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Abstract

For exchange environments with a finite number of individuals, we show that effi-
cient, dominant strategy incentive compatible mechanisms must be perfectly compet-
itive, i.e., each individual must be unable to influence prices or anyone’s wealth. The
characterization applies whether preferences are ordinal or quasi-linear. We also prove
an asymptotic result. Perfectly competitive incentive compatible mechanisms are shown
to be non-generic (although non-vacuous) in finite economies, while they are generic (but
non-universal) in continuum economies. They are also shown to be equivalent to mech-
anisms in which each individual fully appropriates his social contribution. We use these

results to provide bridges to related work.
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1 Introduction

We give a characterization of efficient, dominant strategy incentive compatible mechanisms
for exchange environments with a finite number of individuals. The most important feature
is its canonical form: such mechanisms must be perfectly competitive, in the sense that each
individual must be unable to influence prices or anyone’s wealth. The central property of
a perfectly competitive mechanism permitting the achievement of efficiency and incentive
compatibility we call “full appropriation.”

It is easy to see that a perfectly competitive mechanism suffices for efficiency and in-
centive compatibility: Efficiency is guaranteed by the well-known optimality of Walrasian
equilibrium, whether or not individuals can influence prices; while incentive compatibility
follows from the fact that a Walrasian equilibrium yields each individual his most desirable
outcome, assuming the individual cannot influence prices or his wealth, a valid hypothesis
under perfect competition. The characterization therefore turns on the issue of necessity.

A perfectly competitive mechanism can only exist on a perfectly competitive environ-
ment; hence, the characterization implicitly specifies the environment required for efficiency
and incentive compatibility. Since the typical view is that perfect competition is synony-
mous with large numbers, the characterization raises questions of existence. Even though
it may be true as a rule that finite economies are not perfectly competitive whereas contin-
uum economies are, it will be important to recognize that there are exceptions to both of
these statements. The fact that there are perfectly competitive finite economies is especially
significant for our analysis. It allows us to establish our main result, a non-vacuous charac-
terization for environments with a finite number of individuals and ordinal preferences.

The key to the main result is the construction of a domain restriction—a richness condi-
tion— under which a possibility theorem can be proved. The domain restriction describes
a “neighborhood” around any given population. Under the richness condition, we show
that perfect competition is not only sufficient but also necessary for efficiency and incentive
compatibility. Examples illustrating our main result (see Section 5) show that, although
they are sparse, it is easy to find finite populations with neighborhoods which are perfectly
competitive. The geometry of these neighborhoods mimics conditions typically holding in
the continuum. Thus the characterization in finite economies shows why the continuum

provides the natural environment both for incentive compatibility and perfect competition.



Many results in the literature on mechanism design trace a pattern suggesting the char-
acterization above, but some point in apparently orthogonal or even opposite directions.
We divide the literature on mechanism design for exchange environments into the following

three categories.

FINITE NUMBERS AND ORDINAL PREFERENCES: Hurwicz (1972) demonstrated that for 2-
person, pure-exchange cconomies the Walrasian mechanism is manipulable. He then shows
the same holds for any 2-person, individually rational allocation mechanism. A related,
2-person impossibility result, without the individual rationality assumption, is proved by
Dasgupta, Hammond, and Maskin (1979) and by Zhou (1991). Other impossibility results
are demonstrated by Satterthwaite and Sonnenschein (1981). While we characterize possi-
bility, we show as a corollary that when the domain is sufficiently rich to permit the exercise

of monopoly power, i.e., most domains for finite-agent economies, impossibility follows.

FINITE NUMBERS AND QUASI-LINEAR PREFERENCES: For models with quasi-linear prefer-
ences, there is a general characterization of all incentive compatible mechanisms satisfying
a qualified notion of efficiency in which transfers of the money commodity need not balance:
they must be in the Vickrey-Clarke-Groves family (Vickrey (1961), Clarke (1971), Groves
and Loeb (1975), Green and Laffont (1977), Holmstrom (1979)). The defining feature is
that each individual appropriates the whole gains from trade minus a lump sum. Such a
full appropriation principle does not appear to be related to the indispensability-of-perfect-
competition theme highlighted here. One of our goals is to show (in Section 4) that there
is an intimate connection. Once one insists on full efficiency (i.e., budget balancing), the
Groves characterization implies that for incentive compatibility in quasi-linear economies,
no individual should be able to influence the terms-of-trade, that is, full appropriation with
budget balancing and perfect competition are equivalent.!

There has been no characterization of efficient incentive compatible mechanisms for
finite ordinal economies. Does the “full appropriation principle” also characterize efficient
implementation in the ordinal case? A corollary of our main characterization result provides
a positive answer. Combined with the above analogous result for quasi-linear economies

shows that the full appropriation principle and the uniqueness of perfect competition (for

!The result was shown assuming individual rationality in Makowski and Ostroy (1987). Here we show

the result holds even without an individual rationality constraint.



successful implementation) are really two sides of the same coin; each helps illuminate the

significance of the other.

CoNTINUUM ECONOMIES: For continuum economies, Hammond (1979), Kleinberg (1980),
Champsaur and Laroque (1981), McLennan (1981), Mas-Colell (1982) and others have
shown that the only “no-envy” allocations are Walrasian equilibria— either Walrasian equi-
libria that exclude transfer payments when there are initial endowments or, when the spec-
ification of individual characteristics does not include initial endowments, equal wealth
Walrasian equilibria. Under the assumption that the mechanism is continuous in the dis-
tribution of agents’ characteristics, infinitesimal individuals cannot influence prices. Hence,
these contributions show that efficiency and the no-envy version of incentive compatibility
imply that individuals cannot influence the wealths of others. Our main result confirms
these conclusions and supplements them by showing that the inability to influence prices
that is taken for granted in the continuum is also essential for the incentive compatibility
conclusion in the finite model.

Our treatment of incentive compatibility in the continuum is based on limiting results
for finite economies. (Sece Roberts and Postlewaite (1976).) Unlike finite economies where
we show (along with Hurwicz and Walker (1990) for the quasi-linear case) that efficient
incentive compatible mechanisms are generically impossible, we also show that there exist
mechanisms that are asymptotically efficient and incentive compatible for a generic set of

continuum economies.

Two related contributions establish what appear to be rather different conclusions. Hur-
wicz and Walker (1990) give a characterization of efficient incentive compatible mecha-
nisms for exchange economies with finite numbers and quasi-linear preferences that is only
remotely related to perfect competition. Barbera and Jackson (1995) characterize all in-
centive compatible mechanisms for exchange economies with finite numbers and ordinal
preferences; they find that none of them comes close to being efficient, even as the number
of individuals increases. We shall explain the apparent discrepancies after the presentation
of our results.

In Section 2, we describe a finite numbers exchange environment consistent with either
ordinal or quasi-linear preferences. In Section 3, we give the main result (Theorem 1) for
the ordinal model; and, in Section 4, we give the analogous result for the model with quasi-

linear preferences. In Section 5, the main result is illustrated by example. In Section 6,
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we demonstrate the sense in which most large economies exhibit efficiency and incentive
compatibility and explain the need for qualifications even in the continuum. Section 7 is
devoted to a proof of Theorem 1. Section 8 concludes with a discussion of the connections
between this paper and the work of others. An Appendix contains proofs not included in

the previous sections.

2 The Model

There are n individuals, indexed by ¢ or j, and £ commodities. The set of all individuals is
denoted by I. Each individual's consumption set is @ C Rf. I denotes the set of admissible
utility functions u for each individual, where u : @ = R. A population is a vector of utility
functions u = (uy,...,ui,...,u,). The economy’s aggregate endowment is w € Ri and

there is no production; so the attainable allocations for any population u is given by
X = {x= (1:17"'71:i7---1:n) € Qr . Z.’L‘i =w}.
t

Let D C U™, with typical element u. A mechanism is a mapping f : D — X. Throughout

we assume f is efficient and anonymous on D:

Pareto efficiency For all u € D, there is no x € X such that u;(z;) > u;(f;(u)) for each

© and u;(z;) > u;(fi(u)) for some 1.
Anonymity For all u € D, u; = u; implies u;(fi(u)) = u;(fj(u)).

For any population u, let (u, v,7) denote the same population except the utility function
of individual ¢ is replaced by v. The mechanism f is incentive compatible (IC) at u if, for
each 1

wi(fi(u)) > ui(fi(u,v,1)) for all (u,v,7) € D.

f is incentive compatible if it is incentive compatible at each u € D.

Let A(z,u) = {y € Q: u(y) > u(z)}; it represents the at-least-as-good-as-z set for an
individual with preferences u. A price vector isa p € Rﬂ_ +» with pg = 1 (a normalization).
The price vector p supports the allocation f(u) at u if pw < pY; A(fi(u),u;). Let P(u)
be the set of all price vectors that support f(u) at u. Notice we restrict p to be strictly

positive. This is without loss of generality since, for both the ordinal and quasi-linear cases,

we will impose a strict monotonicity assumption on preferences.



(The definition does not require allocations that 7 prefers to z; to cost strictly more than
pw. But, for both the ordinal and quasi-linear cases, it will be the case that p@ > inf pQ,

which implies this requirement via a standard argument.)

3 Ordinal Economies

Now assume the consumption sct Q2 equals Rﬂ and the aggregate endowment w is strictly
positive. Restrict preferences to the set U consisting of all continuous, quasi-concave func-
tions on Ri that are strictly increasing and continuously differentiable on Rﬁ_ + and satisfy

the following interiority assumption:

Interiority u € U implies u(z) = 0 unless z > 0. Further, for any given p > 0 and
u € U, there is a closed convex cone C in R, U {0} such that {z : Vu(z) x p} C C.

For example, all Cobb-Douglas functions satisfy the interiority assumption. It guar-
antees that any efficient allocation will be in Ri.{_ for all individuals with non-zero con-
sumption. Thus f(u) will have only one price support at u, denoted by p(u), where
p(u) o< Vu;(fi(u)) for all ¢ with f;(u) > 0.

We also will assume that the mechanism is continuous, at least in utilities. More pre-
cisely, let ¥ — u; mean the sequence of utility functions {u"'}k.__l,g,._‘ converges to u;
uniformly on compacta. It is straightforward to verify that any incentive compatible mech-
anism f will be continuous in the following limited sense: Suppose u, u* € D, where
u* = (u,v*,7). Then v* — w implies v*(fi(u*)) = wi(fi(u)).2 We will make a stronger

assumption.

Continuity Suppose u, u* € D, where u* = (u,u*,4). Then «* — u implies u*(f;(u*)) —»
u;(fi(u)) and uj(fj(u"')) — u;(fj(u)) for all individuals 5 # 4.

3.1 Main Result

Let D be a neighborhood of u, the domain of the mechanism. The smaller is D, the greater

the number of mechanisms consistent with incentive compatibility at u; for example, if

?Here is a sketch of the proof. Let z* = f;(u*) and & = fi(u). Suppose u*(2*) A u;(z). Then on
a subsequence u*(z*) — a, where a # u;(z). Suppose a < u;{(z). Then for some sufficiently large k,
u*(z) > u*(z*). This is a contradiction to the incentive compatability assumption, because consumer § will

be better off if he claims he is of type u; rather than u*. Similarly, @ > u;(z) leads to a contradiction.
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D = {u}, a singleton, then IC is trivial. We will show that if D is sufficiently large
then only one mechanism is IC, a perfectly competitive mechanism. Notice that perfect
competition always suffices for IC. Therefore, if we can establish that perfect competition
is necessary for D, then it is necessary and sufficient for any larger domain; in particular,
the characterization also holds for D = U". On the opposite side, the larger is D, the more
difficult it is to achieve a characterization that is non-vacuous; in particular, on the universal
domain, U™, we shall see in Section 3.3 that no IC mechanism exists (see also Barberd and
Jackson (1995)). Thus, the desideratum that the characterization be non-vacuous implies
that the domain must be carefully chosen so that D is not too rich.

We will now describe a richness condition on D that yields our (non-vacuous) character-
ization. (The reader may skim over the details and return to them when reading the proof

of Theorem 1 in Section 7.) Elements of D will be classified into movements from u
e one person at a time
e by any number of persons
e that are first-order similar.

One person changes will be unrestricted, i.e, the set {u,i,:} := {(u,v,?) : v € U} will
be permitted in D. Changes by any number of persons may only be required to exhibit a
first-order similarity to u.

Suppose fi(u) > 0. The set of first-order similar preferences for ¢ at u is
Ni(u) = {v €U : Vu(fi(u)) = Vu;(fi(u)) }.

Observe that first-order similarity only restricts the shape of ¢’s indifference curve through
fi(u). In particular, p(u) supports f;(u) for any preferences in N;(u). It will be notationally
convenient to define N;(u) for any ¢; so if f;(u) = 0, let N;(u) = {u;}, a singleton.

Linear preferences are an important example of first-order similarity. While linear pref-
erences cannot be included in D because of the interiority assumption, individuals will
be permitted to claim preferences that are linear inside large cones contained in 2. In

particular, let uy be any preferences in U satisfying
e uy(z) =p(u) -z for all z € C(u)

e uy is strictly quasi-concave in Rﬂ_ \C(u),



where C(u) is any given closed convex cone in Rﬂ_ + U {0} containing w in its interior
and also containing the “income expansion paths” for the n individuals, {z : Vui(z) x
p(u) for some i}. So, inside C(u)—where all individuals’ consumptions f;(u) reside—the
indifference curves of uy are linear with slope p(u). Given the interiority assumption, such
preferences exist for any u € U".

For any pair of preferences u and v, let [u, v] represent the set of all convex combinations
of u and v, that is, {u’ : v/ = au+ (1 — a)v,a € [0,1]}. Define the set of flattenings of u as

those v where each v; € [ui, uul:
Lo%u) ={v=(v1,...,vi,...,0) 1 V; € [u, uy] for each i}.

L9 permits any number of persons to change from u provided that each is a flattening. For
the characterization, such flattenings must be permitted in D.
Let
L(u) = LO%u) U {(v,v,1) : v € L%u), v € Ni(v), 1 € I}.

The set £(u) is a hybrid: it consists of changes from u by any number of persons provided
they are flattenings, plus any one person changing to some first-order similar preferences. In
other words, v/ € £(u) means that v’ is first-order similar to u and at most one individual’s
preferences in v/ involve a steepening relative to his preferences in u.

Finally we consider £(v), but only for those v & {u,U,i}. Hence, at v there is at
most one individual with MRS at z; = f;(u) that is not proportional to p = p(u). Let
g = q(v). Observe, if p # g then £(v) includes all flattenings of v, an entirely different set
of perturbations than those in £(u); whereas if p = ¢ then (uu, ... ,uu) € L(u) N L(v).

DEFINITION: D is (sufficiently) rich at u if

(R.1) for every individual 4, {u,U,i} CD
(R.2) for every i and every v € {u,U,i}, L(v) CD.

That is, ¢ can be any type in U, provided others are at u_; := (UlyeonyWinly Uiglye-- ,Un)-
Further, for any population v resulting from any one individual ¢ switching, £(v) is also in
D.

We impose the following condition on u itself. The economy excluding individual 1,

u_;, will be called regular if it has only a finite number of equal-wealth Walrasian equilibria



when its aggregate endowment equals w — @. It is known that such economies are typical
(e.g., see Debreu (1970) or Mas-Colell (1985, Chapter 5)). We call the economy u regular
if, for each ¢, u_; is regular.

Let (u—;,v) denote the profile in which 7 is of type v and others are of types u.;. For

any given u_;, the range of the mechanism f for individual 7 is
Ri(u-;) = {fi(u,v,1) : (u,v,7) € D}.

An immediate but important observation is that f will be incentive compatible for i at
(u-i,u) if and only if it assigns ¢ his u-best point in the set R;(u-;); that is, it will be

incentive compatible if and only if
filu~;,u) € arg max u(x) s.t. z € Ri{u_;).

The idea is simple: If w( fi(u,u,¢)) < w(fi(u,v,?)) then it would not be incentive compatible
for ¢ to truthfully announce u. Thus R;(u-;) may be regarded as ¢'s opportunity set at u_,.

Let H, denote the hyperplane through the origin with normal p, i.e., H, := {y : py = 0}.
Our main result shows that the range of the mechanism for all individuals is contained in a

common hyperplane, namely, a hyperplane through the economy’s average endowment @.

Theorem 1 Let u be any regular economy such that D is rich at u. If f is IC on D then
for every individual 1,

Ri(u_;) C H, + {@},
where p = p(u).

The proof of the linearity of R;(u—;), in Section 7, consists of three steps: (1) The range
Ri(u_;) is not locally stictly convex (Lemmas 1 and 2); (2) The mechanism must always
assign an equal-wealth Walrasian allocation (Lemma 3); (3) The range is not locally stictly
concave (Lemmas 4 and 5). Each of these lemmas require only one person changes from u,
with the exception of Lemma 3. This lemma is proved via a sequence of n—1 manipulations.
At each step, one yet unmanipulated utility function is replaced by an essentially flat utility
function common to all the previous manipulations. In this part of the proof more that one
person changes from u, but only in a limited way: Even when more than one person moves
away from u, everyone still shares a common MRS at f(u). Requirement (R.2) allows for

the needed flexibility.



3.2 The full appropriation connection

The conclusion of Theorem 1 can be restated in a way that highlights its links with the quasi-
linear model. Given any profile for others, u_;, in an IC mechanism individual ¢ must “fully
appropriate” the consequences of his actions, in the sense that others are neither benefited
nor hurt by his announced type. More preciscly, notice that A_;(u) := T A(fi(w),uj)
represents the aggregate at-lcast-as-good-as-f(u) set for individuals other than . If the
mechanism is incentive compatible, the boundary of this set becomes i’s opportunity set
(see Figure 1). That is, the mechanism acts as if + completely controls the allocation of
the economy’s entire resources, w, subject only to the constraint that each individual j # 4
must achieve at least utility u;(f;(u)).

X2
I\

I\fi}

Figure 1: INDIVIDUAL ¢ ACTS AS A FULL APPROPRIATOR. The size of the Edgeworth box

is w. Hence, fi(u) from #’s perspective equals w — f;(u) from I'\{:}'s perspective.

Corollary 1 (full appropriation) Suppose f is IC on the domainD. Let u be any regular
population such that D is rich at u. Then, for each i and v € U

filw,v,4) € argmaxv(z) s.t. z € {w} = Ai(u).
T



3.3 Impossibility on the universal domain

In a finite economy, if there is a one person change from u to v € {u,Y, ¢} then efficiency
demands that the change be accommmodated by a change in the allocation, i.e., f(u) # f(v).
But the change in the allocation will typically conflict with the demands of IC that prices
do not change—that ¢ should have no monopoly power. The two demands are compatible
only if the change in the allocation docs not require a change in the MRS’s of u_, i.e., only
if the preferences in u_; exhibit linear segments. This will be illustrated in Section 5, where
an example of a rich, perfectly competitive domain will be presented.

The impossibility of IC on the universal domain U™ follows readily from Theorem 1
since, in most populations u € U™, some individuals will have monopoly power. Indeed,
impossibility can be shown even on relatively small domains. Let U™ denote the set of all
u € U that are strictly quasi-concave in the interior of Q. Let w? be any element of U™
satisfying VwP(@) = p. The following is a sufficient condition for IC to be unachievable.
Corollary 2 Suppose u is regular. Let v = (u,v,7) and suppose p = p(u) # q = q(v).
Then, any mechanism f on the domain L(u) U L(V) U,¢pp g £(v,w", 1)) will fail to be IC.

The next result shows that the conditions described in Corollary 2 are ubiquitous. (See

Hurwicz and Walker (1990) for an analogous result in the quasi-linear model.)

Corollary 3 Suppose u is regular, with u; € U* for each individual j. Let v be any prefer-
ences such that Vu(fi(u)) # Vu;(fi(u)) for some individual i. Then, letting v = (u,v,1),
p =p(u) and g = p(v), any mechanism f on the domain L(u) U L(V) Urep q L((V,w", 1))
will fail to be IC.

Intuition for Corollary 3 comes from Figure 1. As the figure illustrates, IC implies each
individual ¢ must face a linear opportunity set. But if all individuals j # ¢ have strictly
quasi-concave preferences then the boundary of A_;(u) will be strictly convex. So, acting as
a full appropriator, ¢ will not face a linear budget line. The underlying idea is that if everyone
else’s preferences are strictly quasi-concave, then when i changes his quantities demanded,
market-clearing prices must change since others will not be willing to accommodate him at

the original prices.
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4 Transferable Utility Economies

In this section, we restrict preferences to the quasi-linear form, that is, u € & implies
u(zy, ..., z¢) = u(zq,... yTo—1) + z¢.

Further, assume individuals are not restricted in the quantity of the last commodity that
they can supply, so the consumption set Q2 now equals Rﬂ__l x R. Finally, take the aggregate
endowment w as strictly positive for all goods except the last, with wy = 0.

As above, the domain of the mechanism f will be D C U™; however, in this section U
consists of all continuous, quasi-concave, strictly increasing utility functions on Q with the
quasi-linear form. This domain permits the following simplifications: we will not need to as-
sume f is continuous, nor will we need to impose any smoothness or interiority assumptions
on the preferences in .

Let u” be the preferences defined by
uP(z)=pz forallze Rﬁ_.
Let
Cl(u,p) = {us = (uf,...,uf,...,uf) :SC1,
w} =w;forallies, uf = uP for all ¢ S}.

be the set of all possible replacements of utility functions in u by uP. The role of L(u) in

the ordinal model is played in the quasi-linear model by
L(u,p) = {(US,U,'i) cud € £l(u,p), 1€ 8, u € [u;,uf]}.
Richness with quasi-linear preferences is
DEFINITION: D is (sufficiently) rich at u if
(R.1%) for every individual 4, {u,U,:} C D, and
(R.2*) for some p € P(u), for every ¢ and every v € {u,U,i}, L(v,p) C D.
As in the ordinal model, we have

Theorem 2 Let u be any regular population such that D is rich at u. If f s IC on the

domain D, then there exists a price vector p such that, for every individual 1,
Ri(u-;) C H, + {@}.

11



This theorem is proved in Appendix B. Although differentiability of preferences plays
no explicit role, in the quasi-linear model it is sufficient for regularity (see Fact 2, Appendix

B).

4.1 Perfect Competition as Full Appropriation

Our method of proof for the quasi-linear domain builds on the Groves characterization of

IC mechanisms. For any population u, the gains from trade in u is given by
G(u) = max}:u,-(x,-) s.t. x € X.
i

As is well known, for TU (transferable utility) economies efficient allocations are equivalent
to ones that maximize the gains from trade.

For mechanisms achieving the maximum gains from trade, Holmstrém (1979) showed
that if f is IC on the convex domain {u,[u;,u],i} then, for every v € [u;,u], individual
appropriates the whole gains from trade minus a lump sum:

(1) u(fi(w,v,9)) = Gu,v,43) = Y _ uj(fi(u)).
J#i
So the share of the gains from trade going to others remains constant:
(2 Y oui(filuw,8) = > ui(fi(u).
J#i j#i

For our purpose it will be more convenient to express (1) in the set theoretic terms

of Corollary 1. This says that i receives her best consumption bundle, subject to others

receiving at least utility 3°;.; u;(fj(u)):
fi(u,v,7) € arg max v(z) st (w—z)€ A_i(u).
Or equivalently,
Ri(u_;) C {w} — A-i(u).

See Figure 2 below.
Hence, the Groves characterization demonstrates that for a mechanism to be incentive
compatible it must assign “utility rights” defined by A_;(u) and then allow each individual

to fully appropriate all the added gains that «; contributes to the social total. Theorem 2

12



origin for i origin for I \fi}
%

Figure 2: INDIVIDUAL ¢ FULLY APPROPRIATES THE GAINS FROM TRADE MINUS A LUMP

SUM, LEAVING ALL OTHERS AT UTILITY LEVEL 3_;; u;(f;(u))

tells us that if the mechanism is budget balancing, the incentive compatible opportunity set
for each 7 must be linear in the positive orthant. In other words, the only environments in

which full appropriation by individuals can be feasible are the perfectly competitive ones.

5 Perfectly Competitive Domains for Finite Economies: An

Example

In this section we construct an example of an incentive compatible mechanism with a rich
domain. As Theorem 1 requires, the example will involve a family of perfectly competitive
economies. Corollary 3 implies that if everyone’s preferences are strictly quasi-concave,
monopoly power is inevitable in finite economies and therefore IC mechanisms cannot be
achieved. Nevertheless, we will show that constructing a rich IC example is easy: any finite
economy can be perturbed such that it and a class of nearby economies form a domain that
satisfies the requirements of Theorems 1 or 2. Further, the distance between the original
economy and the perturbed economy goes to zero as the number of individuals increases.

Below attention is limited to ordinal economies, with n > 3. In the construction, B(z,€)
will denote an e-ball centered at z, i.e., B(z,¢) :={y: ||y —z ||<e.

To begin, pick any population u’ in U™ and let (x*,p) be any equal-wealth Walrasian

13



equilibrium for u’. In an epsilon neighborhood of z¥, flatten i’s indifference curve through
z}, keeping its slope equal to p. Let u* = (u],...,u}) denote such a perturbed population.

So, by construction, there exists an € > 0 such that for each ¢
y € Bz, )N (H, + {@}) = u](y) = ui(z]).

Notice that (x*,p) remains an cquilibrium for the perturbed economy.
Let § be the diameter of a ball centered at @ that includes RS N (H, + {@}), that is,

)
RL N (H, +{@}) C B(@, 5).

See Figure 3. To ensure that no one will be able to influence prices, assume n is sufficiently

large that
26

(%)

an &-ball

=, centered at x;*

a &/2-ball

centered at ©

Figure 3: EACH INDIVIDUAL’S INDIFFERENCE CURVE THROUGH z] HAS BEEN FLATTENED

TO ENSURE NO ONE WILL BE ABLE TO INFLUENCE PRICES

Let D be the set of populations satisfying (R.1-2) when u = u*, i.e., the smallest domain
that is rich at u*. We will show that there exists an IC mechanism on D. In particular, there
is a mechanism f such that for every population u € D, p(u) = p and (f(u),p) € WE(u).
That is, f is a perfectly competitive mechanism on D.

The construction of f follows.



1. Let f(u*) = x*.
2. For any i and u € {u*,U,i}, let
filu) =z; € mg rx.lea.&cu;(a:) s.t. pz < pw.

And for each j # 1, let
z

fiw = =aj - =,

where z = z; — z]. Since z € B(0, .552-), || z|l< 8. So the inequality (x) implies

|
[o—y
oo

That is, for all individuals Vu;(z;) = Vu;(z}) = p, so (x,p) € WE(u).

3. For any ¢, u € {u™,U,i}, and u’ € L(u), let f(u') = f(u) = x. It is easy to verify
that (x,p) € WE(u').

The example shows that small flats for all individuals, as illustrated in Figure 3, results
in each individual facing a large flat segment as his opportunity set, as illustrated in Figure 1.
Also notice from the inequality (x) that as n — oo, € can be chosen to go to zero; hence,
the population u* approaches the population u’ with smooth and perhaps strictly convez
preferences. Alternatively expressed, an arbitrary population selected from U™ approaches
a perfectly competitive population as n — co. The example therefore helps us understand
why a Walrasian mechanism is IC in economies with a continuum of agents and smooth
preferences—without the need for any further “flattening” of preferences: generically, in
the continuum each infinitesimal individual does face a linear opportunity set, hence each
infinitesimal individual can fully appropriate his social contribution as illustrated in Figure 1

(see Section 6).

6 On the Asymptotic Elimination of the Incentive/Efficiency
Trade-off

The characterization of efficiency and incentive compatibility as perfect competition sug-
gests that the elimination of a trade-off between these two objectives will be a variation

on the familiar theme of finite economies becoming more nearly perfectly competitive as



the size of the population increases. In comparison to the standard approach which iden-
tifies perfect competition with the continuum, we shall proceed by showing that contin-
uum economies are perfectly competitive because they resemble perfectly competitive finite
economies. The crucial difference is that whereas, among finite populations of a given size,
perfectly competitive economies are sparse, perfectly competitive continuum economies are,
in a standard mathematical sense, the complement of a sparse set. The intuition for the
turnabout comes from the geometry of the Example in Section 5: generically in continuum
economies, infinitesimally-sized flats in indifference curves—that is, smooth indifference

curves—suffice for perfect competition.?

6.1 Preliminaries

U remains as above the set of continuously differentiable, quasi-concave utility functions that
are strictly increasing and satisfy the interiority condition. U is separable and metrizable.
Let M be the set of probability measures u on U endowed with the topology of weak
convergence. It is important to obscrve that in this topology ur — g need not imply
that supp pr converges in the Hausdorff metric to suppp, although there will exist sets
Ry C supp pj such that Ry — suppp and ur(Ry) = p(U). The elements of supp pi not
in Rr may be regarded as the non-representative members of g in the sense that they
are not close to the types of individuals appearing in u. To describe misrepresentation of
preferences, measures with such non-representative types must be allowed.

Recall that w € R?H_. Let S = {p:p € R%, & p-w = 1} be the set of normalized prices.
At prices p, the set of utility-maximizing choices for an individual with characteristics (u,w)
is

P(p,u) = arg max{u(z) : pz = pw = 1}.

The aggregate demand correspondence for the economy u when individuals are each en-

dowed with w is
Vo) = [, disw).
Since M is a set of probability measures, [ wdp = w for all 4 € M. Therefore,

M(p) ={p:w e ¥(p,u)}

*Differentiability of preferences is only generically sufficient (not always sufficient) because here we are

concerned with asymptotic results; so we view continuum economies as the limit of large finite economies.
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is the set of Walrasian equilibrium prices for the population g4 when each individual is
endowed with w.

It is well-known that

FACT 1 T :Sx M — 2R is a non-empty, compact and convez-valued correspondence
that is jointy upper hemi-continuous; and, II : M — 25 is a non-empty compact-valued

upper hemi-continuous correspondence.

Throughout the following 7 denotes a selection from II.

6.2 Analysis

Define M, as the subset of probability measures u,, = Y. amndy,, with finite support, where
each a,, is an integer multiple of n~! and §, is the measure with unit mass centered at u.
M, is interpreted as the set of possible distributions of preferences for populations consisting
of n individuals, where cach individual has weight n~!. Regarded as a finite economy with n
individuals, we should denote u, as, for examnple, (12,,n) to distinguish it from a continuum
economy having finite support. However, unless the contrary is explicitly stated, we shall
regard p, as a finite economy with n individuals.

Let
J(pn) = {Au := (u,v) € supp un X U};

Au € J(uy) represents a perturbation of u, to the “adjacent” population
fin + AU = pn — 078y — 8y),

accessible by a one-person perturbation from u,. In relation to the notation used above,
u~ fn, (U,v,1) ~ pp+Au and (u,U,7) ~ pn+J(pn). Since p, is a distribution, individual
characteristics are already in anonymous form; e.g., (u,v,1) and (u, v, ) both have the same
distribution p, + Au if u = u; = u;.

Given any price selection , let
dr(pn) = diameter {7 (p, + Au) : Au € J(pa)},

i.e., the diameter of the smallest ball containing the sct of market-clearing prices for pu,
and all of its adjacent populations. Call p € M, a perfectly competitive population relative

to the price selection 7 if d.(x}) = 0; and let M;;(7) C M, denote all such perfectly
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competitive populations. From Corollary 2 and the Example in Section 5, if py, is perfectly
competitive then some individuals « € supp p}, must have indifference curves with flat
segments through z € y(p,u), where p = 7w(u}). Restating our main result for finite
economies, for a mechanism to be efficient and incentive compatible, it must be an equal-
wealth Walrasian mechanism that is perfectly competitive, which means its domain must
be in M;(w) for some price selection 7.

Notice that the competitivity of 1), depends on the choice of 7; e.g., some economies may
be perfectly competitive for one choice of m but not for another. To establish an asymptotic
result, we will show that there exists some price selection under which the Walrasian mech-
anism will be (1) nearly perfectly compctitive and, hence, (2) nearly incentive compatible
in most large finite economies. The key to cstablishing both claims is the following result

on the existence of a price selection that is generically continuous.
Theorem 3 There ezists a selection w € I1 that is continuous on a dense G subset of M.

The proofs of all results in this section are given in Appendix C. To establish genericity,
elements u € U are replaced by tleir money-metric representations u, (see below). Hence U
is replaced by U, (for some arbitrarily chosen p 3> 0), and we set M = M (U;). The proofs
do not involve the concept of regular economies.

First we show that if = is continuous at p then all large finite economies near u will be
nearly perfectly competitive. For this purpose, it will be convenient to work with an explicit
metric on M: we will use the Prohorov metric p (see Hildenbrand (1974), p. 49). Under
this metric, given any n-person economy u, and any one-person perturbation Au # (u,u),

Pty pin + Au) = 1/n.4

DEFINITION: Given any price selection 7 and any sequence of finite economies u, — u,
we will say that the economies u, are becoming increasingly competitive as the population
increases if

dr{itn) = 0 as n = oo.

The continuum economy u is a perfectly competitive limiting economy relative to w if, for

every sequence u, — u, the economies u, are becoming increasingly competitive.

Proposition 1 If 7 is continuous at u then p is a perfectly competitive limiting economy.

‘Recall if Au = (u,v) then g + Au=p, —n~ (8 = 4,).
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The Proposition implies that under the price selection 7 in Theorem 3, nearly perfectly
competitive economies are dense in M. More formally, using this selection, for any € > 0
define M5 = Un{in : dr(pta) < €}. Observe that if € is arbitrarily small then any economy
fn € M§c is virtually a perfectly competitive economy, i.e., virtually a p, € Mg(m).
Proposition 1 and Theorem 3 together immediately imply that for any € > 0, M§ is dense
in M. |

It only remains to show that, for any nearly perfectly competitive finite economy, the
(continuous) Walrasian mechanism is ncarly incentive compatible. For this purpose, it will
be useful to choose a canonical function to represent ordinal preferences. Re-represent the

preferences underlying u according to the money-metric utility function
wp(@) = inf{py : u(y) 2 u(@)},

where p € S. (Note: The definition of the linear preferences u”(z) = pz in Section 4 is not
to be confused with u,(z).)

It is readily verified that for z > 0,
o uy(z) < po
o uy(z) = px if and only if Vu,(z) = p.

Hence the money metric utility representation implies that the set of utility-maximizing

choices for any individual with characteristics (u,w) facing prices p satisfies
'¢(P’U) = {IE . Uy)(w) =pT = pw o= 1}

Proposition 2 Let d = dr (i), let p = w(,), and let & = min{py,...,pe}. Supposed < a.
Then for any Au = (u,v) € J(fun) and any z € ¥(q,v), where ¢ = w(pn + Au):

d
(@) =~ 1y (p,u) < —.

The Proposition says that the gain from any misrepresentation by any individual in py is
bounded by an amount that goes to zero with dy(uy).
To apply the Proposition, consider the price selection of Theorem 3 and any sequence

pn — p. If mis continuous at u (a generic property) then Proposition 1 implies the

19



economies (i, are becoming increasingly competitive, i.e., dr(un) — 0. Hence, Proposition
2 implies the gains from misrepresentation are going to zero as n — oo. In terms of Theorem
1, each individual’s opportunity set R;(u—;) under a continuous Walrasian mechanism is

becoming increasingly linear; hence his incentive to misrepresent is going to zero.

REMARK (The definitions of perfect competition and incentive compatibility in the contin-
uum): The Walrasian definition of perfectly competitive equilibrium focuses entirely on the
coordination of demands and supplies in a single economy. By contrast, the definition of
incentive compatibility involves restrictions with respect to nearby economies — resulting
from misrepresentation. Similarly, perfect competition as we use it here involves restrictions
related to nearby economies — reached by some individual experimenting by altering his de-
mands or supplies. Thus, to establish our asymptotic results, we view a continuum economy
u as perfectly competitive not because individuals are of negliglible size, but because for
any pn — i, dr(pn) — 0. Similarly, the Walrasian mechanism is incentive compatible at p
only if for all nearby finite economies p,,, the gains from misrepresentation are small.
The literature on envy-free allocations in the continuum represents an interesting way
around the problem of explicitly dealing with perturbations by individuals. “Envy” is a
virtual condition: would A rather have what he is given or what B gets. There is no need
to ask whether it is possible to give A what B is getting without disturbing B or anyone
else. Nevertheless, the issue of perturbations is treated implicitly. A caveat is made that the
analysis should be undertaken using a continuous mechanism. See Champsaur and Laroque
(1982). Our characterization of efficiency and incentive compatibility in the finite model
along with this study into the asymptotic behavior of the Walrasian mechanism builds a
bridge to the envy-free characterization of Walrasian equilibrium in the continuum, one that

calls explicit attention to the importance of perfect competition.

7 Proof of Theorem 1 and Its Corollaries

As mentioned in Section 3, Theorem 1 will be proved in three steps.

STEP 1: In Figure 4, point z lies on the concave part of R;(u—;), but R;(u_;) also has a

convex-shaped segment. Our first step (Lemmas 1-2) is to rule out the convex possibility.

®Incentive compatibility can be directly defined for continuum economies by considering “perturbations

in the continuum,” as in Makowski and Ostroy (1992) and Gretsky, Ostroy and Zame (1995).
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To illustrate the idea, observe that in the figure the indifference curve of u through z is also

Figure 4: R;(u—;) CANNOT HAVE A CONVEX-SHAPED SEGMENT AS ILLUSTRATED

tangent to R;(u-;) at y. The mecchanism must choose one of these two points. Suppose it
chooses z. Let u* be a sequence of preferences converging to u, as illustrated. Incentive
compatibility requires the mechanism to choose y for all u*, but it chooses z for . This
is compatible with our assumption that the mechanism is continuous in terms of utilities
because, even though there is a discontinuous change in the allocation, the individual’s
utility varies continuously. However, the jump from y to z increases the individual’s wealth,
which must discontinuously change some other individuals’ utilities. (See the proof of

Lemma 2 for details.)

We first show that for individuals with preferences in U™ (strictly quasi-concave), our
assumption that the mechanism f is continuous in utilities implies f also will be continuous

in allocations.

Lemma 1 (continuity) Suppose u, u* € D, where u* = (u,u*,i). Also assume u; € U*

and fi(u) > 0. Then u* — u; implies f;(u*) — fi(u).

Proof: Let z = f(u), zF = f(u*), p = p(u), p* = p(u*). Suppose z¥ /4 ;. Then there
would be a convergent subsequence, say s(k), on which p**) — p0, 3¢ 5 29 and z? # ;.

Since each p* supports z* at u*, p? supports z° at u, i.e.,
n
0 0 0
Plw <p° Y Aj(aY,uj).
j=1
Hence, since 3 j :z‘} = w,
pPzY < pPA;(2? u;) for each individual j
1 J = P 7 FREa¥) .7

21



Further, since continuity implies u; (:1:9‘) — uj(zx;) for each j,

uj(z;) = uj(z;) for each j.

Hence, poa:?

< poa;j for each j. And since u; is strictly quasi concave in the interior of
Q, where both z; and z¥ reside, p2? < pPz;. Summing shows p? x; :1:? < p° X jzj. But

feasibility implies ) F a:? = >_; zj, a contradiction. Q.E.D.

We now show that if i may have any first-order similar preferences at u then the convex
hull of R;(u_;), denoted con R;(u-;), is supported by p(u) at f;(u). Thus R;(u_;) cannot

have a convex segment as illustrated in Figure 4.

Lemma 2 If f is IC on the domain {u, N;(u),} and f;(u) > 0 then

p(u) - Ri(u_;) < p(u) - fi(u).

Proof: Let z = fi(u), p = p(u). Let u be any utility function in &* whose indifference
curve through z is nested inside u;’s indifference curve through z; so, u;(y) < u;(z) impliies
u(y) < u(z) unless y = z. Notice that incentive compatibility implies f;(u_;,u) = z.

Suppose there were a y € R;(u—;) such that py > pz. Then there would be a utility
funtion v € U such that v(z) < v(y) for some y € R;(u_;), but the indifficerence curve of
v through z coincides with the indifference curve of u through z in a ball around z with
radius € > 0, i.e,, in B(z,¢) := {¢' : || 2’ =z ||< €}. Notice that incentive compatibility
implies fi(u_;,v) & B(z,e¢).

Now consider the preferences u® = av + (1 — a)u, where a € [0,1]. By construction u®
is strictly quasi-concave in Ri +- Further, for small values of a, z is strictly preferred by u®
over all other points in R;(u—;). But at some ciritical value for «, say o*, the individual is
just indifferent between = and some other point(s) in R;(u—;). And beyond this value, z is
dominated by some other point y € R;(u-;), where y & B(z,¢). So, incentive compatibility
implies f(u-;,u®) = z for all a in [0, ax), while f(u—;,u®) € B(z,¢) for all a € (a*,1].
Thus, whether or not the mechanism assigns z to u®", f;(u_;, u®) is not continuous at a*,

contradicting Lemma 1. Q.E.D.

STEP 2: Our next step is to show that any incentive compatible mechanism must satisfy

an equal-wealth condition (Lemma 3 below).
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L(u) is a relatively small domain; so it is easy to find an IC mechanism on £(u). For
example, let x by an equal-wealth Walrasian equilibrium allocation for u. Define f(u') = x
for all u’ € L(u). It is easy to check that this f is efficient and (trivially) IC on L(u).
Nevertheless, £(u) is sufficiently rich to assure that the equal-wealth Walrasian allocations

are the only incentive compatible allocations for u.
Lemma 3 f is IC on L(u) implies (f(u),p(u)) € WE(u).

The basic idea behind this key lemma is simple. Technical complications arise only
because, for the sake of generality, we permit f to assign “non-subsistance” boundary
allocations to some individuals. To give the reader the main idea behind Lemma 3, here we
present a proof of the lemma under the extra assumption that f;(u’) > 0 for all individuals
¢ and all profiles u’ in £(u). The appendix contains a proof of Lemma 3 without this

simplifying assumption.
Lemma 3’ f is IC on L(u) implies

(f(u),p(u)) € WE(u)
assuming f;(u') > 0 for all individuals ¢ and all profiles u’ in L(u).

Proof: Let p = p(u) and u™ = uy. Since p supports f(u) at u, we need only verify that
pfi(u) = p@ for all <. Assume the contrary. Then, since feasibility implies ¥ =, fi(u) = n@,
there must be an individual, say ¢ = 1, with pfi(u) > p@. Let u! = (u*,ug,...,un).
Lemma 2 implies pfi(u') = pfi(u) > p@ and Vu*(f1(u!)) « p; so p = p(ul).

Since f(ul) is feasible and pfi(u!) > p@, there must be some other individual, say
i = 2, with pfo(u!) < p@. Let u? = (u*,u*,u3,...,u,). As above, Lemma 2 implies
pf2(u?) = pfa(ul) < p@ and Vu*(fo(u?)) x p; so p = p(u?). Further, since individuals 1

2 anonymity implies pfi(u?) = pfa(u®) < p@.

and 2 have the same preferences in u
Thus, since f(u?) is feasible, there must be a third consumer, say ¢ = 3, for whom
pf3(u?) > po. Let ud = (u™,u*,u*,uq,...,u,). As above, Lemma 2 implies pf3(ud) =

pf3(u?) > p& and Vu*(f3(u?®)) « p; so p = p(ud). Further, since individuals 1 through 3

have the same preferences in u3, anonymity implies pfi(u3) = pfa(ud) = pf3(u?) > pa.
Repeat the above procedure n — 3 more times to form u4,..., u*,...u", where u* =
(u*,...,u", Upt1,.--,Uy). One thus finds, depending on whether n is odd or even, that

pfi(u™) > p@ for all ¢ or pf;(u™) < p@ for all 7, contradicting the feasibility of f(u"), where
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u” = (u*,u",...,u%), Q.E.D.

STEP 3: The final step is to show that R;(u_;) must be contained in a hyperplane through

@. For this, we will show that
1. @ € Ri(u-;) (Lemma 4).

2. For all z; € R;(u_;) there exists a supporting hyperplane H to R;(u-;) at z; such
that @ € H (hence H supports R;(u_;) at @).

3. If H and H' support R;(u-;) at @, then, under a regularity assumption, H = H'

(Lemma 5).
Recall w? denotes any function in U* satisfying VwP(@) = p.

Lemma 4 Select any population u and individuali. Let p = p(u) and v = (u,wP,1). Then
f 18 IC on L(u) U L(v) tmplies
@ € Ri(u_;).

Indeed, ¥ = f;(v).

Proof: Let ¢ = p(v), y = f(v), and v = w”. Lemma 3 implies (y,q) € WE(v). Hence,
since the indifference curve of v through @ is strictly convex, v(y;) > v(@) unless y; = @.
But since p = Vu(@) by construction, v(y;) > v(@) = py; > po = y; € Ri(u_;) since

pRi(u_;) < pfi(u) = p& (using Lemmas 2-3), a contradiction. So, y; = @. Q.E.D.

Now consider any z; = f;(u), and let p = p(u). Lemma 2 implies H, + {@} supports
Ri(u_;) at z;, and Lemma 3 implies @ € Hy, + {@}. Hence, Lemma 4 implies H, + {&}
supports R;(u-;) at @. But we have not yet excluded the possibility of R;(u-;) having a
kink at @. We now will show that if D is sufficiently rich then such a kink may be ruled
out, at least for most economies.

Figure 5 illustrates the consequences of a kink at @: the individual would receive the
same allocation, @, whether he announces u, v, or any preferences “between” them. Let
u® = au + (1 — a)v, where & € [0,1]; and let p(@) = ap + (1 — a)q, so p(a) « Vu®(@). Let
(zi(a),...,zi—1(a), zis1(@), ..., z.(a)) be the allocation to all other individuals as 7 varies

her preferences while others’ remain fixed. Feasibility implies

(@) Ljzizjla) = (n-1)@;

24



Ri(u_;)

Figure 5: IF R;(u_;) HAS A KINK THEN THE ECONOMY WITHOUT ¢ WOULD HAVE A CON-

TINUUM OF WALRASIAN EQUILIBRIA

while Step 2 implies

(b) p(a)-zj(a) =p(a)- & for all § #i.

Conditions (a) and (b) say that the economy consisting of all individuals except i has a
continuum of equal-wealth Walrasian equilibria, one for each price vector p(a). So, for

regular economies, R;(u_;) will not have a kink at .

Lemma 5 Fiz u and i. Suppose u_; is reqular. Let v € U, v = (u,v,1), p = p(u), and

q=p(v). Then f is IC on L(u) U L(V) U,g[p,q L((v,w, 1)) implies p = q.

Proof: Let R = R;(u-;). By Lemma 3, pfi;(u) = p& and qfi(v) = g&; and by Lemma 4,
@ € R. Hence, Lemma 2 implies p- con R < p@ and ¢-conR < ¢q@, i.e., both p and ¢
support the convex set con R at @. But the set of supports is convex; so any r € [p, q]
also supports con R at @. Suppose p # ¢q. Consider the populations w™ = (u,w",1),
for r € [p,q]. Clearly, for any such population, fi(w") = @, hence p(w") = r. Now
Lemma 3 implies (f(w"),r) € WE(w") with f;(w") = @. Hence, for any r € [p,q], the
pair ((fi(w"),..., fi—=1(W"), fix1(W"),..., fa(W")),7) is an equal-wealth Walrasian equilib-
rium for the economy u_; when its aggregate endowment equals w — @, contradicting the

regularity of u_;. Q.E.D.

Proof of Theorem 1 Lemma 3 implies that for any 7 and v = (u,v,1),
(f(v),p(v)) € WE(v).
Further, Lemma 5 implies that p(v) = p. Hence fi(v) € H, + {@}. Q.E.D.
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Proof of Corollary 1 Lemma 3 and Theorem 1 imply that for any i and v= (u,v,1),

(f(v),p) € WE(v),

where p = p(u). Since p remains constant when ¢ switches to v, for each j # ¢

wi(£5(v)) = u;(£5(w)).

Hence, efficiency implies

v(fi(v)) 2 v(z)
for all non-negative z in {w} — A_;(u). Q.E.D.
Proof of Corollary 2 Follows immediately from Lemma 5. Q.E.D.

Proof of Corollary 3 In view of Lemmas 3 and 5, it will suffice to show that (f(v),p) €
WE(v). Since Vui(fi(u)) # Vo(fi(u), fi(u) is not i’s Walrasian demand when he is of type
v and faces prices p. But the demand of each individual j # ¢ is unique at prices p; so

markets will not clear at p when ¢ is of type v. Q.E.D.

8 Remarks on the Indispensability of Perfect Competition

In Section 1 we pointed to three branches of the mechanism design literature that are linked
to our results on the indispensability of perfect competition— the impossibility theorems
for finite ordinal models, the Groves/full appropriation characterization of weakly efficient
dominant strategy mechanisms for finite quasi-linear models, and the envy-free characteri-
zation of Walrasian equilibria for continuum models. In this Section, we compare our results
to two contributions containing apparently different conclusions.

One source of the difference between our results and those below can be explained by a
difference in approach. Whereas most of the mechanism design literature is naturally enough
concerned with the mechanism itself, we are interested in the kind of economic environment
that would support a particular kind of mechanism. For us, the question is not whether a
certain kind of mechanism exists, but why certain kinds of environments do or do not admit
certain kinds of mechanisms. Given (i) the evident conclusion that a perfectly competitive
environment yields a mechanism that is both efficient and incentive compatible and (ii) the

demonstrations that in finite economies mechanisms with both properties typically do not
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exist, we set out to demonstrate the equivalence between perfectly competitive mechanisms
and ones satisfying both desiderata.

Hurwicz and Walker (1990) establish generic impossibility theorems for efficient incentive
compatible mechanisms in finite quasi-linear models having public or private goods. In the
course of their demonstrations, they make the following observation. The failure of incentive
compatible mechanisms arises from the existence of conflicts among consumers. Indeed,
once these conflicts disappear, such mechanisms are possible. They prove this intuition in
the following way. The set of commodities {1,...,¢} is partitioned into non-empty subsets
I,...,I,, and each consumer i’s utility function is assumed to be sensitive to changes only
in the quantities of commoditiesin [;. So the set U; of utility functions available to consumer
iis{u:RCE S R:c gL = Ou/dz. =0, and u is not constant}. For a vector of utility
functions (u1,...,u,) € [[i=; Ui, the mechanism assigns cach consumer all the available
endowments of all the goods to which his utility may be sensitive (and throws away all
goods no one wants). This is obviously an efficient incentive compatible mechanism, but
the authors also prove that this is the only case where such a mechanism exists.

Despite the disagreement between this claim and our demonstration in Section 4 that
economies admitting efficiency and incentive compatibility exist without the restriction to
non-overlapping preferences among commodities, there is no real contradiction here. H & W
require that a mechanism must be efficient and incentive compatible on a Cartesian product
ITi=; Ui of sets of utility functions, whereas we only require that it achieve these properties
on a restricted neighborhood D (which includes the possibility that each individual 7z can
announce any element of ;). The H & W characterization shows that eliminating conflict
is one way to avoid its possible inefficiency consequences, but full appropriation and perfect
competition is another much less restrictive condition in which conflict can be efficiently
resolved.

H & W allude to a second case under which efficient incentive compatible mechanisms
exist, namely, when the economy has a continuum of agents (1990, Section 8). The authors
suggest that there is no conflict of interest among consumers in the continuum, as no one
can affect another’s well-being. This case, however, supports our approach. In continuum
economies, non-overlapping preferences among commodities is not necessary for the generic
coexistence of efficiency and incentive compatibility. In contrast to our finite characteriza-

tion, the finite economies offered by H & W — with non-overlapping preferences—do not
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converge to typical continuum economies.

Another characterization of incentive compatible mechanisms for finite ordinal models
is offered by Barbera and Jackson (1995). B & J mechanisms are also defined on a Carte-
sian product, but their mechanisms need not be efficient. They characterize all incentive
compatible mechanisms as fixed-proportion trading schemes. On its face, their mechanisms
appear to mimic trade according to prices and therefore to exhibit an underlying similar-
ity to the results of this paper, but the resemblence is only superficial. Fixed-proportions
schemes permit consumers to move only in a finite number of directions rather than the
infinite directions possible with hyperplanes, as is the case when they are constrained by
prices. A second difference is that these proportions are determined independently of indi-
viduals’ declared utility functions, in contrast to perfect competition where prices depend
on consumers’ utilities. These two factors imply that B & J mechanisms do not converge
to the general incentive compatible mechanism for continuum economies; similarly, the lack
of efficiency is not reduced when the number of individuals increases.

The disparity in asymptotic conclusions follows from their requirement that the incentive
compatibility condition apply exactly throughout the entire domain. A comparison of the
conclusions of B & J with the conclusions in this paper and elsewhere illustrates that the
consequences of imposing exact incentive compatibility everywhere can be quite different

from the standard adopted here of asymptotically achieving the condition generically.

A Proof of Lemma 3

Let p = p(u) and v = wu(u). Since p supports f(u) at u, we need only verify that
pfi(u) = p@ for all 1.
Assume the contrary. We will construct a sequence of populations in £%(u), {u’c }=1,2,....n»

satisfying for each k:

o p=p(uf)
) u?=u‘ for:=1,2,...,k
e 0 < pfi(uf) =pfa(ur) - = pfi(uF) # pw,

k l:)

where uF = (u¥,uf,...,uf). Notice that by construction p Y™, fi(u") # np@, which

contradicts the feasibility of f(u"), i.e., the fact that I, fi(u") = w = nw. Thus the
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construction suffices to prove the lemma.
Preliminary to the construction, observe that since each u* is in £%(u), for each popu-
lation u* and individual i

{z : Vu¥(z) x p} C C(u).

So, for each k and each 7 such that f;(u*) >0,

Vu*(fi(u*)) o« p.

Since feasibility implies }_i; fi(u) = n@, there must be an individual, say ¢ = 1, with
pfi(u) > p@. Let ul = (u*,ug,...,u,). Lemma 2 implies pfi(u!) = pfi(u) > p@ and
Vu*(fi(ul))  p; so p = p(ul).

We proceed inductively. Suppose we have constructed ul,u?,...,u*. We show how
to construct u**tl. Since Y% fi(u*) = n@ (by feasibility) and pZﬁ;l fi(u*) # kpa (by
construction), there must exist some individual « > k such that p fi(u*) # p@. There are

three possible cases:
(a) 0 < pfi(u*) # p@ for some i > k

(b) pfi(uF) = p& for some i > k, pfi(u¥) = 0 for some i > k, and pf;(u*) € {0,p@} for
alli >k

(¢) pfi(u*) =0 for all i > k.

If case (a) applies, say for individual i = k + 1, let ubt! = (u*,...,u*,u’,g”,...,uﬁ).

Lemma 2 implies p fi41(u¥*!) = pfiy1(u*) # p@ and Vu (frr1 () o pi sop = p(u*+h).

k+1

Further, since individuals 1 through & + 1 have the same preferences in u®*", anonymity

implies 0 < pfi(u**!) = -+ = pfry1 (W) # pa.
Suppose instead that case (b) applies. In particular, say that for individual n, pfa(uF) =
po. Let v* = (1 — a)u, + au™ and let v¥ = (uF,v® n), where @ € [0,1]. Observe that

Lemma 2 implies p supports f(v?) for any « € [0, 1]. Further, by anonymity,
PV = =pfi(v') = pfa(v') = po.
Hence, either
e thereis an i > k, say i = k + 1, for whom pfi41(v') > p@, or
o pfi(v!) = po for all individuals .
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In the first event, let u*+! = (u*,...,u*, uf,,...,uk_|,v!). Lemma 2 implies p fr+1(u**!) =
pfis1(VY) > p@ and Vu*(frp1(ubtl)) « p; so p = p(u**t!). Further, since individuals 1

k1 anonymity implies pfi(u*!) = ... =

through k + 1 have the same preferences in u
Pfier1(ufth) > po.

In the second event, the continuity of the mechanism implies that for some 8 € [0,1]
there is an i > k, say ¢ = k + 1, such that 0 < pfiy1(v®) < p@. In this event, let u*+! =
(u*,. ..,u*,uﬁ”, ... uk_1 v#). As above, Lemma 2 implies pfry1(u*t!) = pfry1(vP) and
Vu*(fee1(UF1)) o p; so p = p(uFt1). Further, since individuals 1 through & + 1 have the

k+1 anonymity implies 0 < pfi(uF*t!) = -+ = pfry1(WF*1) < pa.

same preferences in u

Finally, suppose case (c) applies. Consider again the populations v® = (uf,v®,n). We
first show that for any € > 0 there is an « € [0, 1} such that

n
o<l > fitv)li<e
i=k+1

By assumption, u;{f;(v®)) = 0 for all i > k. But u;(fi(v!)) > 0 for some i > k (otherwise,
annonymity implies f;(v!) = 0 for all i, contradicting the efficiency of f(v!)). Let a* =
max a s.t. u;(fi(u*) = 0 for all ¢ > k. The continuity of the mechanism implies there is a

sequence of — a* such that uf = w;(f;(v®')) = 0 for all 7 > k but, for each ¢, ut > 0 for

some 1 > k. Let

ft F(v®) = f* and

nt va‘
pt — _n a‘) St
il Pt |l lt p(ve') |

along a subsequence. Since u! — 0 for each i > k, p*f;* = 0 for each ¢ > k. Further, strict

monotonicity implies p* > 0. Hence f;* = 0 for all i > k. So for some « sufficiently close
to o* along this subsequence, the desired inequality will be satisfied.

Now fix € sufficiently small so that B(w,€e) C C(u) and @ € B(0,¢€); and let 3 € [0, 1] be
sufficiently close to a* so that the inequality of above is satisfied. Let v = v#. We show that
p(v) = p. Assume the contrary. Then fi(v) € C(u). Hence, since all individuals i < k are
identical with strictly quasi-concave preferences outside this cone, Z:';l fi(v) = ky for some
y € Q. Feasibility implies ky + X714 fi(v) = w. Hence, || iy fi(v) =]l w —ky || . By
construction, the LHS is less than €. But since ky & C(u), || w — ky ||> €, a contradiction.

We conclude that there is an individual ¢ > k, say ¢ = k+1, for whom 0 < pfi4+1(v) < p@.

Let uf+! = (w*,...,u*,uf, |, ..., uk_;,v%). Since p(v) = p, Lemma 2 implies p fy41 (u*+!) =
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pfr+1(v) and Vu* (frpr(WFt)) o p; so p = p(uftl). Further, since individuals 1 through

k+1 anonymity implies 0 < pfi(uft!) = --- =

pfrsr(u*tl) < po. Q.E.D.

k + 1 have the same preferences in u

B Proof of Theorem 2

B.1 Background

As noted in Section 4, for quasi-linear economies we can build on the Groves characteriza-
tion. Thus we know from the outset that any IC mechanism must involve full appropriation.
We wish to show that if the mechanism is budget balancing, it must also be perfectly com-
petitive. Since we want our characterization to be non-empty, it will have to apply on a
restricted domain. Fortunately, the Groves characterization also applies on a restricted—in
particular, any convex—domain, as shown by Holmstrém (1979). The following summarizes

the facts we shall use from Holmstrom, translated into set theoretic terms (see Section 4.1).
FACT 2: f is IC on {u,[u,u),1} implies for all v € [u;,u]:
(F.1) Y,zui(fi(u,0,9) = ¥ 4ui(fi(u)
(F.2) fi(u,v,1) € argmaxzeq v(z)s.t. z € {w} — A_;(u).
This fact will allow us to verify the conclusions of Lemmas 2 and 3 (i.e., Steps 1 and

2 for ordinal economies) without assuming the continuity of f or the differentiability of

preferences. Hence the dispensability of these assumptions in the TU setting.

B.2 The proof

Analogous to the proof of Theorem 1 for ordinal economies, the proof of Theorem 2 involves

three steps. We first give the TU analogs for Lemmas 2 and 3 (Lemmas 6 and 7 below).

Lemma 8 f is IC on {u,[u;,u?},i}, where p € P(u), implies

pRi(u_;) < pfi(u).
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Proof: Let z = f(u) and let B = {w} — ¥, ; A(z;,u;). By definition,

pw<p Z A(zj, u;).
J

Hence pB < pA(z;,u;) and, in particular, pB < pz;. Thus, (F.2) implies pfi(u, uP, i) = pz;.
So if py > pz; for some y € R;(u-;), then pf;(u, u?, i) > pz;, a contradiction. Q.E.D.

We now display the analog of Lemma 3. The proof is similar to that of Lemma 3', but

without the differentiability or interiority assumptions.
Lemma 7 f is IC on L(u,p), where p € P(u), implies

(f(w),p) € WE(u).

Proof: Let £ = f(u) and let B = {w} — > j#i A(zj,u;). Since p supports z at u,
pzi < pA(zi,u;) for all <. Hence, we need only verify that pz; = p@ for all 4.

Assume the contrary. Then there is an individual, say ¢ = 1, with pz; > p@. Let
u! = (uP,us,...,u,). Lemma 6 implies pfi(u!) = pfi(u) > p@.. Further, p supports z! =
f(ul) at ul. To verify observe that u?(z!) = uP(z1) = pzy; and, by (F.1), X A(z},uj) =
2j#i A(zj,u;j). Thus, since 1-; .'L]l =w, pw < pY; A(zj,u;) implies

pY 2 <py_Alz}u).
J#i J#
And trivially,
pz} < pA(zi, uP).

Summing shows
pZ:z]l =pw < pz A(z;,u}).
j J

Hence, there must be an individual, say i = 2, with pzd < p@. Let u? = (uP,uP, u3, ..., un).
Lemma 6 implies pfa(u?) = pfy(ul) < p@.. Further, p supports z2 = f(u?) at u? (verified
as above).

Since individuals 1 and 2 have the same preferences in u?, anonymity implies pz} =
p:z:% < pw. Thus there must be a third consumer, say « = 3, for whom pm% > pw. Repeat
the above procedure n — 2 more times, to form u?,...,u”. One thus finds, depending on
whether n is odd or even, that pz? > p@ for all i or pz? < p@ for all ¢, contradicting the

feasibility of 2", where 2™ = f(u®) = f(u?,...,u"). Q.E.D.
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Let vP(z) = 9P(z1,...,T¢-1) + ¢ be an continuously differentiable function in U satis-

fying 4P is strictly quasi-concase and VvP(@) = p.

Lemma 8 Select any population u and individual i. Let p € P(u) and v = (u,v?,i). Then

f 18 IC on L(u,p) U L(v,p) implies
@ € Ri(u_;).
Indeed, @ = fi(v).

Proof: See the proof of Lemima 4 for ordinal economies. Q.E.D.
Lemma 9 Fiz u and i. Suppose u—; is regular. Let v € U, v = (u,v,i), p € P(u), and
q € P(v). Then f is IC on L(u,p)U L(v,q) Urelp,q) £((u,w",2),7) implies p = q.

Proof: See the proof of Lemma 5 for ordinal economies. Q.E.D.

As noted in Section 4, while differentiability plays no explicit role in the proof of

Lemma 9, it is sufficient (although not necessary) for the regularity of u.
FACT 3 If u; is differentiable for each i, then u will be regular.

Proof: Suppose both (x,p) and (y, ) are equal-wealth Walrasian equilibria for u_; when

its aggregate endowment equals w — @. Let w* = w — @. Then by assumption

pot < pY ) Alzjyuy)

i
" < q) Alyjui) =q Y Alzj,ug),
i#i i

where the last equality follows for the quasi-linearity of preferences (i.e., the vertical paral-

lelism of indifference curves). Thus, since S ;.;z; = w*, by a familiar argument:
] JEI*I y DY g

IN

pPT; pA(z;j,u;) for each j # i (1)

qz; < qA(zj,u;) for each 5 # 1. (2)

Suppose p # g. Hence for some commodity h (h # £), pr # q4. But since wp > 0,
there must be an individual j such that z;, > 0. Eq. (1) implies that for this individual
Ouj(z;)/0x;n = pi, while Eq. (2) implies Ouj(z;)/0zjn = qp, a contradiction. Q.E.D.
Proof of Theorem 2: Let p be as described in (R.2*). Now proceed as in the proof of

Theorem 1 for ordinal economies. Q.E.D.
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C Proof of Theorem 3 and Propositions 1 and 2

Proof of Theorem 3: First, we show that there exists a selection 7 that is continuous on
a maximal G5 set. Let my, be a selection and M, the set on which it is continuous. It is
readily seen that M, is Gs. (Let O, be the union of all open sets O such that dr, (O) < n~ 1.
Then O, is open and M, =N,,0,.)

Define an ordering on selections; denote myr > 7y if My C My and w, agrees with
ma o0 My. By Zorn’s Lemma there exists a 7 continuous on M* that is maximal in the
ordering. Because M™ is the set of continuity points of =, it too is a G set. (Appeal to
Zorn’s Lemma is used by Mas-Colell (1985, 5.8.18, p. 234) in establishing the existence of
a continuous selection on the space of regular economies.)

It remains to show that M~ is dense. The following results will establish this claim.

(1) Uy is a complete metric space. To prove this, it suffices to show that U, is a G set
in the space of C! functions on Ri + since a G set in a complete metric space is complete
(Mas-Colell, A.3.4, p.10)). Proposition 2.4.5 in Mas-Colell (1985, p. 72) demonstrates
that the set Uy of C! strictly monotone utility functions on Rﬂ__,_ satisfying the interiority
condition and the normalization in which u(z) = A iff u(z) = u(Ae), where e = (1,1,...,1),
is Gs. Further, the subset of quasi-concave functions of Uy, call it Uy, is readily seen to
be complete. Also, the map ¢ : Uy = U, where ¢(ug) = up means ug(z) = ug(y) iff
up(z) = up(y), is homeomorphic. Hence, U, is Gs.

(2) M = M(U,) is a separable and complete metric space because M is defined on a
separable complete metric space U, (see Mas-Colell (1985, E.3.1, p. 24)).

(3) By a straightforward extension of a Theorem of Fort (see Hildenbrand (1974, p. 31)),
since [T : M — 25 is an upper hemi-continuous correspondence from a separable complete
metric space into a totally bounded set, II is continuous on a dense Gy set.

Now, suppose the contrary that M™ is not dense and therefore does not intersect an
open set O in M. By (3), there a i € O that is a continuity point of II. Let n(z) € II(z).
For each other u € O, select w(u) € II(x) such that ||7(u) — 7(2)|| = min ||II(g) — =(B)||. In
case there is more than one such p, choose the one with the smallest value of p;, and then
if necessary the smallest value of p, etc., to select a unique element from II{x). Since II is
continuous at Z and 7(x) is minimum distance from w(z), 7 is evidently continuous at f.

But this contradicts the hypothesis that the set of continuity points M* is maximal. Q.E.D.
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Proof of Proposition 1: Let u, — . We need to show that for any € > 0 there is an
N such that n > N implies dr(p,) < €.

The continuity of # implies thereis a § > 0 such that u’ € Bs(x) implies || 7 (p')=n(p) |I<

Let N be sufficiently large that N > 2/8 and p(pn, #) < 6/2 for all n > N. Then for
any n > N and any perturbation Au € H(un), p(tin, in + Au) = 1/n < §/2. Hence, for
any n> N, {ll'n +Au:Au€ H(.u'n)} - BJ/’Z(;U'n) C Bs(p). Q.E.D.

Proof of Proposition 2: An element z € ¥(q,v) is chosen from the set
B, = {z' € R : gz’ = 1} = convex hull {arh et qr )
Therefore,

up(z) := inf{py : u(y) 2 u(z)} < max{pz':z’' € By}

= maxS

(o qC
< max ¢
c pc-—d
o
a—-d

<

The next to last inequality follows from fact that || —p]| < d < « and the last from the fact
that p. > a. So, up(z)—1 < af(a—d)—1 = d/(a—d). Observing that u,(¥(p,u)) = pw =1
completes the proof. Q.E.D.
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