REFLECTING

OTHERS’ MRS’s

Proposition 2 (characterization) Up to closure, K(u) = cone A(u). Thus,

p€ K°(u) iff pA(p) <0 (p#0).

Proof: 1t suffices to show that
{p: pK(p) <0} = {p: p[cone A(n)] < 0},
since then the polars of the above cones would have to be equal, i.e., up to closure
K(p) = cone A(u).

Suppose first the p - cone A(u) < 0 (p # 0). Then p.A(u) < 0, and hence by a standard
argument, pA(t) < O for all ¢t € supp p. So, by Proposition 1, p € K%u). Conversely,
p € K°(u) implies pA(t) < 0 for all £ € supp u, hence [ pA(f(2))dA(z) = pA(p) < 0, which
implies p[cone A(u)] < 0. O

14



Underlying Figure 3 is the fact that in continuum economies, there are two infinitesimal

margins of analysis:

o the traditional commodity margin, which is infinitesimal compared to any one indi-

vidual’s trades, and

e each arbitrager, whose entire trading is infinitesimal compared to the size of the

economy as a whole, as illustrated in Figure 3.

It is this second infinitesimal margin of analysis that leads to the flattening effect of large
numbers. By trading a little bit more, z;, with many others at (almost) their reservation
prices p € K%(u) the arbitrager can effectively “blow up” others’ commodity margins into
his trading opportunity set. To introduce a suggestive terminology, when .A(u) is smooth
at the origin let us refer to the price vector p that supports A(u) as reflecting aggregate
marginal rates of substitution. To see that the terminology is justifed, observe that the
boundary of A(u) may be viewed as the economy’s aggregate indifference curve relative to
remaining at pu, i.e., relative to trading zero more. Hence the slope of A(u) at 0 may be
viewed as the economy’s aggregate MRS. More specifically, Propositions 1 and 2 together
imply that pA(u) < 0 iff p is a supporting price for each type in the support of u. So if
everyone’s preferences are smooth, p also measures each type’s MRS’s; but in A(u) these
MRS'’s have been scaled up from a size that is infinitesimal relative to any one arbiirager (i.e.,
the commodity margin) to a size that is of the same order of magnitude as any arbitrager’s
entire trading (i.e., the individual margin). Using this terminology we have found that,
generically in large economies, once arbitrage profits have been eliminated each individual’s
trading opportunities reflect aggregate marginal rates of substitution.

Some analogue of the set A(u) plays a prominent role in traditional general equilibrium
theory (e.g., see the set G in Debreu {1959, p. 95, figure 2]). In particular, price vectors
that support Pareto optima are intimately related to price vectors that support A(u). In
traditional theory it is of little significance whether or not .A(u) is smooth: convexity suffices
to obtain supporting prices. The interesting fact is that in large economies, if (and only if)
A(p) is smooth then the budget line that supports .A(u) defines a true opportunity line in

the sense that an individual can attain any point on the line via arbitrage.

Remark: The flattening effect of large numbers depends on the presence of a large number
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of competing economic agents; however, this effect does not point to a discontinuity at
infinity.

To illustrate, consider an pure-exchange economy with a finite number of individuals,
£ = {(ui,wi) }i=1,...,.n- For simplicity, suppose each wu; is strictly quasi-concave. Let i =
{(wi,w;, ) }i=1,..n be an allocation for £&. To facilitate comparisons with the continuum,
define the arbitrage possibilities at 4 for any individual ¢ by

Ki(p) = 3 Alty),
j#i
where t; = (u;,w;, ;).

By contrast, let £ be a continuum economy containing a unit measure of individuals
with characteristics (u;,w;), where i = 1,...,n. And let u be the allocation for £ with

u(ti) =1,i=1,...,n. Observe that Theorem 1 implies
K(p) = Zcone A(t).
i
The key distinctions between the finite and continuum versions of arbitrage are that
e K;(j1) depends on i; K(u) does not.

e K;(j) is a convex set, but not a cone; K(u) is a cone.

Observe what happens as the finite economy gets larger. Let £ be the r-fold replica of
E; similarly, let 4" be the r-fold replica of the allocation ji. Define the arbitrage possibilities
at 4" for any individual of any type ¢ by
Ki(B") =1 A(t)) + (r — DA(t:).
J#i

Since each set A(t;) contains 0, evidently
Ki(p) C Ki(p®) C Ki(p®) C -+ C K().

Further, lim K;(4") = K (). So the flattening cffect of large numbers becomes more pro-

nounced as the economy gets larger and larger. Sce Figure 4 below.
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cone A(t;)——
3A(%)
24(3)

Figure 4: THE FLATTENING EFFECT OF LARGE NUMBERS AS A FINITE ECONOMY IS REPLI-

CATED

5 Arbitrage Equilibrium

DEFINITION: An allocation u is an aerbitrage equilibrium (denoted u € Mag) if for every

type t = (u,w, z) € supp g,

u(z) 2> u(w + z) for all z € K(u).

An allocation 4 is a perfectly competitive arbitrage equilibrium (denoted u € Mpc) if it is

an arbitrage equilibrium and K(u) is flat.

That is, an arbitrage equilibrium is an allocation u that cannot be improved upon by any
individual given his endowment and arbitrage possibilities at u. The equilibrium is perfectly
competitive if each individual’s arbitrage possibilities are flat, so he can sell or buy as much
as he wants at the terms of trade established by the elimination of arbitrage profits; i.e.,
he truly faces perfectly elastic demands and supplies (PEDS) at the prices p € K%(u). See
Figure 5 below.

An “arbitrage equilibrium” receives its name from the fact that any such equilibrium
must be arbitrage free (otherwise, since prefercences are monotonic, no one would have a
utility maximizing choice). The second part of an arbitrage equilibrium—after the elimina-
tion of free lunches—is that each arbitrager coutinnes to trade on his “own account” as long

as he can improve upon his lot at the terms-of-trade implicit in the slope of (the boundary
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Figure 5: A PERFECTLY COMPETITIVE ARBITRAGE EQUILIBRIUM

of) K(pu). Notice the individual is assumed to launch his arbitrage efforts starting from his
endowment point w rather than from z. This is similar to the hypothesis of no false trading
in the tdtonnement approach to Walrasian equilibrium, to recontracting in the core, or to
the hypothesis in Nash equilibrium that every individual can revise his strategy in reaction
to the choices by others.

Figures 3 and 5 can be combined to provide an alternative picture of a perfectly com-
petitive arbitrage equilibrium. See Figure 6. It may be regarded as a variation on the

Edgeworth box picture of a competitive equilbrium. The variation has some interesting ad-

Figure 6: A VARIATION ON THE EDGEWORTH BOX. Others’ MRS’s determine each trader’s

opportunity set.

vantages. First, it does not require just two traders, where the price-taking assumption is
dubious. Second it emphasizes the importance of others’ MRS’s: they determine the slope
of each trader’s opportunity set. Relatedly, and perhaps most importantly, it explicitly

brings out the flattening effect of large numbers: each agent truly faces PEDS at the market
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clearing prices, he does not simply “act” as a price-taker.

6 Comparisons

6.1 Walrasian equilibrium

In a Walrasian equilibrium prices are given exogenously, and each individual is assumed to

act as a price-taker.

DEFINITION: A pair (u,p) is a Walrasian equilibrium if p # 0 and for every type (u,w, z)

in supp p
e 7 maximizes u on {y : py < pw}.

Let Mw g denote the set of Walrasian allocations.
Any Walrasian allocation is arbitrage free, indeed it is an arbitrage equilibrium.
Proposition 3 Mwgeg C M.

Proof: Let (i, p) be any Walrasian equilibrium. In view of Proposition 1, it will suffice to
show that p € K%(u). Consider an arbitrary z € K(u), where z = Y i1 2i, each z; € A(ty),

and each t; = (ui,w;, z,) € supp p. Since p is Walrasian, for each ¢

p(zi — zi) 2 pwi & pz; = pw;.
Hence, pz = 3", pz; < 0. That is, p € K%(u). O

The inclusion may be strict, as illustrated by the following example.

Example 1. Consider a pure-exchange economy with only two goods. Everyone has
preferences u(z1, z2) = min{z,z2}. Half the people have an endowment of w = (0, 1) each;
the other half have w = (1,0) each. Consider the allocation u with 4 equally-sized atoms,
illustrated in the Edgeworth box in Figure 7. Since the two goods are perfect complements,
K(u) = RY, the negative orthant. So for each type, u(z) > u(w+z) for all z € K(u). That
is, the allocation is an arbitrage equilibrium. But since half the people trade at prices p”
(a relatively low price for good 2) and the other at p, the allocation does not satisfy the

Law of One Price. It is not Walrasian.!

'In the example, indifference curves are taken as right-angled only for convenience. It should be clear that
kinked but not right-angled indifference curves would suffice. The latter are consistent with our assumption

that any u € U is increasing.
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Figure 7: AN ARBITRAGE EQUILIBRIUM MAY NOT BE WALRASIAN

But perfectly competitive arbitrage equilibria do satisfy the Law of One Price and,

indeed, are Walrasian.
Proposition 4 Mpc C My k.

Proof: Let 4 € Mpc and p € K%u). We will show the (u,p) form a Walrasian

equilibrium. Since y is an arbitrage equilibrium, for each t = (u,w, z) € supp p,
u(z) 2 u(w + 2) for all z € K(u).
Hence, since K(u) is flat,
u(z) > u(w + z) for all z satisfying pz < 0.

That is, u(z) > u(y) for all y satisfying py < pw. O

In particular, perfectly competitive arbitrage equilibria include all Walrasian allocations in
which individuals truly face perfectly elastic demands and supplies. Again the inclusion
may be strict. Even in large economies there may be Walrasian equilibria in which some
individuals do not face PEDS at the market clearing prices. This is illustrated by the following

variant of the first example.

Example 2. Again consider the economy of Example 1. But now consider the allocation
p in which all trading occurs at prices p. It is still the case that K(u) = R¢. So dim
K%(u) > 1, and the allocation is not in Mpe. Observe that while p € K%u), the budget
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line defined by p does not reflect a true opportunity line. For example, traders cannot reach

z from w via arbitrage. See Figure 8 below.

Figure 8: WALRASIAN ALLOCATIONS MAY NOT BE PERFECTLY COMPETITIVE

But such examples are exceptional. In most economies, all arbitrage equilibria will be
perfectly competitive. Let Mpc(€) denote the set of allocations for the economy £ that
are perfectly competitive; define Mag(€) and M g(€) analogously. Call £ a perfectly

competitive economy if all its arbitrage equilibria are perfectly competitive, i.e., if
Mag(€) = Mpc(€);

and let Epc denote the set of all perfectly competitive economies. Since any arbitrage
equilibrium is arbitrage free, Epgps C Epc. Hence it immediately follows for Theorem 2

that:

Corollary 1 The set of perfectly competitive economies, Epc, contains a dense Gs subset

of E.
Thus, while for some economies £
Mpc(€) C MwE(E) C Mag(E),

generically the three coincide.

Nevertheless there are other bases for comparison. Compared to Walrasian equilibrium,
in a perfectly competitive arbitrage equilibrium prices emerge endogenously: they reflect
aggregate marginal rates of substitution after arbitrage has equalized all individuals’ MRS’s
(recall Figure 3). Further, in a perfectly competitive arbitrage equilibrium, price-taking
behavior can be endogenously justified: PEDS implies that “price taking” is the best that
any self-interested arbitrager/trader can do in equilibrium (recall Figures 5 or 6). The next

subsection amplifies on these themes.
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6.2 The core

Since the core and Walrasian allocations are known to coincide in the continuum, the above
discussion implies

MPC' C Mcore - MAE»

where M ore denotes the set of allocations in the core. Examples 1 and 2 illustrate that
both inclusions may be strict. In particular, Example 1 shows that arbitrage equilibria need
not satisfy equal-treatment, hence need not be in the core. Example 2 shows that the core
may be huge in economies that possess no perfectly competitive arbitrage equilibria. But
Corollary 1 implies that such examples are exceptional: generically the core will coincide
with the set of perfectly competitive arbitrage equilibria.

In spirit, perfectly competitive arbitrage equilibrium and the core share a common goal.
They both represent efforts to open the “black box" called price-taking behavior, to give
a bargaining story which leads to prices. Indeed, core bargaining may be viewed as a
form of arbitrage: individuals form improving coalitions as long as they perceive “arbitrage
profits.” (See Mas-Colell (1982).) Compared to core bargaining, the arbitrager of our model
acts more individualistically and myopically: Given any status quo allocation u, he only
considers the possibility of suggesting local changes to others around their status quo. He
does not consider forming a group in which all members drop their existing contracts to
form a new self-sufficient subeconomy. For example, the allocation in Example 1 above
is not in the core: individuals having endowments (0,1) and trading at p’ could improve
their lot by forming a coalition with individuals having endowments (1,0) and trading at
pH—if both the former and latter recontracted simultaneously. We do not deny that such
more global group recontracting may occur and may be viewed as a form of arbitrage. The
interesting fact is that even without it, our simpler form of arbitrage is generically sufficient
to reach a perfectly competitive equilibrium.?

It may be argued that our less global view of .rbitrage accords better with the idea that
knowledge of preferences is private knowledge. {ispersed over the countless individuals in

the economy. It also may be argued that our view accords better with the idea of arbitrage

in the finance literature: differences in prices (in our case, reservation prices) figure centrally

*An arbitrage equilibrium may be interpreted as allowing for individual recontracting, but not group
recontracting. The reader may want to look at the defimition of arbitrage equilibrium again, to view it in
this light.



in the process of arbitrage as modelled above.

We emphasize a third advantage to our model of arbitrage equilibrium. At least in in-
formal discussions, a central feature of perfectly competitive equilibrium is that agents face
perfectly elastic demands and supplies at the market-clearing prices. For example, PEDS is
used to informally justify the price~ta.kiné assumption in Walrasian theory (it also figures
prominently in Marshallian partial equilibrium analysis). But PEDS plays no essential role
in the logic of core bargaining. Indeed, core equivalence does not ensure PEDS, as Example 2
illustrates. While generically such examples are exceptional, they do show that core equiv-
alence does not give a complete picture of perfectly competitive equilibrium, as informally
understood. By contrast, in perfectly competitive arbitrage equilibrium, PEDS appears ex-
plicitly in the formal definition of equilibrium. Indeed, the image of a flat arbitrage cone
may be viewed as the central one around which the current theory is constructed. If this
image is considered useful, then arbitrage equilibrium can be viewed as a complementary
theory to core equivalence, one that helps to flesh out the image of a perfect competitor.

There are some interesting similarities between our concept of arbitrage equilibrium
and the f-core introduced by Kaneko and Wooders (e.g., see their 1989 article with Peter
Hammond). They argue that a satisfactory picture of a perfectly competitive economy
should include two features: (1) individuals should be effective in the pursuit of their own
interests, but (2) individuals should be ineffective in influencing broad economic aggregates.
They argue that the continuum is the natural setting for (2). But the traditional core
concept, when applied to the continuum, requires improving coalitions to have positive
measure; so any one individual has no voice, i.e., (1) is not captured. On this basis they
argue that for continuum economies their f-core (which restricts improving coalitions to
only a finite number of participants), provides a more satisfactory picture of a perfectly
competitive economy than does the traditional core. Observe that in our model of arbitrage
equilibrium, both the above desiderata are satisifed. In particular, recall that we have
restricted any arbitrager to only forming groups with a finite number of participants. To
Kaneko and Wooder’s list we would add a third, and we feel equally important, desideratum:
(3) individuals should face PEDs. It is this third feature of perfect competition that arbitrage

equilibrium pictures in a more satisfactory way, we believe, than does the core.
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6.3 Dynamic Matching

After completing an earlier version, it was pointed out to us that there is an intimate connec-
tion between arbitrage equilibria and the non-cooperative equilibria in dynamic matching
and bargaining games (Rubinstein and Wolinsky (1985), Gale (1986), McLennan and Son-
nenschein (1991); see Rubinstein and Osborne (1990) for an introductory exposition and
further references). The central finding in this literature, due to Gale, is that these games’
subgame perfect equilibria are Walrasian. The main idea leading to this result is that any
player can effectively ensure himself a linear opportunity line since he can always adopt the
strategy of making a sequence of small take-it-or-leave-it offers to individuals about to leave
the market, at terms of trade reflecting their MRS’s. The equilibrium notion of subgame
perfection implies that these individuals will accept such offers since they are about to leave
the market anyway. In our language, the above strategy allows each player to form a flat
arbitrage cone as his trading opportunity set. Note that Gale assumes individuals have
differentiable utility functions, so the arbitrage cone will indeed be flat, not pointed (recall
Proposition 1).

In the course of extending Gale’s result, McLennan and Sonnenschein (1991) offer a char-
acterization of Walrasian equilibrium to help explain its connection with dynamic matching
games. (Their characterization is, in turn, related to work of Schmeidler and Vind (1972)
and Vind (1978) on fair allocations.) They show that given any allocation, if individu-
als’ preferences are continuously differentiable and if there is a trading possibilities set Z

satisfying:

(i) individuals can choose not to trade at all or can trade as many times as they like (i.e.,

0eZ=2+2),

(ii) others will accept any utility-increasing trade relative to the given allocation (i.e., Z

includes all such trades), and

(iii) each individual's component in the given allocation is at least as good as what she

could achieve via trading in Z starting from her endowment

then the given allocation must be Walrasian.
From our perspective, the McLennan and Sonnenschein characterization encapsulates

much of our reasoning leading to Proposition 5, identifying their set Z with our K(u).
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However, in their characterization the pivotal set Z is hypothesized rather than derived;
indeed, McLennan and Sonnenschein first prove their result for an economy with only a finite
number of individuals. They then go on to show how the set Z arises in the equilibrium of
a dynamic matching-and-bargaining model with a continuum of agents and differentiable
preferences.

As a foundation for perfectly competitive equilibrium, our arbitrage approach lies be-
tween dynamic matching models and the static characterization of McLennan-Sonnenschein.
It is considerably more condensed than Gale’s result but, on the other hand, it is consid-
erably less condensed than conditions (i)-(iii) above. Any fully articulated extensive form
game must, of necessity, be very specific about institutions. While some real-world markets
may fruitfully be viewed as involving random bilateral matching, there also are many mar-
kets that do not fit this mold. For example, retailers often set posted prices, while buyers
decide which retail shops to patronize; in such markets there is an asymmetry between
sellers and buyers, and matching is not random. Nevertheless, such markets are often very
competitive. So the principles of arbitrage and the flattening effect of large numbers will
still apply. Further condensation to make K(u) into the abstract set Z would leave open
the question of where Z comes from.

Because our approach is more abstract than the extensive game-form treatment, it com-
plements that literature by highlighting principles that might otherwise be lost amidst the
detailed game theoretic analysis. In particular, it highlights the importance of “arbitrage”
and the “flattening effect of large numbers” in the above dynamic games. Relatedly, it gives
economic content to the differentiability assumption about preferences that is essential to
obtain the literature’s central result. Differentiability implies each player effectively faces
perfectly elastic demands and supplies (PEDS) at the economy’s Walrasian prices, e.g., as in
Figure 5. Arbitrage and PEDS have strong links to the meaning of perfect competition; and,
as far as we know, neither has been previously used to give interpretive content to Gale’s
game theoretic equivalence result.

The complementary relationship is two-way. From our perspective, it is nice to be able
to point to this literature as providing an interesting extensive form game in which our
assumption in forming the arbitrage cone K(u)—that individuals will accept any utility-

increasing offers from an arbitrager—can be strategically justified.
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6.4 Finance

In the Introduction we discussed the relation between our usage of “arbitrage” and the
common usage. Here we focus on a narrower matter. We compare the role played by the
elimination of arbitrage profits in our model with the “no market arbitrage” condition in
the literature on the existence of Walrasian equilibrium in models with unbounded short
selling and/or non-monotonic preferences (e.g., models with asset markets).

Hart (1974) observed that unlimited short selling could lead to existence problems be-
cause some investors may want to sell short indefinitely large amounts of some assets while
other (more optimistic) investors may want to to take substantial long positions in the
same assets. He introduced a no market arbitrage condition to rule out the possibility.
Hammond (1983), Page (1987), Werner (1987), Nielsen (1989), Chilchilnisky (1992) and
Page and Wooders (1994) (among others) elaborated on Hart’s work, leading to a much
more general theorem on the existence of Walrasian equilibrium, one that is more useful in
applications to finance.

The central “no market arbitrage condition” that emerged from this literature requires
that there is no feasible set of net trades which can be repeated indefinitely without eventu-
ally making somebody worse off. Notice this is a restriction on preferences which rules out
groups having diametrically opposed tastes. Formally, the recession cones of individuals’
preferred-to sets and their polars play a key role in the analysis. Werner and Nielsen’s
approaches to proving existence are somewhat different, although related: Nielsen shows
that no market arbitrage is sufficient for existence, while Werner obtains existence using a
price characterization of no market arbitrage.

In the above existence theory the recession cones of individuals’ preferred-to sets and
their polars play a central role. Analogously, in our theory the arbitrage cone and its
polar play a central role. But the similarity is superficial: The relevant cones in the two
theories involve very different constructs; they are not the same cones. For example, the
recession cones highlighted in the existence literature are typically not flat; their slopes do
not summarize individuals’ trading opportunities.

That the similarities are only superficial should come as no surprise, given that the two
theories have quite different goals. The above literature seeks to to find sufficient conditions

to prove the existence of Walrasian equilibrium without restricited short selling. Since the
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question posed pertains to the existence of Walrasian equilibrium, price-taking behavior is
assumed. Indeed, since the models analyzed involve only a finite number of participants,
individuals could influence market-clearing prices if they tried, i.e., PEDS is not satisifed.
Within this context, the remarkable finding is that a no market arbitrage condition does
the trick: it allows one to prove the existence of prices that will clear all markets when
individuals act as price-takers but are not restricted in their short selling. By contrast, our
goal is very different: it is to give a story of how arbitrage may lead to market-clearing
prices without assuming price-taking behavior; and further, to justify price-taking behavior
in equilibrium via the flatness of the arbitrage cone (hence PEDS) that emerges from active

arbitraging rather than passive price-taking.

7 Conclusion: The place of marginal utility in the theory

of value

Arbitrage provides another, and we believe stronger, statement of the “marginalist logic”
behind the competitive theory of value. Jevons (1879) is credited with one of the earliest
appeals to arbitrage. Further, his application was to a model of pure exchange. Jevons’
reasoning was that, first, independent of marginal utility considerations there would be a
single exchange rate in the market between any pair of commodities; and that therefore,
second, individuals would regulate their purchases and sales to equate their individual
MRS'’s to the market exchange rate. In our version of arbitrage, marginal utility enters at
the first step to show how individuals’ MRS's lead to the law of one price.

Marginal utility was, and is still regarded as. the central ingredient of the marginal
revolution. In the Walrasian description of equilibrium marginal utility is the key to the
formation of (price-taking) individuals’ demand and supply schedules, which naturally leads
to (a) the description of equilibrium as the equality of aggregate demand and supply and to
(b) the tdatonnement view of the equilibration process. Parts (a) and (b) represent a unified
construction driven by marginal utility. Notice how the identification of marginalism with
price-taking behavior reinforces tdtonnement as apparently the logical path to competitive
equilibrium.

But the connection that Walras established between marginal utility and competitive

equilibrium is only one way to proceed, it is not the only way. Walras exploited only the
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marginal utility underpinnings of the consequences of perfect competition (i.e., price-taking
behavior) rather than the marginal utility underpinnings of perfect competition itself. Al-
though the two margins are not the same, “marginal utility” underlies both the maximizing
behavior of a price-taker and also the maximizing behavior of an arbitrager. From the in-
dividual’s point of view, when she acts as a passive price-taker, her own MRS’s are central;
but when she acts as an active arbitrager, others’ MRS’s are central: they determine the
slope of her arbitrage cone and hence her trading possiblities. Notice how arbitrage provides
an alternative logical link between marginal utility and competitive equilibrium.

Our proposal is to replace titonnement by arbitrage as the equilibration story behind
competitive equilibrium. It has the following implication: while demand and supply func-
tions (individual and aggregate) may be essentials of partial equilibrium theory, they are
dispensable elements of competitive general equilibrium theory. It is interesting to observe
that Walras’ ideas on general equilibrium followed a more or less contrary path. Even
before he saw how to make marginal utility the engine of his general equilibrium system,
Walras had already formulated his conception of general equilibrium in terms of the equal-
ity of demand and supply schedules. For this development of Walras’s ideas see Jaffé
(1976), where he concludes: “Instead of climbing up from marginal utility to the level of
his general equilibrium system, Walras actually climbed down from that level to marginal
utility.” In this respect, therefore, we may say that the arbitrage approach represents a
“non-Walrasian” formulation of competitive equilibrium in which marginal utility figures
even more prominently.3

Finally, the fact remains that an arbitrage equilibrium is (modulo the flat cone condi-
tion) a Walrasian equilibrium that is explicitly situated in a thick markets environment,
where it has historically been understood to belong. Does this coincidence mean that there
are no practical distinctions to be drawn between the arbitrage and Walrasian versions of
competitive equilibrium? In our view, there is an important difference. The Walrasian
tradition of price-taking reinforces the view that the perfect competitor responds passively

to his environment whereas in the arbitrage approach the perfect competitor is actively

3Comparisons between arbitrage and Walrasian equilibria ignore the issue of existence. To demonstrate
the existence of equilibrium through arbitrage, it might appear that one would first have to demonstrate
the existence of Walrasian equilibrium. To emphasize the integrity of the arbitrage approach to perfectly
competitive equilibrium, in an earlier version of this paper we have given a self-contained demonstration of

the existence of perfectly competitive arbitrage equilibrium.
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opportunistic. The difference in “psychology” between the competitor-as-price-taker versus
the competitor-as-arbitrager are alternative perspectives which can significantly influence

the way one interprets market behavior.
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