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Abstract

This paper constructs a real business cycle model in which real money balances yield utility. I calibrate the
model to fit the first moments of US data and I simulate a set of impulse response functions that are
generated by the model for GDP, the rate of interest, money growth and real balances. These theoretical
impulse responses are compared with actual impulse responses from US data. The model does a
reasonably good job of capturing the dynamic interactions of money and real variables in US data. It
differs from most existing approaches by choosing a parameterization of utility for which the model admits
the existence of indeterminate equilibria. I argue that this fact is critical in explaining the monetary

propagation mechanism.
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(1) Introduction

This paper is about the role of money in initiating and sustaining business cycles. [ am going to construct
a model that is close to a real business cycle economy and I am going to use it to analyze some features of
time series data, particularly the interaction between money, prices, output and the rate of interest. The
model is similar to work by other authors who have introduced money into an RBC economy. I have chosen
to include a motive for holding money by including real balance as an argument of the utility function
although this is not the main feature that distinguishes my work from related approaches.! My main
innovation is to introduce a non separable specification of the utility function that allows me to make the

case that money may be relatively important in financing transactions.

Previous authors have worked with models in which the motive for holding money is parametenized in a
way that allows them to infer the properties of the demand function for money and the supply function of
labor from first moments of the data. Since the share of social resources that is lost by using money is
relatively small — these models imply that the marginal utility of money must be low. If the utility function
for money is relatively simple, the properties of the second derivatives of utility, the parameters that
determine the curvature of the function, can be directly inferred from the properties of the first moments of
the data. It is these curvature parameters that determine the elasticities of the money demand function and
the labor supply function. In most models that have been analyzed in the literature the choice of a simple
functional form, for the function that describes the motive for holding money, places restrictions on the
behavior of demand and supply functions that prevents these models from explaining the rich pattem of

monetary and real interactions that we observe in data.

The most important difference of my approach, from standard real business cycle economies, is that the
underlying general equilibrium model that I will construct contains a continuum of equilibria; in the

language of general equilibrium theory the steady state equilibrium of the model is indeterminate.”> The fact

! Related work includes the calibrated cash in advance models of Cooley and Hansen (1989), or the liquidity effects
model of Christiano and Eichenbaum (1992), Fuerst (1992) and Lucas (1990).

% The model that I will describe in this paper combines the real model of Benhabib and Farmer (1994), with the
work on money in a production economy without capital, Benhabib and Farmer (1995). The current paper, and
the work reported in Benhabib and Farmer (1995) differs from the related work by Beaudry and Devereux (1993)
who exploit increasing returns to scale to generate indeterminacy. Unlike Beaudry and Devereux and Benhabib

and Farmer (1994), the model in this paper maintains a technology with constant returns to scale.



that the steady state equilibrium is indeterminate has two important consequences for the properties of
dynamic stochastic equilibria. First, it makes it particularly easy to construct examples of business cycles
that are driven by sunspot shocks. Second, and more importantly, the dynamic stochastic equilibria of the
model display a rich intemal propagation mechanism of a kind that mimics the dynamic characteristics of

US data.

(2) The Model

[ assume that the economy consists of a large number of representative families each of which maximizes

the present discounted value of a lifetime utility function.

(1) Max U = EI{EB“‘ Ct,M'—,L,)}
t=1 P,
where C, is consumption, L, is labor supply and My/P; is the real value of money balances. The period

budget constraint of each family is given by:
(2) M, +B,+PK, =M., +B,_(1+i_,)+PK,(1-8)+(Y,-C, +T,)P,, t=1,..,

where M, is the nominal stock of money and B; is the nominal stock of government one period bonds held
from period t to t+1. P, is the price of commodities in terms of money and 1, is the rate of interest on bonds.
K. is the stock of capital, 6 is the rate of depreciation, Y, is GDP and T; is a real transfer received by the
representative family from the government at the beginning of period t. The household also faces a

resource constraint described by equation (3),

(3) K., =K/(1-8) +Y, -C,

t+1

and a debt limit, inequality (4), that prevents the household from borrowing forever and never paying back
its debt.

M, + B,
P

+Kt+l) > O, Q;=5H—l‘—
Pmi(+i,)

j=s

(49  Lim Q;(

{0
t

The variable Q,' in this inequality is the date s value of a period t dollar.

To describe production, 1 assume that output is produced from labor and capital using the technology:

(5) Y, =(AL)*K/ ™V,



where A, is a non-stochastic trend and V, is a random productivity shock. I will model growth as a

stationary process by making the following assumptions about the properties of A, and V;
(6) A, = YtAo’
)] V, = VH; exp(u:).

The parameter vy is the growth factor of per capita GDP, { measures the persistence of the technology shock
and v is its innovation. I assume that u,' has zero expected value, is independently and identically
distnibuted (1.1.d.) through time and has small bounded support. The assumption of small bounded support
is required to ensure that a linear approximation to the equilibrium of the model will remain close to the
actual equilibrium. Later in the paper [ will introduce an additional fundamental shock u,* that represents a
policy disturbance and I will introduce two sunspot shocks that I will refer to as ' and e’. All three of
these additional shocks will also be assumed to be 1.i.d. stochastic processes with small bounded support

although I will allow for the possibility that they may be contemporaneously correlated.

(3) Modeling Preferences

In this section I discuss the class of utility functions that I will use in my quantitative analysis. The choice
of functional form is important since it will play a key role in allowing me to solve for linear
approximations to the equilibria of the model and for allowing these equilibria to mimic both low frequency
and high frequency features of the data. My choice of functional form was guided by two considerations;
(1) the fact that consumption, investment and GDP are cointegrated (growth is balanced) and (ii) the
velocity of circulation and the rate of interest are cointegrated.” These facts require that there exist a
representation of the equations of the model in terms of transformed variables that are independent of time.
The class of utility functions that I will introduce below, when combined with a technology that displays
labor augmenting technical progress such as the Cobb-Douglas technology in equation (5), satisfies this

condition.

It is well known® in the case of the non-monetary growth model that the period utility function must be of

the form:

* King, Plosser, Stock and Watson (1991).

* King, Plosser Rebelo (1988).
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(8) U(Cc,L) = V(L), p>0,

in order for the model to admit the existence of a balanced growth path.’ In the case of a monetary model,
the restriction to utility functions that admit the possibility of balanced growth implies that the period utility
function U(C,M/P,L) should be homogenous in C and M/P. This homogeneity requirement places a
number of restrictions on the class of admissible utility functions U(C,M/P,L) that are discussed in more

depth below.

(4) Restrictions on the Parameter Space

Since I will be concemed with a linearized version of the model, it will be helpful to begin by defining the
parameters of the model in terms of the elasticities of the utility function and of its partial derivatives.
These parameters, defined in equations (9) — (12), together with the parameters of the production function,
completely characterize the behavior of the linearized model around its balanced growth path:

au ouU ou
9 U, = — U, = —— U, = -—,
) N To ™ 4M/P)’ - oL
M/P
(10) 8, = EUC, 8, = ( )Um, 5, = —I—‘—UL.
U U U
(10) 5. = iauc, 5. = (M/P) auU, s, = _}_6Uc,
U, oC U, a(M/P) U, oL
c au, _(M/P) au, _ L au,

11 e = . 8, = , =
(n ™oy, oC e U, 8(M/P) ™y, oL

m

b

C ouU, _(M/P) auU, L ou,

12 8, = ——k, &, = : = ——L
(12 ¥ U, aC b U, oM/P) U, e

* In the post war annual data, there is some evidence that employment has been trending up and hence, a model
that displays a balanced growth path in which consumption, capital and GDP grow at the same rate and in which
employment is stationary may not be the best description of the data. Nevertheless, | have chosen to begin an
exploration of a monetary model by making a minimal departure from the existing literature and for this reason [

will use a utility function that will reduce to equation (8) in the absence of money.



Notice that Uy is defined as the negative of the marginal disutility of labor supply. In matrix form one can

describe the parameters of the utility function as a vector of three elements, &:
(13) 8 = {5,.8,.5.},

and a matrix D of nine elements:

8(:c cm cL
(14) D = 8mc 6mm 6mL '
8Lc Lm 5LL

Although D has nine elements, only six of these elements are unrestricted since D is related to the Hessian
matrix of the utility function which is symmetric. The symmetry of the Hessian imposes the following three

restrictions on D:

O 8L 8
(15) 8o = O , Sp==-8,—, amL=—5Lm6—L.

If one were concemed with the properties of a general utility function, U(C,M/P,L), and if one hoped to
recover the parameters of the utility function by studying data on a linearized version of an economic model
then one would need nine parameters to describe the class of utility functions consistent with the
assumption that the data is described by the maximizing choices of a representative agent. These nine
parameters would be described by the three elements of & and by the six free parameters of the matrix D.
The fact that the data displays (approximately) balanced growth places an additional three restrictions on
the parameter space that are dictated by the requirement that U should be homogenous. If we introduce the
assumption that the utility function is homogenous of degree (1-p) in C and M/P then the set of free
parameters can be described by {p,5,D} together with the symmetry restrictions, (15) and the homogeneity

restrictions:

(16) o5, +6, =1-p, 8, +0 ., =-p, &, +8..=-p, 8, +d

me

Lm=1_p'

Imposing these restrictions directly on D, one has a set of parameters described by the vector 6 and the

elements of the matrix D restricted in the way described in equation (18):

(17) 8 = {Sc’am’SL}



_p—scm 6cm 6cL
) o} 6.0
18 D =| 5§ — -p-38,, —= ~1-p+5, —=|-%
( ) cm 6m p cm Sm ( p cL 5L) 5m
6 18
S => |[1-p+d, = |+ 8
I cL8L [ p cLSL]Sm LL |

The complete class of preferences that is consistent with utility maximization and balanced growth allows
for relatively flexible functional forms. In this paper I will exploit the flexibility of the utility function to
parameterize the model in a way that is consistent with the existence of an indeterminate equilibrium. It is
the fact that the equilibrium of the model is indeterminate that allows me to construct equilibria that mimic

the propagation mechanisms for business cycles that we observe in time series data.

(5) A Parametric Utility Function

In the quantitative section of this paper I will calibrate some of the parameters of the utility function to
capture the first moments of the data. If one restricts oneself to simple logarithmic or CES utility
functions, the calibration of the first moments also restricts the elements of D in such a way that the
behavior of the equilibria of a parameterized model may be relatively uninteresting because the choice of
the elements of & completely determines the elements of D. The following class of functions allows for a

much richer variety of possible equilibrium behaviors:

1-p
M X(C’%) M\
P 1-p P
where:
(20) V(L) = L', x>0, ,
R
=2 fi-a
3)) X(C,%) = l:(l—a)CH“ +a(%) ] , A>0, Azl
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(22) W(c,%) = l:(l—b)CH +b(%) }”, A>0, A#1.

The utility function in (19) is weighted sum of CES aggregators in which each individual CES aggregator
combines consumption and real balances; the weight between the two functions W and X is determined by



the use of labor as described by the disutility of effort, V(L). In my quantitative analysis [ will restrict
attention to the class of utility functions in which the homogeneity parameter, p, is strictly greater than
unity mainly because in versions of this utility function in which money plays no role the parameter p
would have the interpretation of the “coefficient of relative risk aversion”; there is a consensus in much of
the literature that this parameter should be in the range of 1 to 3. The parameter A is the elasticity of
substitution in each of the two aggregator functions W and X. [ have restricted this parameter to be the
same 1n each case simply because I am able to solve this special case for the balanced growth path and the
ability to solve the model analytically was important in suggesting where in the parameter space, to search
for a functional form that can mimic the dynamic responses of data. The parameter A plays an important
role since it allows me to calibrate the model in a way that captures the interest coefficient that one would
expect to observe in estimates of the “demand for money” that would be obtained from data generated by
the model. The parameters a and b represent the relative importance of money and they play an important
role in allowing the model to capture the fact that the interest cost of holding money is small in observed
data. By making A relatively large, but a and b very small, one can capture the fact that the “direct effect”
of money is small but its “indirect effect” is big. By the direct effect, | mean the marginal utility of money
evaluated at the steady state and by the indirect effect I mean the cross partial of money with consumption.
The 1dea that one captures with this added flexibility in the utility function is that additional units of real
balances do not yield much utility in themselves but they may nevertheless be highly complementary with

other commodities and with labor supply.

(6) The Solution to the Individual Problem
In this section I will describe the solution to the household’s optimizing problem. The household chooses
sequences of state contingent money, debt, capital and labor supply to maximize (1) subject to the

constraints (2), (3) and (4) and the initial conditions:
(23) M, = M,, B,=B,, K, = K,
The solution to this problem is given by the first order conditions:

M
UL(Ct’“P—L’Lt)
s ay,

(24) v, =T -, Labor,
U, (C, ,— ,L,) '
P,




M
M U“‘(C"P—"L‘) M P
(25) UC(C“._‘,L') 1- ! =E,{BUC(CM, tH ’L‘”J ! } Money,
P, U ( o M L) P Py
c t> Pt > t
M M P .
(26) Uc(CtP—‘,LtJ =Et{ﬁUc(Cm,P—‘“,L,HJE‘—(I+1‘)}, Bonds,
t t+1 t+1
Mt Mt+1 (1 B a)YH'l :
@) U CogtLy| = EiBU| Crpmh Ly, |l 1-8 42—t Capital,
t t+1 t+1

Equation (24) is the static first order condition for choice of L,, and equations (25), (26) and (27) are the
dynamic first order conditions for choice of M,, B, and K.

(7) Government Policy
Since my main focus in this paper will be the conduct of monetary policy, I am going to make a
particularly simple assumption about the conduct of fiscal policy; I will model fiscal policy with the

assumption:
(28) B, =0, for all t.
To model monetary policy I assume that government follows the feedback rule:

29) T(xt,xt_l,uf) =0

where x is a vector of the endogenous variables of the model, u’is a policy shock and Tis a function that
represents the reaction of the Fed to current and past variables in the economy. A particularly simple

policy is given by the fixed interest rate rule:

1 _
S 1+i

t

I will use the rule in (30) in my subsequent analysis to evaluate the stability of the model since the fixed
interest rate rule leads to a model with relatively simple dynamics. Equation (29) is, however, much more
general. For example, the fixed money growth rate suggested by Friedman can be fitted into this

framework, as can most of the stabilization rules suggested in recent literature, by adjusting the function



I().° In the analysis in the paper I will linearize (29) in the neighborhood of a fixed interest rate and in this
linear analysis the choice of different monetary rules can be analyzed as the choice of the coefficients of a

linear equation.

Given the fiscal rule, (28), the budget equation (2) and the capital accumulation definition (3), the transfer
vanable, T, is defined by the equation;

= Mt - Mt—l

GhH T, P

t

(8) Equilibria
Using the policy rule and market clearing assumptions one can define an equilibrium as a set of stochastic

processes for the vaniables, {C,K,V,M,P,Y,L} that obey the following equations;

(32) K, =K,(1-38) +Y,-C, (Capital accumulation),
(33) Y, =(AL)K 'V, (Production function),
34V, = V_ exp(ul) (Productivity shock),
M
UL(C"P_"L‘) Y,
(35) Mt = a L—‘ , (Labor market equilibrium),
o) T
t
M M P
(36) UC(C, —',L,)(] -1,) = BE, {UC(CHl d ,L,H) —‘—} (Bond Euler equation),
t Pt+l PH-l

M M Y
(37 Uc[ct,—',Lt]=BE,{UC(CM,P—‘“,LMJ[I—6+(l—a)K'“ }} (Capital Euler equation),

t+1 t+1

(38)

=1 (Monetary equilibrium).

® For an analysis of the effect on the equilibrium of alternative monetary policies in a model that is closely related

to this one, see Bennett (1996).



Equation (38) combines the Euler equations for money and bonds (25) and (26). An equilibrium also
requires that the sequences {C,K,Y,M/P} should not grow “too fast” in order to satisfy a transversality
condition that is necessary for a candidate sequence to be the solution to an individual’s problem. All of
the equilibria that I will study will be described as steady states in transformed vanables and one may show
that boundedness of these transformed variables is sufficient to guarantee that the transversality condition

holds.

(9) Transformed Variables

The following sections of the paper show how to reduce the equations of the model to a more manageable
system that can be handled by linear methods. A necessary condition for the use of linear methods is that
the model should display a fixed point around which linearization makes sense. It is partly for this reason
that I have chosen functional forms for the production function and for the utility function that are
consistent with the existence of a balanced growth path. To illustrate the existence of a balanced growth
path, I will demonstrate that the equations of the model can be rewritten in terms of a set of transformed
variables each of which is independent of time. Since the transformed equations are autonomous, it is
possible to search for the existence of a steady state solution to these equations. If such a solution exists, it

will define a balanced growth path.
The following equations define the transformed variables that I will use in this study:

Yt

e M., M, A,
A’

P At Mt—l At~1 .

t

K C
(39) Yo = k, = X’:', C = A_t, m, =

Lower case y, k and ¢ are the ratios of consumption, GDP and capital to the productivity trend, A, The
vaniable, lowercase m, 1s the ratio of real balances to the productivity trend where real balances are defined
relative to last period’s nominal stock of money. This choice of state variable will be convenient for a
study of monetary dynamics since it will enable me to monitor innovations to the price level independently
of innovations to the nominal stock of money. I will keep track of innovations to the stock of money with
the variable p (the money growth factor) and innovations to the price level with the variable m. An

innovation to the price level will cause m to fall and an innovation to the money stock will cause p to rise.

Using the definitions in equations (39) one may rewrite the equations of the model:

@0 y, =(L)"(k)V, (Production function),
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(41)

(42)

(43)

(44)

(45)

(46)

(47)

th+1 = kt(l—-S) + Yy, — ¢

oy

el

v ot
C!
_’);-B_—pE!{Cl'H—pUC(

V, = Vt—lc exp(u{),

_7 2
I, = I(xt,xt_l,u,),

>

p't+lm

C

t+1

ke
HinMy,y L M 1
» M+l
ct+1 mt p't

Al SN L,HJ[I §+(1-a)

Yia

t+1

]

(Labor market equilibrium),

(Monetary equilibrium),

(Capital accumulation),

(Bond Euler equation),

(Capital Euler equation),

(Productivity shock),

(Policy rule).

Equations (41), (42), (44) and (45) exploit the fact that U, is homogenous of degree 1-p and U, and U,

are homogenous of degree p.

(10) Balanced Growth

In this section I am going to search for a point around which to linearize equations (40)(47). A natural
candidate for linearization is the balanced growth path of a non-stochastic version of the model. To find
such a path one must first shut down the shocks by setting u/ = 0 for i=1,2. The fact that the productivity
shock 1s stationary then implies that V,= 1. Even when there are no shocks to the model, there may still be
no balanced growth path if policy is non-stationary; for some policy rules a steady state in transformed
variables will exist, for others it will not. In the following analysis I will analyze the existence of steady

state when the policy rule take the form of a fixed interest rate; the rule described in equation (30). Given

11



such a policy one may define the non-stochastic balanced growth path of the model, {c* y* m* L* p* k*}

to be a solution to the equations:

48)  y*=(L¥" (k¥

* %
UL(l,“ ol ,L*J .
49) c* < =al,
U(l“ m L*) L
c ) C* ’

(50)

(51)  k*(y-148) - y* + c* =0,

(52) (1—1) = —E—i,

(53) 1= %[1—5 +(l—a)Z—:].

In appendix A I show that when the utility function is given by the parametric class described by equations
(19) - (22) there exists a unique solution to equations (48)~53). One may also show that there is an open
set of the parameter space for which this solution is indeterminate in the sense that close to the balanced

growth path there exists a continuum of rational expectations equilibria.

(11) Vector Notation

In this section I will introduce a vector notation that will enable me to write the equations of the model in a
more compact form. In the body of the paper I will work with these vector equations and in appendix A I
define the elements of each of the various coefficient matrices.” My goal is to demonstrate that business
cycles in this model can be described as solutions to a linear stochastic model in which the variables are
deviations of each of the state variables from their balanced growth path. The stochastic elements that
drive these equations will be of two kinds. First there are fundamental disturbances. These are the

variables {u',u’} that represent the innovation to the productivity shock and the policy disturbance.

” The Gauss code for computing equilibria of the model analytically is available from the author on request.

12



Secondly, in models in which there is an indeterminacy in the equations that describe the equilibrium of the
non-stochastic model, there may be a role for non-fundamental disturbances, also known as sunspots or

animal spirits. I will introduce two sunspot disturbances that I will refer to as e, and e2.

To reduce the complexity of the notation I will employ the following definitions of vectors of vanables,
each expressed in the form of proportional deviations from the balanced growth path. These vanables, in

deviation form, are defined below:

clemed g ke-k) o (G- (Ve-) (e
(54) Ct=—tc_*——’ k‘=—T’ = i 5 \/t = tl 2 p’t tp'* )
- y, —y* - L -L* _ m, —m*
(55) VA =———( tY* ), Lt = ——————( tL* ), m' = ———( tm* )

The five variables consumption, capital, the interest rate, the productivity shock and the money growth
factor are the state variables and 1 will refer to the vector of state variables with the notation upper case Z.
The three variables, GDP, employment and real balances (the ratio of lagged money to price) are
subsidiary variables that can be written as functions of the state and I will refer to the vector of these three
subsidiary vaniables with the notation upper case X. The definitions of Z and X are given in equations (56)
and (57). The definition of the vector u in equation (58) collects the fundamental disturbances together into

a single term.
T
K, 7 1
~ -~ u
(56) Z, =1 |, (57) X, =|L,|, (58) u, = [ ;J
v, fi, .
3

In addition to the fundamental disturbances {u',u?} it will also be useful to have a notation to refer to the
conditional forecast errors of each of the variables of the model and to two linear combinations of these
forecast errors that represent the sunspot variables e' and ¢*. The conditional forecast errors are defined in

equation (59). I have used the index variable x in this definition to represent an element of the vector
{ckLV,pyL,m}.

(59) g = [Xt -E. {xt }]

13



Using this definition one can collect together the vectors of conditional forecast errors associated with each

of the vectors vaniables, Z and X;

&) ]

ef H
(60) &7 =|¢g!|, 61) ef =|ek|.

etv e:n

&1

['will show in the following analysis that the equilibria of the model can be represented as a vector
difference equation in the five variables c, k, I, V and p. But although the dynamical system that describes
the equilibria of this system has dimension five, only three of the variables, capital, the productivity shock
and the rate of interest are predetermined. Consumption and real balances are free to move each period in a
way that depends on the forward looking expectations of the families in the model. When the steady state
of the system is locally stable — the case that I will study in this paper — there are two dimensions of
indeterminacy. These two dimensions of indeterminacy imply that agents are free to form beliefs in which
consumption and real balances are adjusted each period in line with extraneous variables that I will refer to
as “sunspots”. By modeling the process for the sunspot shocks, and by restricting agents to form beliefs in
the same way each period, one can resolve the indeterminacy and generate an economic model in which the
covariance properties of the data are uniquely determined. To represent the two sunspot shocks in the

model I will use the notation e' and *. Equation (62) collects these two shocks into a single vector, ¢;

©2) e, = [e;J.
et

(12) Linearizing the Model
In this section I will write down a linear form of the equations of the model by taking a Taylor series
expansion around the balanced growth path. Using the notation that I developed in the previous section one

can write the equations of the model, (40) - (47) as approximate linear equations:

63) ¥, -oLl, -(1-a)k, -V, =0, (Production function),
(64)  a,fi, +a,[i, +a,¢ +a,L, - §, =0, (Labor market),
(65)  a,fi, +a,i, —a,8 +a,L, -T = o0, (Monetary equilibrium),

14



(66) k,,, +asc, - ak, +a;¥, =0, (Capital accumulation),

t+1

a9Cyy +ayMy,; + ay My, +a,L,, —a,C - a,Mm, +a,p ,
67) oG * Brolllin 1 t;l 12 Lt+l o<t tofMe e (Bond Euler equation),
m c
—apl, —a,el, - aEl, —ape, —agey, +a,L=0
315G + aMyy, +al, +a,L,, —aC —-am,
—~ = —~ -~ ¢ m . .
(68) = Ak —apL +aRYa - agky - a8, - aEh (Capital Euler equation),
n L y ko _
— A8y — A8y ~ A€y T AE, =0
6 V., -¢V, -u, =0, (Productivity shock),
T, +a,5, +a,L, +a,M, +a,,¢ +a,k ,
(70) I(+1 1901t 20t 21 t 2Mt 23t (Pollcy I'ule)

S~ P~ —~ 2 "
+tay L +a, Ve + ayp, —up, =0

where the coefficients a;-a;s are functions of the steady state values of the variables c* k*, I, u*y* L*
and m* that are derived by evaluating the derivatives of the expressions in equations (40)«47) at the
balanced growth path — these parameters are defined in appendix A. The coefficients a;—ay define the
policy rule and each of these coefficients represents the elasticity of the policy reaction function to one of

the vanables of the model.

(13) The Model in Vector Form

In vector notation one may write the equations of the model in the following way. Equations (63)<(65)

form a block of three static equations that I describe in vector notation in equation (71);
7))  AX, + A,Z =0.

The equations, (66) — (70) form a separate dynamic block:

(72)  AX,yy +AZ, +AX +AZ +Aju,, +Agl + AgX = 0.

Since A, is of full rank, one may use equation (71) to write the vector X as a function of Z:

(73) X, =Mz M=-A"'A,.

12
Similarly, one may obtain an expression that relates the errors e* to the errors 2.

(74)  &f = Me?.

Using equations (73) and (74) one may replace X and &* in (72) and solve for a set of equations in the

state variables:
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(75) Z‘+1 = let + J2ut+1 + J38tz+1
where the matrices J;, J; and J; are defined in equations (76):

Ji=-(A, _A3A1_1A2)_1(A6 "A7A1—1A2 ),
(76)  J, =—(A,~AA,T'A)TTA,,
J; =—-(A, _AaAl_IAz)—l(Ag —ASAI_IAZ).

So far I have shown that the equilibria of the model must obey a set of stochastic equations in which the
disturbances to these equations are of two kinds, fundamental disturbances and forecast errors. If the
equilibrium of the model was unique then one would be able to solve for the forecast errors £ as functions
of the fundamentals by solving the unstable roots of the matrix J; forwards. The technique for solving
rational expectations models in this way is, by now well known, and is described in some detail in the work
by King Plosser and Rebelo (1984). In the case that [ will be studying in this paper however, all roots of J,
are inside the unit circle and the standard approach breaks down. Instead, one is free to pick two sunspot

variables each period. These sunspot variables, defined by the equations:

© m 1 L — 1
) g8y Tt A8y tapgy, t apel, = ey,

c k y m L i) - 2
(78) B T A8yt A8, t a8, tapEl;, +oagEl, = ey,

are equal to the forecast errors of the two expectational Euler equations, (44) and (45). In addition to the
equations (77) and (78) one also has information about three of the elements of the vector & that must hold

in a rational expectations equilibrium;

(799 €&, = o0, (80) &Y, = ul,, @81 el = ui,.

t+1

Equation (79) says that the forecast error on capital is zero. This follows from the fact that capital at date
t+1 is known at date t. Equations (80) and (81) state that the forecast errors for the productivity shock “V”
and for the interest rate “I” are equal to the true disturbances; these equations are an implication of the
rational expectations assumption which implies that agents know the probability distributions of the
fundamental shocks. In matrix form, equations (77)(81) can be written as a single equation that describes

the conditional forecast errors &” as a function of the fundamental errors u and of the two sunspot errors, e:

(82) 8tZ+1 = Hsu,,, + Hge,,,,
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where the matrices Hs and Hg are defined in appendix A. Using equation (82) one can rewrite the

stochastic difference equation (75) as follows:
(83) Z, = JIZ! + J4ut+l + JSeHl’

where the details of the algebra, together with the definitions of the matrices J4 and Js are again explained in
appendix A. In the following section I will discuss the role of indeterminacy in this model and I will show

how one might compute a solution.

(14) Indeterminacy and Equilibrium
In this discussion I will focus on the case of a perfect foresight model in which the policy rule is to set the
rate of interest equal to a constant. In this case the dynamic equations (83) can be reduced to a non-

stochastic system of difference equations in the three state variables, ¢, k and p. Let us write this system as
(84)

where Q is the subset of J; associated with the vanables c, k and p. It is relatively easy to show that, under

interest rate control, the matrix Q has the special structure:

Q0
(85) Q—[q2 0}

where Q, 1s a 2x2 matrix associated with the real variables ¢ and k and q, is a 1x2 vector that feeds the
changes in the real economy back to the money growth rate. Since the matrix Q has a zero root, interest
rate control leads to an indeterminacy of the price level. The real variables ¢ and k are determined by the
upper left block of the system (85), but the initial value of money growth rate is free. Since the value of
real balances (the ratio of lagged money to price) can be described as a function of ¢ and k, the

indeterminacy of the money supply implies that the price level is also indeterminate.

The fact that interest rate control may lead to indeterminacy is relatively well understood and has been
widely discussed by previous authors, although typically the literature on the indeterminacy of an interest
rate peg has focused on the case in which the real part of the system is determinate; in other words, most
existing literature has studied the case in which Q; has two roots that split around unity in absolute value.
The fact that these roots spilt around unity enable one to use standard techniques to solve the unstable root
of the system forward to find consumption as a function of capital. In this case, although the price level is
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indeterminate, interest rate control leaves the real variables of the economy uniquely determined. The
novelty in this paper is to parameterize the economy in such a way that the roots of Q; are both inside the
unit circle and thus there is a real indeterminacy in addition to the nominal indeterminacy that follows from

interest rate control.®

Some mtuition for indeterminacy and a sketch of a proof can be gleaned by studying the static equations
(63) — (65). In the following discussion I will focus on the special case of the utility function described by
equation (86).”

1-p 1-p
(86) u="_ (M) L,
I-p P

If one uses the production function, equation (63) to eliminate GDP from equations (64) and (65) one can
think of the resulting two equations as demand and supply equations for labor and for money. Consider
first, equation (64), the first order condition for labor, and suppose that the labor market is decentralized.
In this case one can think of a household equating the slope of its indifference curve to the real wage and a
firm equating the real wage to the marginal product of labor. The log linear form of these demand and

supply equations, for the utility function given by (86), are given in equations (87) and (88):

(87) (1- p)log(T) +plog(c) +xlog(L) = log(o)

¥ The reason for this real indeterminacy is somewhat different from the cases that have been studied in recent work
by Benhabib and Farmer (1994), Gali (1994), Beaudry and Devereux (1993) and other authors who rely on
increasing returns to scale. In the model that we are analyzing in this paper we assume that the technology
satisfies constant returns to scale; the indeterminacy follows purely from an interaction between the real and

nominal parts of the economy.

® The utility function described in equation (86) is rich enough to display indeterminate equilibria and to illustrate
the mechanism by which it occurs. It is not rich enough to fit all of the features of the data however since, when
the function in (86) is parameterized in a way that displays an indeterminate equilibrium it implies that the share
of social resources lost by the use of money should be of the order of 50% of GDP. The actual number is closer to
1%. Equation (86) also implies that the interest elasticity of the demand for money should be equal to one whereas
estimates by Hoffman, Rasche and Tieslau (1995), based on the cointegrating coefficient of the rate of interest and
the velocity of circulation suggest that this parameter should be closer to one half. The complications introduced in
equations (19)-(22) retain the possibility of indeterminacy but allow the model to capture these additional features
of the data.
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(88) (1-a)log(k) + (ax-1)log(L) = log(w).

In equations (87) and (88) I have used the symbol ™ to mean real balances (m + p) and I have dropped the
constant terms. Equation (87) can be thought of as a labor supply curve that is shifted by consumption and
by real balances. Equation (87) can be thought of as a labor demand curve that is shifted by the stock of
capital. Benhabib and Farmer (1994) studied a real model that is very similar to the model in this paper
and they showed that a necessary and sufficient condition for the roots of the corresponding dynamical
system (the analog of Q,) to be inside the unit circle was that the slope of the labor demand curve should be
greater than the slope of the labor supply curve. They demonstrated that one way in which this condition
could hold would be if the labor demand curve were to slope up because of extemalities in production. In

the present context this would be equivalent to assuming that the parameter a is greater than one.

The magnitude of the increasing retums required in the Benhabib Farmer paper has been criticized by a
number of authors since returns to scale just don’t seem to be that big.10 However, a similar route to
indeterminacy follows in a monetary model in which the production function satisfies constant retums to
scale. To see this I am going to show that, if one uses equation (65) to eliminate real balances from
equation (64), that the reduced form of the labor market equation (equations (87) and (88)) may satisfy
exactly the Benhabib Farmer indeterminacy condition even if the technology satisfies constant retumns to
scale. From equation (66) it follows that the logs of money, consumption and employment are related to

the rate of interest;

(1+X)

(89)  log() = log(c) + —log(L) - Liog(1).
P P

Equation (89) is the analog in this model of a “demand-for-money” function. If one replaces (89) in (87)
then the modified labor supply curve has the form:

(90) log(c) - —(l;—p)log(l) + (HTX - 1) log(L) = log(co).

Equation (90) is a reduced form that combines the money demand and labor supply equations together. In
this reduced form equation, the “labor supply curve” can slope down instead of up because of the effect of
real balances on employment. If one solves for real balances from the block of static equations (63)-(65) to

leave two “reduced form equations” in GDP and labor supply, these two reduced from equations have

'* See for example the papers by Basu and Fernald (1995) and Burnside, Eichenbaum and Rebelo (1995).
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exactly the same structure as the Benhabib Farmer real model. Furthermore, when the utility function is
parameterized as in equation (86), the dynamic equations of the model also have the same structure as the
Benhabib Farmer real model. It follows that, the condition for indeterminacy remains the same; that 1s, the
labor demand and supply curves should cross with the “wrong slopes” and the labor supply curve should be
steeper. Whereas in the real model this occurs when the labor demand curve slopes up, because of
externalities, in the monetary model demand and supply can cross with the wrong slopes because fhe
reduced form labor supply curve slopes down . The parameter configuration that leads to this possibility 1s

given by equation (91):

©1) 1—a<(1—1+x), (”X)».
p p

When a is equal to 2/3, indeterminacy requires a small value of % (elastic labor supply), and a value of p
well within the range that is considered acceptable from estimates of the intertemporal elasticity of
substitution reported in the literature on calibration. For example, if one sets 4 = 0, the value consistent
with Gary Hansen and Richard Rogerson’s model of indivisible labor, indeterminacy occurs if the

parameter p is greater than 1.5.

(15) Calibrating the Model

I have argued that a model, close in form, to the RBC model can display indeterminate equilibria and I have
suggested that a model, parameterized in this way, might help one to explain the data. In this section I am
going to calibrate a model of this form and I am going to use the calibrated model to simulate data and to

compare the simulated data with actual data from the US economy. The example that I will use in the

Table 1: | Value Definition

0.66  Labor’s Share

0.06  Annual Depreciation

0.928  Annual Rate of Time Preference
0.01  Per capita Growth Rate

0.7 Autocorrelation of productivity shock
1.42  Intertemporal elasticity of substitution

0 Inverse labor supply elasticity

X D 4% = W o K

calibration exercise is more complicated than the functional form in equation (86) since one requires

additional flexibility in order to capture the fact that the share of social resources lost by using money 1s
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relatively low. Table 1 lists some of the parameters that appear in real models and lists the values of these
parameters that I have used in the simulations that I will report in the paper. Most of these are relatively
standard, and are similar to the values used in other calibrated models. The parameters o, d, B and y are
chosen to match long run features of the data. The parameter % is the inverse labor supply elasticity and
the choice of y = O implies an infinite labor supply elasticity. It is well known that highly elastic labor
supply is necessary in this class of models to match the observed employment volatility and the choice of y
= 0 is typically justified by appealing to the arguments for indivisible labor in Hansen (1984) and Rogerson
(1988). The choice of p = 1.42 corresponds to a model that is non separable in leisure and consumption —
the value p =1 would imply logarithmic preferences. A value of p somewhat higher than unity is necessary
in this model to generate indeterminate equilibria. Table 2 lists some of the first moments of the data that

are implied by the real parameterization described in table 1.

Table 2: | Model  Data
cly 0.81 0.80  Consumption income ratio
y/k 0.35 0.44 Income capital ratio
L 1.21 Labor supply
r .06 .06  Real interest rate

The consumption income ratio is higher than is usually reported because the consumption variable used in
this study includes government consumption. The time preference factor of 0.928 was chosen to match the
real interest rate of 6% and, as a consequence, the model reports a lower ratio of GDP to capital (0.35 as
opposed to 0.44) than exists in the annual data. [ have not reported labor hours in this study because the
value of 1.21 reported from the model is unit dependent. The function V(L) contains an arbitrary constant
that can be chosen to fit any observed value of L and the choice of this constant is equivalent to picking the
units of measurement of hours; by the same reasoning, the production function can contain a normalizing

constant that I have omitted in the paper.

Table 3: | Value Definition
a 0.0002  Share of money in X
b 0.00015 Share of money in W

A 25 Substitutability of money for consumption and leisure

In addition to the real parameters of the model, the utility function contains three additional parameters that

determine the properties of the monetary features of the model. These parameters are reported in table 3.
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Table 4: | Model
y/m 6 Velocity of circulation
& 0.4  Interest elasticity of money
I .01  Nomunal interest rate
m/y 0016 Resource cost of using money

To calibrate these parameters in practice I picked values for a and for A in a manner described below and I
restricted b so that the predicted values of the velocity of circulation and of the interest cost of holding
money would fit the numbers reported in table 4. I have not reported the actual data on the rate of interest
and the velocity of circulation in this table because the data is non-stationary and it makes no sense to

average them to obtain a single statistic.

0.15-

0.10

0.05-

0.00

30 35 40 45 50 55 60 65 70 75 80 85

— Interest rate
--+- M1 velocity

Figure 1: The Interest Rate and the Velocity of Circulation

Figure 1 graphs the data on the rate of interest (the six month commercial paper rate) and the velocity of
circulation from US data from 1929 through 1988. The interest rate ranges from half of one percent to
thirteen percent and the velocity of circulation from two to seven. The model contains a stationary
balanced growth path only for a fixed interest rate policy and the fact that the interest rate was increasing
over the sample period implies that the balanced growth of the model was itself shifting. I have handled
this non-stationarity in the data by picking an arbitrary point around which to linearize the model and I
have picked this point to lie within the range of observed interest rates in the data.
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A second complication arises in deciding the appropriate nominal rate of interest to use. The correct
concept from the point of view of the model is the interest lost by holding M1 as opposed to some other
interest bearing asset that has no use in exchange. Since a substantial component of M1 bears interest, the
six month commercial paper rate undoubtedly overstates the opportunity cost of holding money. In
calibrating the model I have erred on the side of caution by picking parameter values that imply that the
first order effects of using money are relatively small. I chose a value for the opportunity cost of holding
money of 1% and a value of the velocity of circulation of 6. Together, this parameterization implies that

the resources lost by a representative agent through using money was equal to 0.16% of GDP.

Table 4 also reports a value for ¢, the interest elasticity of the demand for money. To compute this
statistic for the model one can show that, in the steady state, the velocity of circulation predicted by the
model is a function of the rate of interest. The number ¢; reported in table 3 is the elasticity of this function
evaluated along the balanced growth path. The corresponding statistic reported for the data comes for
recent evidence of the demand for money that is based on the long properties of velocity and the rate of
interest. Recent work, for example, by Hoffman, Rasche and Tieslau (1995) places the value of g; at

around 0.5.

The process by which I calibrated the model parameters was to pick values for A and a and to fix b so that
money’s share of GDP (1y/m) would be equal to 0.16% along the balanced growth path. I then used a
computer to simulate impulse response functions for four variables in a manner described in the following
section. Given the theoretical impulse response functions I experimented with different values of %, p, a
and A, to match the observed impulse response functions as closely as possible whilst keeping the interest
elasticity of the velocity of circulation, (the statistic €;) within the range 0.3-0.6. In theory &; depends on
both a and A, but in the relevant part of the parameter space it is determined mainly by the parameter A that

measures the elasticity of substitution between money and consumption and labor supply.

To fix the parameters of the interest rate rule I experimented with two different sets of assumptions. The
first was to set all of the feedback coefficients, a,o— a;s equal to zero. The second was to estimate a
regression of the rate of interest on lagged values of the endogenous variables in time series data and to use
these estimated coefficients in the model. In practice, the only coefficient that made much of a difference to
the dynamic properties of the simulated data was the coefficient ay, that represents the response of the
interest rate to its own past values. In the simulations reported below I set a,, equal to its estimated value

of -0.5 and I set all of the other coefficients of the policy rule to zero.

23



In practice the shape of the reported impulse response functions was not overly sensitive to the choice of A
and I chose a value of A = 2.5 to fix g at 0.4. Given this choice of A I found that the shape of the impulse
response functions in the data was extremely sensitive to the choice of p and a. The parameter a is
restricted to a relatively small range from around O to 0.0004 in order to maintain a positive value of b and
to simultaneously match the money share statistic (im/y) of 0.16%. The following section describes the
way that I computed impulse response functions from the model and it describes data that was generated

for the parameter choice reported in tables 1 and 3.

(16) Computing Vector Auto-Regressions

This section describes how I picked the variance covariance matrix of the shocks to the model and it
addresses the methods that I used to pick the key parameters p and a. The choice of these parameters was
geared to address a particular question. Suppose that an econometrician were to be given a particular
subset of the data generated by my model, how closely would the artificial data resemble the actual time
series on the same subset of variables? The subset that I wish to study is one that was originally
investigated by Chris Sims; the US data on price, GDP, the rate of interest and the stock of money. The

analogues of these vanables that I will use in this discussion are the variables, s,, defined below:

<

-

(92)

_!ﬂ
[
= 2R

i

These variables can be descnibed a linear function of the state vector;
93) s, = D,Z, +D,X, = (D,+D,m)Z, = D,Z,.
where the matrices D;, D, and D; are defined in appendix A. The vector s, consists of deviations from the

balanced growth path of GDP, real balances (lagged money divided by current price), the rate of interest
and the money growth rate.

Let us suppose that an econometrician were to run a vector autoregression using two lags of GDP, real

balances (defined as in the model) the rate of interest, the rate of money growth and a time trend.'" Let the

' Since the set s, does not contain observations on the auto-correlated productivity shock, a first order vector

autoregression would not be sufficient to recover the dynamics of the underlying model. However, by rewriting the
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estimated varnance covariance matrx of the residuals from an autoregression of this form be denoted .

The estimated values of €, from a VAR of this form on post war US data 1s given in table 5.

Table 5: Estimated VCV | GDP Real Interest Money
Matrix of Residuals x10° Balances Rate Growth
GDP 19.17 2.00 0.618 0.798
Real Balances 2.00 10.00 -0.33 -3.26
Interest Rate 0.618 -0.33 0.787 -0.602
Money Growth 0.798 -3.26 -0.602 14.39

If the data were generated by the model described in this paper then one could recover the VCV matrix of
the underlying shocks from the VCV matrix of the residuals, since the true errors on the equations of the
vector autoregression are a linear function of the error vector {u,e}. The relationship between the VCV
matrix of {u,e} and the VCV matrix of the true residuals in 2 VAR is given by equation (94):

(94) Q=(,),[.7) ",

where the superscript T denotes transposition and the definition of the matrix D, is given in the appendix.

Table 6: u' o’ el e’

VCV matrix Productivity Policy First Second

of errors x10° shock shock sunspot Sunspot
u' 17.11 -0.604 17.70 24.50
u’ -0.604 0.787  -0.522 -0.837
e’ 17.70 -0.522 25.81 25.40
e’ 24 .50 -0.837 25.40 35.09

Table 6 reports the VCV matrix of the shocks that is implied by my estimate of a vector autoregression for
the parameterization reported in tables 1 and 3. In both cases tables 5 and 6 multiply the actual numbers
by 10°. This table can be used to interpret the residuals to the VAR in terms of the corresponding

structural shocks. Notice that three of the diagonal elements of this matrix are relatively large and of a

unobservable variable V, as a function of the first difference of the observable variables L,, Y, and K,, one can

show that a vector autoregression with two or more lags would recover the underlying dynamics.
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comparable order of magnitude; these diagonal elements represent the productivity shock and the two
sunspot shocks. The fact that these three elements are large implies that the model ascribes a relatively

important role to the productivity shock, but it also implies an important role for sunspots.

In addition to relatively large diagonal elements for each of the sunspot shocks notice that these two errors
are also highly correlated with the fundamental shock u'. The fact that the off-diagonal elements that

represent these shocks are also large implies that individuals “over react” to fundamentals.

(17) Simulated Data

This section reports some sample statistics from annual US data and it compares these moments with
sample statistics from a single series of sixty observations simulated from the model. The simulated data
was driven by a vector of four normal i.i.d. random variables with the variance covariance matrix Q,

described in table 6.

Table 7: Simulation Data
standard s.d standard s.d
deviation relative to deviation relative to

GDP GDP

Consumption 0.09 0.47 0.09 0.75

Capital 0.22 1.15 0.08 0.66

Interest rate 0.01 0.05 0.02 0.16

Productivity shock 0.04 0.21 0.07 0.58

Money growth 0.04 0.21 0.06 0.5

GDP 0.19 1 0.12 1

Employment 0.20 1.05 0.08 0.66

Real balances 0.10 0.52 0.25 2.08

Table 7 reports the standard deviations of the variables used in the study and their standard deviations
relative to GDP together with the standard deviations of a single simulation of the model. Figures 2
through 8 graph the US data and the model simulation. These graphs give an impression of the dimensions
in which the model succeeds at generating business cycles, and the dimensions at which it fails. I have
assumed implicitly that the data is generated by the same process for the entire period from 1929 through
1988. In fact there 1s considerable evidence that this assumption is false. The magnitude of the residuals in
the prewar period is quite a bit greater than in the post war period. The simulated data behaves a lot more
like the pre war business cycles, at least in magnitude. Consumption, in the simulations, is too smooth and

it is not as highly correlated with GDP as the actual data. Employment, on the other hand, is too volatile.
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Figure 8: Real Balances and GDP

Capital has the same long slow swings in the simulation that we see in the data, but it has the wrong phase
and is much too volatile. Figure 3 illustrates that in the US data capital lags GDP whereas in the long
swings in the simulated data it leads the cycle.

(18) Impulse Response Functions

To get a better understanding of how the dynamic properties of the simulation compare with the dynamic
properties of the data I have computed the theoretical impulse response functions that would be observed in
a four variable vector auto regression using data on GDP, real balances, the interest rate and money
growth. I have picked one particular ordering, {Y,m,Iu}, and I have plotted the theoretical impulse
response functions computed from the model on the same figure as the estimated impulse response
functions from US data. The VAR for the US used two lags of each of the variables together with a time
trend and the estimated residuals from the VAR were used to compute the theoretical variance covariance

matrix of the model shocks as reported in table 6.

Figures 9-12 report the results of this experiment. In each case the solid line is the estimated impulse
response function and the short dashed lines represent two standard error bounds. The lines with long
dashes are the theoretical impulse response functions from the model. Notice that, in every case, the
theoretical impulse response functions and the estimated impulse response functions begin at the same
point; this is by construction since I have chosen the variance covariance matrix of the shocks in such a
way that the model generates residuals for the simulated data that has exactly the estimated variance
covariance matrix as the data. Seven of the sixteen model impulse response functions lie within the two
standard error bounds from the data in every year, a further four lie within these bounds seventy or eighty
percent of the time. Even the impulse response functions that do relatively poorly have the right qualitative
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shape. Consider for example, the response of GDP to a GDP shock; the top left panel of figure 9. In this
graph the simulated impulse response function lies outside of the two standard error bounds in every year,
Nevertheless: the broad qualitative picture is correct; GDP increases slowly to peak and then cycles back to
the balanced growth path. In my experiments it proved possible to choose parameters in a way that would
match the impulse response to a GDP shock perfectly by lowering the parameters “a” and “p”. The cost of
this, however, was to make the fit of the impulse response functions to money growth and to real balances
much worse. The numbers that I reported in the final simulation were a compromuse that was designed to

minimize an implicit metric that paid attention to all four sets of graphs.

(19) Conclusion

In earlier work I have argued that general equilibrium models with indeterminate equilibria may be useful
tools to help us to understand the mechanism by which real and nominal shocks are propagated over the
business cycle. In this paper I have provided some quantitative support for this assertion by constructing a
complete general equilibrium model and by comparng the equilibrium of the model with actual data. The
model does a relatively good job of capturing the long slow humped shape responses that we see in actual

data; and it accomplishes this task with a minimum of assumptions.

Alternative explanations of monetary dynamics all assume some artificial barrier that prevents agents from
engaging in a mutually beneficial action. An example of the kind of model I have in mind is the nominal
contracting model of Taylor (1979), in which the nature of the contracts remains unexplained, or the
financial constraint models of Christiano and Eichenbaum (1992) in which agents are prevented from
carrying out their transactions in an order that they would prefer. All of the models in this class suffer
from two significant defects. First, they do not motivate the environment of the model in a way that
explains why agents would choose to act in the ways that they do. Second, even if one accepts the
assumptions that motivate the environment these models are s#ill unable to explain the persistence of
nominal shocks. Although the impulse response functions that I reported in this paper occasionally stray
outside of the standard error bounds of the data, they are several orders of magnitude closer to the actual
data than the monetary dynamics implied by simple contracting models or by cash in advance models with

a determinate steady state.

Contrast the class of models that maintain determinacy, but add an artificial barrier to market clearing,
with the approach that I have taken in this paper; an approach that uses standard general equilibrium theory
amended to include a role for money in a way that was first suggested by Patinkin nearly fifty years ago.

By parameterizing this model in a way that allows for the possibility that beliefs may influence outcomes I
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have shown that one is able to use standard equilibrium theory to understand monetary dynamics. It is
unlikely that the model in this paper will be the last word on this topic; but I hope to have convinced the

reader that the approach has considerable promise.

33



REFERENCES

Basu, S. and J.G. Femald. 1995. “Are Apparent Productivity Spillovers a Figment of Specification Error?”
Journal of Monerary Economics, 36: 165-188.

Beaudry, P. and M. Devereux. 1993. “Monopolistic Competition, Price Setting and the Effects of Real and

Monetary Shocks,” University of British Columbia, Department of Economics Discussion Paper 93-34.

Benhabib, J. and Farmer, R. E. A. 1994, “Indeterminacy and Increasing Retums,” Journal of Economic
Theory 63, (1994), 19-41.

1995. “The Monetary Transmission Mechanism,” Centre for

Economic Policy Research, Discussion Paper No. 1404.
Bennett, Rosalind. 1996. Ph.D. Dissertation UCLA.

Bumside, C., M Eichenbaum and S. Rebelo. 1995. “Capital Utilization and Retums to Scale,” NBER

Macroeconomics Annual: 67-110.

Christiano, L. J. and M. Eichenbaum. 1992. “Liquidity Effects Monetary Policy and the Business Cycle,”
Institute for Empirical Macroeconomics: 70, 1992, 346-353.

Cooley, T. and G.D. Hansen. 1989. “The Inflation Tax in a Real Business Cycle Model.” American
Economic Review 79: 733-48.

Fuerst, T. 1992. “Liqudity, Loanable Funds and Real Economic Activity,” Journal of Monetary
Economics: 29: 3-24.

Gali, J. 1994. “Monopolistic Competition, Business Cycles and the Composition of Aggregate Demand,”
Journal of Economic Theory: 63: 73-96.

Hansen, G.D. 1984. “Indivisible Labor and the Business Cycle,” Journal of Monetary Economics: 16:
309-27.

Hoffman, D.L., R.H. Rasche and M A, Tieslau. 1995. “The Stability of Long Run Money Demand in Five
Industnial Countries,” Journal of Monetary Economics, 35: 317-40.

King, R,G, C.I. Plosser and S, Rebelo. 1988. “Production Growth and Business Cycles: I. The Basic
Neoclassical Model,” Journal of Monetary Economics: 21: 195-232.

King, R.G., CI Plosser, JH. Stock, and M. Watson. 1991. “Stochastic Trends and Economic

Fluctuations,” American Economic Review: 81: 819-40.

34



Lucas, R,E, Jr. 1990. “Liquidity and Interest Rates,” Journal of Economic Theory, 50: 237-64.

Rogerson, R. 1988. “Indivisible Labor, Lotteries and Equilibrium,” Journal of Monetary Economics: 21:
3-16.

Taylor, J. 1979. “Staggered Price Setting in a Macro Model,” American Economic Review 69: 108-13.

35



Appendix A

Derivation of the Balanced Growth Path

This section contains an algonthm for computing a steady state of the model for the case when the utility
function 1s parameterized as in equations (19) — (22). For this choice of utility function, the steady state
equations (49) and (50) take the form:

al) L+ 0L (g )™ _ oyt

ga*) P+l (- 1)f(q*)' P(1-b)  L*c*’

#YP KA — 1)L *1+* )P kA ~
2) ag(q*) "q** +(p-1) fla*) q LI

82" (1-a) + L (p- 1)1~ b)f(g %)

where the variable q* is defined as

u*m*

a3) q*= o

and the functions f( ) and g( ) are defined as:

b * * B
a4) W(C 70“* m ) = f(q *) = [(1 _ b) + bq *K—l]l_x ,
X(c* * * 1
as) (c :* m ) =g(q*) = [(1—a)+a*q*H]H,

The following steps exploit the structure of equations al) and a2) to demonstrate the existence of a

balanced growth path.

Step I. Use equation (52) to define p*

«_ BY°
S

Step II: Define the steady state ratio of output to capital from equation (53);

yro_(f b
) (B 1+5)(1_a).

Step III: Use equation (51) to compute the steady state ratio of consumption to capital.

36



c* y*
a8) F=T(—*+1—Y—5.

Equations a7) and a8) also imply a value for the steady state consumption-GDP ratio:

* * k %
SENE ]
Step IV: For given y* and c*, equations al) and a2) are a pair of simultaneous equations in L* and q*.

Rearranging al) it follows that:

1+

_ g(a®) " aly*/c¥)
[(l +0)f(@9)™ = (e-1)(1-bJafy*/e *)]f(q )"

al0) L*

Substituting a10) in a2) and rearranging leads to:

e =0t e e 2 g

In the following analysis we treat only the case A>1. For this case it follows from the properties of f( ) that

H(0) = 0, lim__,., = coand further, H(q) is monotonically increasing for positive q. It follows that there
exists a unique value q* for positive I . The value of L* is then given by equation a10).

Step V: Since H(q*) is monotonic it is invertible and one can express q* as a function H "(T). One can

then solve for the velocity of circulation:

* *
al2) y* _ 1 y*
p*m* H-I(I)c*

Note that y*/pu*m* , rather than y*/m*, is equal to velocity since m* is the ratio of Jagged money to the
price.

Definition of the Co-efficients a,—a;s

The following equations define the coefficients of the linearized equations (64) — 70) in terms of the
parameters of the utility function. The elements of & and D are all evaluated at the steady state
{C*7y*’m*7L*’“’*,k*}'

al =6Lm _acm a'2 =1—(8Lm_6cm) a3 =1+(5LL _SOL)
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3, = ———=
Y

alO =—(1+60m)

a; =1+8,,

a5 = -0,

Definitions of the Matrices A;—A,

_ [3(1 —a)y*

y Pk *

This section writes out each of the terms in equations (71) and (72) in full. These definitions are to assist

in constructing the Gauss code to compute an equilibrium numericaily.

0 0
0 ap
AXiy = |ag ay
0 o
0 0
[a, O
0 -ap
AX,={0 -a,
0 O
a9 Ay

T

=1

;A

<,
~(1-a) 0 -1 o]k,
0 0 a1 Tt s
-1 0 a, ||V,
5.
1 00 0 ]G]
0 00 ay kH-[
—a, 0 0 ag||Ly |,
o o010 ||V,
o 100 g,
a, 0 0o o [&]
0 a, 0 ay [k
0 0 0 -a,|lT |,
o0 £ o0 ||V
A3 Ay 5 Ay ﬁ,_




0O o0 0
0 0 . 0
u
AU, =0 0 [;"‘}, Al = |-ag
_1 0 ut+l O
0 -1 0
0 0 000 JlEm
-a, 0 0 0 -ay Sfu
A98tz+l = |-a;; a 0 0 -ay 8:+1
0 0 000 gV
t+1
0 0 000 ‘_Stl+l_
Defining the Matrices J, and Js,
The equations (60) — (65) in matrix form can be written as:
al3) Hgef, + Hyelyy = Hyuy, + Hey,.
Each of these terms is written explicitly below:
0 1 00 0 ]|&m 0
0 0 100 |&u 0
Hely =0 0 01 0 |leg, H,el, =0
ag, 0 0 0 ay,flg) 0
(a5 2 0 0 a, gt‘ﬂ_ a3
[0 0] [0 0]
0 1|, 0 0lr,
u e
H,U,, =[1 O [ ;H} H,e,, =0 0 [ ;H:"
0 oY 1 ofLEm
[0 0] 0 1)

It follows that:

al4) szz+1 = HsUt+l + Hsetﬂ >

0

—ay,

—a

0
0

0
“ay
T
0

0

y
€4

t+1

m
t+1

where Hs and H; are defined below:

al5) H, = (H, + H,m) H,, alé) Hg = (H,+H,m) H,.

Replacing al4) in (75) one arrives at:
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al?l)  Z,,=),Z, +Ju,, +1se,
which is equation (83) on page 17. The matrices Js and J; are given by equations al8) and al9)
alg) J, = J, +J;H;,, al9) J, =J,H,.

Definition of the Matrices D;, D, D; and D,

This section defines the matrices D,-D4 and derives the relationship between the VCV matrix of the
residuals of a VAR on the variables Y,i,u and M/P and the VCV matrix of the underlying disturbances
vector {u,e}. First define the matrices Dy and D, as follows. These matrices select the vanables for the

VAR according to the linear equation:

220) s, =D,Z, + D,X,.

O O O O
o - O O
o O © O
- o O O
o O O -
o O O O
o O = O

But since X is a linear function of Z we can use the definition of the matrix M from equation (73) to write

st as a function solely of Z;:

a21) s, = D,Z,, D, =D, + D,M.

Define the VCV matrix of {u,e} as Q. The innovations in Z are equal to:

a22) z, -E[z,] = Jﬁ[u‘]

€

where the matrix J is the 4x4 matrix obtained by concatenating the matrices J4 and Js given in a18) and

al9). Using this notation, the innovations in s, can be written as a linear function of the disturbances {u,e}:

a23) s, - E[s,] = D,(2, - E[z.]) = DJ{E'}.

t

The matrix D, referred to in equation (94) is then defined as: D, = D,J,.
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