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Abstract

With few exceptions, auction theory takes as given the information bidders
have about each other and about the object being sold. We present a general
framework in which to discuss the acquisition of information on the part of
the bidders. This work will show that

i) different auction forms give different incentives to acquire information.
Specifically, a first-price auction gives higher incentives than a second-price
auction to acquire information that is positively correlated with the oppo-
nent’s bid. This is because in a first price auction it is valuable to bid close
to the opponents, to minimize the sum paid when winning: in a second price
this is immaterial, because the price paid does not depend on the winner’s
bid. Hence a piece of information that allows to bid closer to the opponents
is more useful in a first price than in a second price auction.

ii) the different incentives to acquire information may overturn the well-
known Milgrom and Weber result stating that a second-price auction dom-
inates a first-price in terms of revenue to the seller. The force driving this
result is that, as we have seen, a first price auction encourages acquisition
of information correlated with the opponent’s signal. This will result in a
highly correlated information structure in a first price auction, relative to a
second price. But, in a pure common value setting, bidders with very corre-
lated information will compete away most of the surplus from each other (in
this case, an auction closely resembles a Bertrand game), so the difference
in the endogenous information structures can result in the first price auction
revenue-dominating a second price.

In addition, we trace the connection between revenue-ranking and incen-
tives to acquire information: in a large class of mechanisms, the higher the
revenue to the auctioneer, the lower the incentives for the bidders to acquire

information.
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1 Introduction

With few exceptions, auction theory takes as given the information bidders
have about each other and about the object being sold; much of this literature
is concerned with comparing bidding behaviour and revenue to the seller
across different auction forms, for a fixed information structure. This work
will argue that bidders’ incentives to acquire information in the pre-bidding
stage vary across auction mechanisms, and presents a general framework
suited to compare these incentives across a variety of auction forms.

1.1 Theoretical motivation: Endogeneizing the infor-
mation structure

The philosophical assumption of most of information economics is that asym-
metric information of agents generates many interesting economic phenom-
ena. The agents’ information structure has almost always been assumed
exogenous, and beyond the control of a 'market maker’, or central planner:
indeed, mechanism design is the planner’s answer to the problems posed by
unyielding information structures. But if the planner has no control over the
agents’ information, from where does the information structure come? We
take a step towards realism, recognizing that the information structure is
not fixed: instead, it is agents that determine the information structure in a
game, before playing it. This has profound implications, because the exercise
of comparing two mechanisms with the same information structure - as in
mechanism design — begs the question of whether that (same) information
structure could possibly result from the agents’ own doing: we show that in
general this is unlikely. We evaluate the incentives for agents to acquire infor-
mation, and the way they depend on the mechanism they face: in this paper
we do this for auctions, and view this as part of a larger research project on
endogenous information structures in economic models.



Wowanrt: e i et IR W 8 B b, B " b et Sl -

1.2 Descriptive motivation: modeling R&D in defense
procurement

Weapons procurement is an important economic activity: $80 billions of
the U.S. Department of Defense’s (DoD) budget were devoted to weapons
procurement in 1992, roughly half of which was used to subsidize R&D of
defense contractors. It is generally acknowledged that one of the most im-
portant features of the procurement activity is DoD’s objective of inducing
R&D on the part of contractors. Bidding in procurement is commonly under-
stood as a way of providing incentives for individual contractors to perform
R&D: directly to condition the award of a contract on the quality of the
project (or amount of R&D) is often impractical, either because this may be
non-verifiable, or because of the political difficulty of awarding a contract to
anybody but the lowest bidder. So we ask the question: if a contract can be
awarded only on the basis of price, which is the mechanism that gives greater
incentives for firms to perform R&D?

The idea is that firms will perform R&D in order better to compete in
the bidding phase. There is no difficulty in reinterpreting the acquisition of
information about the value of the object as a process of (stochastic) cost
reduction in the production of a weapon; at the same time, our model could
accomodate the notion of R&D as a process that allows better to judge one’s
own cost to produce the weapon. The simplifying assumption is that DoD can
force the winning bidder to provide the weapon at the agreed price. A first
price auction will induce more R&D than a second price, due to correlation
in the R&D activity, specifically to the fact that since firms are investigating
the cost of the same project, more investigation leads closer to the opponent’s
bidding. When this element of correlation is absent, and the R&D process
is just an independent process of private cost-reduction, the incentives to
perform R&D are the same in a first and second price auction (see Tan [13)).
But if a common component is present in the R&D process, a first price
auction should be preferred to a second price, if the main objective of DoD
is to maximize the amount of R&D performed by contractors. This could
explain the popularity of the first price format in procurement situations.



1.3 Normative motivation: Reversal of revenue rank-
ing

As we have seen, a first price auction encourages acquisition of information
correlated with the opponent’s signal. This will result in a highly correlated
information structure in a first price auction, relative to a second price. But,
in a pure common value setting, bidders with very correlated information will
compete away most of the surplus from each other. In this case, an auction
resembles closely a Bertrand game, and in the limiting case of perfect corre-
lation between signals, each bidders knows the same thing as his opponents.
In this case Bertrand competition will drive bidders’ surplus to 0. This is
the logic behind the following example.

This example shows how endogeneizing information acquisition may over-
turn the Milgrom-Weber revenue ranking result. We are thinking of the
two-stage game where first players decide simultaneously and independently
whether or not to acquire (almost perfect) information on the opponent’s
signal; then, without having observed the opponent’s choice, they engage in
competitive bidding.

Example 1 There are two players, 1 and 2, two identically distributed
random variables (signals) X, Xz, and i.i.d. random variables 7,7, (noise),
independent of X;, X, and with small support. Player ¢ is endowed with
information X;. The value of the object to player i is V; = X; + X,.!
Milgrom and Weber’s revenue-ranking result states that the second price
auction dominates the first price in terms of expected revenue.

Suppose now that player i can also covertly observe X; + 7, (acquire
information), at a small cost c.

In a second price auction he will not acquire if the opponent does not
acquire (see Theorem 5 below). Thus, the "no acquisition” strategy for both
players constitutes an equilibrium.

1The role of the 7 component is to guarantee each bidder a component of private
information that is unavailable to the opponent. This keeps the bidders’ revenue above 0
after information acquisition, which permits existence of an equilibrium with information
acquisition.



In a first-price auction, however, the no-acquisition strategy combination
is not an equilibrium, because each player will have an incentive to deviate
and acquire information at a small cost (acquiring the opponent’s signal al-
lows a bidder to minimize the money paid when winning, by bidding just
above the opponent’s bid). To show that the "both acquire” strategy combi-
nation is an equilibrium, let us consider the case in which both players acquire
the information on the opponent’s signal. Because of the noise component,
they will have a strictly positive expected payoff if c is small enough, and
acquiring always has a value in a first-price. Hence the strategies of acquiring
information and then playing the auction are indeed an equilibrium.

Compare now the two equilibria of the first and second price auction,
having taken into account the effect of information acquisition: the payoff to
the auctioneer is higher in the first-price auction compared with the second-
price. This is because the correlated information structure prevailing in the
former game induces a sort of Bertrand competition among players. Indeed,
as the noise component 7 converges to 0, the first price auction will extract
all surplus from the players. In the second price auction no such extraction
is possible: both players in equilibrium keep a substantial private informa-
tion element that they exploit to guarantee themselves some surplus. Thus,
when information acquisition is taken into account, the first-price revenue-
dominates the second-price in a common-value setting, thus reversing the
well-known Milgrom and Weber ranking result. o

1.4 The structure of this paper

This work is concerned with covert information acquisition. That is, players
simultaneously choose the accuracy of their signal, and they do not observe
the opponents’ accuracy choice before bidding. In contrast, some literature
has assumed that each bidder’s accuracy (though not the realization of their
signal) is disclosed before the bidding stage (overt information acquisition).
Our modeling choice seems appropriate because it is often difficult to gauge
other people’s information. Besides, overt information acquisition introduces
additional strategic considerations (like the possibility of punishing a com-



petitor for acquiring too much information) that make the analysis more
complex. The assumption that information gathering is covert allows us to
apply results developed in Persico [10]. There, a new concept of "better in-
formation”, A-order (Accuracy-order), was developed. A-order is a notion
tightly suited to affiliated decision problems: it captures the natural idea that
"more correlation with the unknown random variable is better”. Acquiring
information in Blackwell’s sense is a special case of this theory.

In section 2, we use this notion to present a model where bidders choose
the Accuracy of their signals. Subsection 2.1 introduces the model, and
Subsection 2.2 presents the results: Theorem 1, which ensures that Accuracy
is the correct notion of ”better information”, and Theorem 2, showing that
a first price auction gives higher incentives to acquire information than a
second price. Proposition 1 follows, giving sufficient conditions — given that
an equilibrium exists — for equilibrium Accuracy to be higher in a first price
than in a second price. Proposition 2 shows a family of cost functions under
which an equilibrium exists, and Proposition 1 applies. Finally, an intuition
for why a first price auction gives higher incentives to acquire information
than a second price is developed in subsection 2.3.

For the two most common auction forms, the one which gives higher
revenue to the auctioneer (second price) gives fewer incentives for the bidders
to acquire information. This is not a coincidence: in Section 2.4 we trace
this connection, and present several other examples of this dycothomy.

In order to validate our "money on the table” interpretation, Section 3
presents a different but related framework, one of discrete information acqui-
sition. By this we mean that the choice is whether or not covertly to acquire
the observation of an additional random variable. Here, the decision variable
is not a continuous one (Accuracy), but a yes-no decision. Subsection 3.1
presents the notation and the model. Subsection 3.2 treats acquisition of a
signal that is perfectly correlated with the opponent’s: Theorem 5 surpris-
ingly shows that there is no incentive to acquire such a signal in a second
price auction. Thus, again a first price auction gives more incentive than
a second price to acquire information that is very correlated with the op-
ponent’s signal. In Subsection 3.3, Theorem 6 shows that the incentive to



acquire a signal independent of the opponent’s is higher in a second than in
a first price auction. This confirms our intuition, since such a signal leads to
a bidding behaviour that is less correlated with the opponent’s. By resorting
to the discrete (two-signal) framework we have thus produced a phenomenon
that cannot be observed in the one-signal framework of Section 2, and further
validated our interpretation.

Section 4 concludes.

1.5 Related literature

The first cuts at modeling information acquisition in auctions belong to the
literature on information aggregation in market mechanisms. In 1981, Mil-
grom (8] p. 924 observed that in a second-price auction mechanism, "if a
bidder were informed of his price and extracted all the information which
his price conveys, he could never gain by revising his bid”.2 That paper
however did not pursue the question of information acquisition per se. In
the same period Matthews [7] analytically solved a model of endogenous in-
formation acquisition in first-price auction: before engaging in a first price
auction, bidders choose the precision of their signal, at a cost. That work
concentrated on information gathering with a large number of bidders.® An
earlier unpublished working paper (Matthews [6]) however, compared a first
and second price auction in terms of information acquisition and concluded
that, due to a special feature of the statistical structure used, the two auction
forms gave the same incentives to acquire information. The results presented
in this paper accommodate this very early insight.

In a recent work independent of our, Gaier [2] takes up Matthews’ prim-
itives, and finds that a first price auction will give stronger incentives to
acquire information than a royalty rate auction. 4 This result is presented
here as a part of Theorem 4. It is Matthews’ work, Gaier’s paper, and Hausch
and Li [3] that are closer in spirit to section 2 of the present work. In the

2Qur Theorem 5 is a rephrasement of this result, in a different context.

3This is a special case of the model presented in our next chapter.

4In a royalty rate auction the bidding units are not money, but the fraction of the
object’s value retained by auctioneer.



latter, the authors investigate in a general model the difference in the in-
centive to acquire information among all independent-private-value auction
mechanisms: they find none. We are able to show that the key to this result
is the independence assumption, as is made clear in Remark 2.

Hausch and Li then go on to analyze the case of overt information acqui-
sition. In this way they are able to generate an example where a first price
auction induces less information acquisition than a second price (although
the effect on the revenue depends on the number of bidders). The difference
between overt and covert information acquisition was pointed out in an early
paper by Magee (see [5]). He studied a common-value first-price auction in a
context where ”increasing information” meant choosing a better managerial
accounting system. Other ways to generate a difference in information acqui-
sition behaviour have been endogenous number of bidders, and multiplicity
of equilibria (see Tan [13] for an example where firms do R&D instead of
acquiring information).

Our work suggests that bidders’ information acquisition behaviour nat-
urally varies across different auction forms, and that the key to this phe-
nomenon is correlation. Thus, the results we develop here are quite different
from those in most of the literature: we do not rely on the number of bid-
ders, on their participation decision, or on the strategic incentive to acquire
information in order that the opponents can see that. While these factors
may matter in many economic situations, the results and the intuition we
present are inherent to the structure of the two mechanisms. As such, they
should be shared by a large number of information acquisition models.

2 Continuous information acquisition

In this section we shall be concerned with the question of which mechanism
(first or second price auction) induces more information acquisition, when
information is acquirable in a continuous fashion. For notational simplicity
we will present a two-player environment. However, all the results in this
section are valid in the n-player case.



2.1 The model

There are two players, 1 and 2, and an object up for auction, whose value
to player i is u; = u(V;,V;). The function u(:,-) is assumed increasing in
its arguments. V; and V; are random variables unobserved by the players.
Players share a prior on their distribution, with density g(v;, vs) where g(-,-)
is a symmetric affiliated density function. Player i observes a signal on the
true value of V;, X?, at a cost C(6). This signal is chosen from a family
{X?}ocp,00); Where @ is a real number, and X? is distributed according to
the density f%,(z; | v;). It is assumed that the family of signals is A-ordered.
Furthermore we require that f%(z | v) exhibits the monotone likelihood ratio
property. In our setting, this requirement is equivalent to affiliation of X?
and V;; given this statistical structure, all random variables in this model
are affiliated (see Theorem 1 (ii) in Milgrom and Weber [9]). Denote with
it(v;, ;) the expected value of the object to player i conditional on V; = v;
and Xj = Z;j. Formally, ‘&(‘U,‘,l‘j) = E(u(V.,V,) I ‘/, = ‘U,',XJ' = .’Bj).

The information acquisition game consists of two stages:

1) each player i chooses a 8;, independently from and simultaneously with
his opponent.

2) after having observed the realization of XY, but not the opponent’s
choice of 8;, each player casts a bid for the object.

We will assume that the density of X7 conditional on v; is ffg", (zi | w),
and that for each 6;,8,, the joint distribution of signals and value is

faloz(zl,xz,vlyvz) = f;’, (21 ] Ul)fggg(% | v2)g(v1,v2).

This model contains the case of independent signals (and hence inde-
pendent private values), when g(v;,v2) = g(v1)g(v2). Moreover, although
formally not a special case of the above model, all the results in this section
hold in the familiar mineral rights case, where V; = Vo = V. These can
be seen as the two limiting cases, when the correlation between signals goes
from 0 (independent signals) to a maximum (mineral rights).

Remark 1 In order more realistically to model R&D, consider the following
more general specification for the value to player i: u; = u(V;,V}, X;,6;),



where u(-,-,,-) is strictly increasing in its first argument, and nondecreasing
in its last three arguments.Thus, increasing Accuracy has a value-enhancing
effect, and receiving a high signal is good for the payoff. All the results of
Section 2 are unchanged when this additional element is introduced. o

Let us now introduce some notation, about the marginal benefit from
increasing Accuracy. The first piece of notation is for the marginal benefit
from increasing Accuracy starting from 6, when the opponent has instead
Accuracy 7 and moreover (wrongly) thinks the situation is symmetric at 7).
Let

AMR,,(n,0) := the marginal revenue from increasing 6 in
mechanism m (First or Second price) to a
player 1 that has accuracy 6 and best re-
sponds to a player 2 who has accuracy 7 and
plays the symmetric equilibrium strategy for
a mechanism m where both players have ac-
curacy level 7.

Let now
MR,,(0) := AMR,(0,0).
This is the marginal revenue from increasing Accuracy when both bidders
have Accuracy 6. We denote with MC() the marginal cost of increasing
Accuracy.

2.2 The results

The following theorem proves that A-order is the right concept of "better
information” for a first or second price auction: It says that increasing one’s
Accuracy is beneficial, irrespective of the opponent’s strategy and Accuracy
level. To prove this result, in view of the theory presented in Appendix A,
it suffices to show that one is facing an affiliated decision problem, when
playing against an opponent in a first or second price auction.

Theorem 1 Suppose that, in either a first or a second price auction, player
2 has accuracy level n and plays an increasing strategy b}(-), and player 1

9
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has accuracy level @ and plays his best response to b3(-). Then increasing 6
is beneficial to player 1 if the family of signals is A-ordered. In other words,
AMRF(n,6), AMRg(n,8) > 0 for alln,0.

Proof  See Appendix C. ]

The next theorem proves that — when at a symmetric equilibrium — the
marginal revenue of information is always higher in a first price auction than
in a second price, i.e. MRr > MRg.

Theorem 2 Suppose we are at a symmetric equilibrium of a first or second
price auction with a given information level 6; = 6 = 0, and suppose the

family of signals is A-ordered. Then MRy (6) > MRs(0) for all 6.

Proof  In view of theorem 8, it is enough to show that bg—lu‘,’;.(vl,xl) >

Milug(vl,a:l), where the index m = F, S refers to first and second price

auction, respectively. For a second price auction we have, at a symmetric
equilibrium,
l -~
u§(vr, 7)) = [ a9 - ()] fe v | vi)dy

A first price has

U%(Ul,ivl) = /_1 [ﬁ(vl,y) - b?(f'?l)] fg(,(y | v1)dy,
whence

z)
wh(vn,2) — wh(on,21) = [ () — Blen)] Sy | v0)dy
We need to show that Z-uf(v1,2:1) — 5o, uk(v1,21) is (QM). But this
expression is just

oo F& (x| v
) - # ) O e )
2
which is readily verified to be (QM) in vy, in view of affiliation. 1

10
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Remark 2 If V; is independent of V;, then expression (1) is independent of
vy, hence MRp(0) = MRs(6). Thus, independent signals imply that both

auction forms will give the same incentive to acquire information. <

A necessary condition for a symmetric equilibrium (6,6) is that MC(-)
intersects M Ry(+) from below in 6. Since Theorem 2 ensures that MRp >
MRg, we have

Proposition 1 Suppose a symmelric pure-strategy eguilibrium ezists for a
first and second price information-acquisition game. If MC(-) only intersects
MRg(-) once, then the equilibrium accuracy in the first price auction will be
higher than or equal to that in a second price auction.

Proof  Since an equilibrium for the second price game exists, it will be the
unique § where MC(6) = MRg(6). Moreover, since MC() only intersects
MRs(-) once, it must be that MC(6) < MRs(6) for all 6 < f. Theorem 2
gives that M Rg(-) < MRp(:), so we can write

MC(8) < MRs(6) < MRg(6) for 8 < 8.

Since MC(-) = MRpg(-) is a necessary condition for equilibrium, this inequal-
ity implies that the equilibrium accuracy for a first price auction is not lower
than 6. (]

The question now is which cost functions will fulfill the requirements of
the above Proposition. A cost function of the form

C(6) = K6°

will certainly meet all the requirements for an a high enough. Indeed, as
a grows, this cost function converges to one that is 0 for 8 € [0,1) and
is infinite for 8 > 1. We are thus guaranteed a unique upcrossing for both
MR,, functions at ,, near 1, and that MC(6) < AM Rm(ém, 6) if and only if
0 < 0,n. That an equilibrium exists for both games is implied by the specific
functional form of C(-), which allows us to concentrate on a neighbourhood
of @ = 1 instead of checking global optimality. But then local first- and
second-order conditions are enough to yield an equilibrium, and those are
satisfied for a high enough. We have thus argued the following

11



Proposition 2 For every set of primitives there ezists a family of cost func-
tions C*(8) = K8° and an a such that, for every a > a there ezists a unique
pure-strategy symmetric equilibrium for a the first and second price game,
and the equilibrium accuracy is higher in the first than in a second price
auction.

The consequence of this for revenue comparison are, however, ambiguous.
Consider for example the pure common value model: there, the auctioneer’s
revenue has two global maxima,® one at 6 = 0, and the other at § = oco. 6

Thus, when Accuracy is very low, the revenue to the auctioneer must be
decreasing in 6. On the other hand, when Accuracy is very high, the revenue
must be increasing in 6. Hence, an increase in the equilibrium precision
will benefit the auctioneer only if the extant value of @ is high. This may
be assumed at the outset, choosing § very large. Furthermore, when § —
oo we know that M Rg(8) — 0. This is because in this case the bidding
strategies converge to v in probability, and thus very little can be gained
from becoming more informed. Thus, whenever we are in this region, it is
reasonable to believe that any cost function such that MC(:) is increasing
will intersect the M Rs(-) function only once. In this case, endogeneizing
information acquisition should lead to a higher equilibrium Accuracy in a
first price auction. This reduces the revenue difference between first and
second price, and the ranking may be reverted, compared to the case of a
given information precision.

2.3 Interpretation: Money on the table

It is apparent that the proof of Theorem 2 hinges on the properties of the

quantity ’7?-((5%)1, which is decreasing in v because of affiliation; we can interpret

this quantity as an index of the "money left on the table” by the winner in

a first-price auction. The quantity %"‘—l%l can be very close to 0, expressing

that f(z | v) is very large relative to F(z | v), viz. very little money (in a

5This is pointed out in Matthews [7].
8We represent with § = 0 a completely uninformative signal, and with § = oo the
perfectly informative signal.

12



3t AN . Dot i T U M T e L PR AR AMRRERD SR M are T W o TR A v

probabilistic sense) is left on the table. Alternatively, this quantity can be
very large, witnessing that one could safely reduce his bid and still win with
almost the same probability — lots of money are left on the table.

The proof of Theorem 2 then makes clear that an additional tiny bit of
correlation with v is more useful in a first price auction because it allows to
reduce the impact of the ”money-on-the-table” term.

2.4 Information acquisition and Revenue Ranking

It is well known that — when the information structure is exogenously fixed
— the second price auction gives the auctioneer a higher expected profit than
the first price auction (see Milgrom and Weber [9]). So Theorem 2 estab-
lishes that the auction form which — for a fixed information level — maximizes
the auctioneer’s revenue is the one where bidders will acquire more informa-
tion. This relationship is not coincidental: in this subsection we will present
other pairs of auction forms where it holds, and theoretically explain the
connection.

The intuition behind the result is as follows: given an information struc-
ture, the revenue to the auctioneer is the mirror image of the revenue to the
seller. So, when the revenue to the auctioneer is low, agents have a high
expected revenue. For agents to be able to keep a high expected revenue, it
has to be that bidder with a high signal have a much higher expected revenue
than types with a low signal. So the expected revenue conditional on a signal
must be very variable in the signal: but when this is the case, there will be a
high value to having better information. To formalize this intuition we will
compare the (sufficient) condition that allows to rank auction forms in terms
of revenue, with the (sufficient) condition that gives the marginal revenue of
information.

Consider two decision problems, constituted by two different payoff func-
tions us(-,-) and uys(-,-), associated to the same statistical structure, as de-
scribed in Appendix A. Following the interpretation of a constant sum game
(like an auction), we can call these decision problems mechanisms, and agree
that the revenue to the auctioneer is inversely related to the revenue of the
decision maker (who impersonates a bidder). In Appendix B we establish

13
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that a sufficient condition for mechanism II to give higher revenue to the
auctioneer than mechanism I is that (for the notation refer to Appendix A)

uj(vy, 2;) — uf;(v1,21) be quasi-monotone in v; (2)

This condition allows to recover all existing revenue-ranking results for sealed-
bid auctions. Compare condition (2) with the sufficient condition for problem
I to induce more information acquisition than problem I, which is that

Do [u?(vl, ;) —uY, (vl,:vl)] be quasi-monotone in v
1

So, to compare two auction forms in terms of the revenue to the seller
it suffices to answer the question ” is uf(vy, 1) — u§;(v1, 71) quasi-monotone
in 117" to compare them in terms of incentives to acquire information it
suffices to ask "is -8%1 [u‘}(vl,:cl) - u‘;,(vl,xl)] quasi-monotone in v;7”. The
answer to these two questions coincides for several pairs of mechanisms. One
such pair are the first and second price auctions. Another pair are the war

of attrition and the all-pay auction, as we shall see in the following theorem:

Theorem 3 Suppose we are at a symmetric equilibrium (in increasing strate-
gies) of an all-pay auction and a war of attrition with a given information
level 8, = 0, = 0, and suppose the family of signals is A-ordered. Then the
revenue to the auctioneer is higher in the war of attrition than in the all-pay
auction, and MRapa(0) > MRwoa(0) for all 6.

Proof  The war of attrition has been shown to yield a higher expected
revenue to the auctioneer than the all-pay auction (see Krishna and Morgan
[4]): an easy way to see this is to observe that

wyoalvna) = [ [ilon,4) = BG)] Sy | ddy+ [ H@) 5w | o)y
and

Wopa(ona) = [ [ion,5) — 8] Sl | w)dy+ [ @y vr)dy,

T1
—00

14



so we have u¥,,,(v1,21) — uhpa(v1,71) = v§(vy, 1) — w4 (vy, 7,). This
shows that the relationship between war of attrition and all-pay auction
- both in terms of revenue to the auctioneer and in terms of information
acquisition — is the same as that between the second and the first price
auction. |

Yet another case is the relationship between the first price and the ”"min-
eral rights auction”, in the (pure common values) case where V; = V, =
Vand F§(zlv) = [%]a on [0,v].7 The contents of the following theorem are
not new (except for the proof of existence of equilibrium in increasing strate-
gies): we believe the method of proof is. The revenue-ranking result is due
to Riley [11], while the result about marginal revenue of information is due
to Gaier [2].

Theorem 4 In the pure common values case a symmetric equilibrium in
strictly increasing strategies ezists for the mineral rights auction. When
F(z}v) = [f]a on [0, v}, then the mineral rights auction gives higher revenue
to the auctioneer than a first or second price, and MRy ra(8) < MRp(6) =
MRs(6).

Proof.  For the proof that the mineral rights auction has an equilibrium in
increasing strategies, see Appendix C. To see that the mineral rights auction
yields higher expected revenue to the auctioneer than a first price auction,
consider that

Wera,21) = [ 0[l (@) £, (y | v)dy

and
wh(v,1) = [ [v—¥(an)] 2,0 v)dy,

80

wh(v,31) ~ Wepa(v, 1) = [ [or(@) = B(en)] f, (v | v)ay.

7A mineral rights auction is an auction where bidders bid a fraction r of the value of
the object. The bidder who bids the highest fraction wins, and pays that fraction to the
auctioneer. For literature on the mineral rights auction, see Riley [11] and Gaier [2].
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This expression is quasi-monotone in v, and so we are done. In addition,
because of the specific form of the signal distribution the first price auction
gives the same revenue to the auctioneer than a second price auction, 8 which
proves that a mineral rights auction also revenue-dominates a second price.

To prove our claim about the marginal revenue of information, let us

compute
0 , (z1]v)
Aoy 4 (0:21) — iena(v,20)] = [vr(xl) + (' (@) - i (2) f—"(;,——) T ] 0).
(3)
Since the expression Fzﬁ_ is independent of vin our case, we can con-

clude that expression (3) is quasi-monotone in vand therefore a first price
auction gives higher incentives to acquire information than a mineral rights
auction, so MRypra(0) < MRp(6). The fact that MRg(0) = MRs(6)is
again a consequence of our choice of information structure, and has been
shown by Matthews [6]. ]

3 Discrete Information Acquisition

In this section we consider a model that is different from the one we called
”continuous information acquisition”. Here, additional information is ac-
quired observing an additional random variable, which is informative either
about the true value of the object or the opponent’s signal, or about both.
The purpose of this section is to validate our "money on the table” inter-
pretation for the difference between the two auction forms with respect to
information acquisition. We will consider the decision of acquiring an addi-
tional signal, and confirm that the incentives to do so are consistent with the
previous section’s results.

In Section 2 we have seen that the first- and second-price auction for-
mats give different incentives to acquire information. Furthermore, we have

8This is because in our case the quantity %(f% is independent of v: see Milgrom and
Weber [9], the proof of Theorem 15 on page 1109.
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ascribed this systematic difference to the peculiar format of the second-price
auction, that renders a bidder indifferent to his own bid (conditional on
winning); that is, in a second price auction there is no use to reducing the
amount of money left on the table (say, the difference between one’s bid and
the highest opponent’s). In a first-price instead, this can be the source of
great profit, which leads to a first-price auction valuing more information
that is correlated with the opponent’s bidding.

In the past section however, players observed only one random variable,
and a more informative random variable had to be more correlated at once
with the true value of the object and with the opponent’s bidding: whence,
the result that in this setting always a first-price gives more incentives to
acquire information than a second price. If we allow a more generous struc-
ture for information acquisition, namely one where more than one signal is
observable, we can explore the effect that the correlation of a signal has on
the incentive to acquire it. In such a setting, we are not constrained any
more by a theorem imposing a certain correlation of an additional piece of
information in order for it to be "more information”. Indeed, any additional
signal will yield a more precise information structure. We are thus free to
consider acquiring a signal that has various degree of correlation with the
opponent’s signal, or with the true value of the object, without one neces-
sarily implying the other; and we can look for validation of our "money on
the table” explanation for the difference between the two auction formats.

3.1 The model

Again, we assume two players: player 1 observes signal X, player 2 observes
signal Y and XY are affiliated. Player ¢ has valuation V; for the object,
where V; is a random variable, and all the hypotheses are those of Milgrom-—
Weber’s ”generalized symmetric model” (see Milgrom and Weber [9]). In our
model, it will be possible to covertly acquire the knowledge of an additional
random variable Z. We will proceed in subsections, according to the various
correlations of Z with the opponent’s signal. We will calculate the incentives
to acquire that signal when the status quo is the symmetric equilibrium with
only X and Y known.

17



As a piece of notation, let vi(z,y) := E(V}, | X = z,Y = y), and
n(z,z,y) = EM | X = 2,Z = 2,Y = y). Moreover, let V(z,y) :=
EWM| X =2z,Y <y)and W(z,2,y):=E(Vi | X =2,Z =2,Y <y).

3.2 Acquiring Totally Correlated Information

This section is concerned with the case in which it is possible to acquire
Z =Y, i.e. the very opponent’s signal (or a garbling of it). It is clear that
such information, if available, allows one to reduce to 0 the amount of money
left on the table; our intuition suggests that this sort of information should be
more valuable in a first- than in a second-price auction. Indeed, we present
the striking result that in a second-price auction such information is useless.
This result appears in Milgrom [8], in a different context.

Some intuition for this result may be gathered observing that, when player
1 receives a signal in a second price auction, there are two cases: 1’s signal is
higher than 2’s, or vice versa. In the first case, suppose that he gets to know
y: 1 was winning before (remember his signal is higher than the opponent’s);
now 1’s dominant strategy is to bid his expected value for the object, which
is v(z,y) (there is no more winner’s curse here, because 1 knows whatever
he could discover by winning). But this is higher than v(y,y), which is 2’s
bidding, and thus 1 will continue to win. The second case is symmetrically
treated.

Theorem 5 Consider the symmetric equilibrium of a second-price auction
with affiliated values. Then covertly learning the realization of the opponent’s
signal has no value.

Proof.  The problem of a player 1 with signal z, when he does not know ,
is to choose an opponent’s type k that maximizes

/_:, [v(z,y) — v(y,y)]f (v | z)dy.

This is true because player 2’s bidding strategy is strictly increasing. Since
affiliation implies that the quantity v(y,y) — v(z, y) is QM in y, the optimal
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k solves

v(z, k) = v(k, k).
Thus, the optimized utility for player 1 is

/VW(C.V)Zv(y,y) [‘U(x, y) - v(y:y)]f(y I -’L‘)dy

Suppose instead that player 1 knows y. In this case, his expected valua-
tion for the object is v(z,y). Moreover, player 1 knows that player 2 will bid
v(y,y), and he will therefore want to win the object when v(z,y) > v(y,y).
Hence, player 1’s expected profit from the auction is

/y:u(z,v)Zv(v,v) [v(z,9) — v(v,9))f (v | 2)d,

which is the same as that when he did not know . ]

Remark 3 In a first-price auction, the knowledge of the opponent’s signal
is clearly useful. o

This result asseveres our interpretation, and is quite striking for the reason
that, in a common value model, information about the opponent’s signal
should give a clearer idea of the object’s worth, and hence should be valuable.
In a private value model, this result is not at all new, and is a consequence of
the equilibrium strategy in a second price auction being a dominant strategy.

3.3 Acquiring Independent Information

In this section we will examine the incentives to acquire the knowledge of
an additional random variable, Z, which is taken to be independent of Y/,
the opponent’s signal. We will see that in this case a second price auction
gives more incentive to acquire independent information than a first price.
This again fits well with our interpretation: here the bidding behaviour after
information acquisition becomes less correlated with the opponent’s bidding,
since it has to reflect information that is independent of it. Thus, new infor-
mation is not helpful in reducing the money on the table and actually, when
used, leads one to reduce his bidding’s correlation with the opponent’s. It is

19



then not surprising that this form of information acquisition yelds a higher
payoff in a second-price auction. If we wanted to mimick this result in Sec-
tion 2’s parlance, we would have to take a Ty g ,(:) such that %T is negative,
i.e. the deviation from the old bidding behaviour is negatively correlated
with the opponent’s bidding: however, we know that such a perturbation
actually represents a decrease in the informational content of the signal, and
thus will never be acquired.
In the following, we will need to impose the following assumption:

Al ZE0YY)|Y <y X=z)20.

This plays the role of a stochastic single-crossing assumption, and is
needed in the proof of Lemma 2 below. Let us present two cases in which
assumption A 1 is satisfied.

Example 2 Let v(Y,Y) = Y® for a > 0, and f(z,y) = 5(1+ zy) on [0,1]%.
Then f(y | z) = 20420 and

24z !

fls|z) _ 2(1 + zs)
F(ylz)  2y+zy?

Therefore,

Ew\Y)|Y<yX=z)=

atl a+2
ofele) 2 |y ]
o F(y|=x) 2y+zy? la+l  a+2

We can compute

i) 2y+3 [ a ]

—a;E(v(Y,Y) Y <y, X=2z)=

2y + zy?)* (e +1)(a +2)
and
82
BxayE(v(Y’Y) Y <y,X =z) = (pos. const. )[2(ae+ 1)+ (a — 1)zy].
which is positive for o > 0. \%
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Example 3 Suppose that X and Y are identically distributed according to

+00
few)= [ fz|v)f]vigdy,

where f(- | v) is the density of a random variable distributed as a Uniform on
[0,v]. Then it is easy to check that E(v(Y,Y) | Y < y,X = z) is independent
of z for y € [0,v], that is for all y that can be realized, whereby A 1 holds
with equality. o

Theorem 6 Consider the symmetric equilibrium in strictly increasing strat-
eqy for a first- and second-price auction with affiliated information structure,
and assume A 1. Then the incentive to acquire Z (independent of Y) in a
second price auction is higher or equal than in a first price.

Proof  See Appendix C. 1

4 Conclusions

This paper has focused on the incentives that different auction mechanisms
(first and second price) give to the acquisition of information. In our models,
first bidders simultaneously acquire information; then, without observing the
opponent’s information structure, they engage in competitive bidding.

Two different but related technologies of information acquisition have
been examined. The first dealt with choosing — in a continuous fashion
— the informational content of one signal. A very general new concept of
"better information”, Accuracy, has been used; as a special case, it contains
increasing information in Blackwell’s sense. For this model, we have found
that incentives to acquire information are always higher in a first than in
a second price auction. We have given an intuition for this result, based
on the different value of bidding close to the opponent when winning: in a
second price auction this is immaterial, since the price paid is the opponent’s
bid. In a first price this has importance, since bidding close to the opponent
minimizes the sum paid. Hence, a first price format values information that
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is correlated with the opponent’s bidding more than a second price. Sufficient
conditions have been given for the equilibrium Accuracy to be higher in a
first than in a second price information acquisition game. The connection
between incentives to acquire information and revenue to the seller has been
explained, and verified in a number of auction forms.

To verify the robustness of our intuition, a different (but related) model of
information acquisition has been developed, one where acquiring information
means observing an additional random variable, besides one’s signal. In
accord with our intuition, it has been shown that acquiring a signal that is
very correlated with the opponent’s is more useful in a first than in a second
price auction. Conversely, acquiring a signal independent of the opponent’s
is more useful in a second price: this is because it leads to bidding farther
from the opponent, which is penalized in a first price format.

Finally, an example has been presented where endogeneizing information
acquisition produces a reversal of Milgrom and Weber’s revenue-ranking re-
sult.
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Appendix A

Background Theory

This subsection reports two results from Persico [10]. Subsection 2.2 draws
on this theory, and can indeed be seen as an application of these concepts.
Let us define a payoff function as a function

u(v,a): Vx A—- R

Here, a represents an action, and v is an unknown parameter, seen as the
realization of a random variable V. Let g(v) be a prior for V, with c.d.f.
G(v).

The decision maker cannot observe V, but can observe a signal, a ran-
dom variable X" with conditional density f7(x | v). The associate c.d.f. is
denoted by F"(z | v). This signal will be chosen ~ prior to observing its
realization — from a family of signals {X"} ., where E is an interval of
the real line.

A payoff function together with a signal X" and a prior for V constitute
a decision problem, the problem being

rzlea.}/;u(v,a)dG"(v | ).
Define a"(z) as

a"(z) € argmax, 4 /v u(v,a)dG" (v | z)
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and let
u"(v, z) := u(v,a"(z)).
and

R(n) := ALu(v,a”(z))dF"(m | v)dG(v)

be the expected revenue to the decision maker with signal X".
Let

MR(n) := % /v/xu(v,a’(z))dFa(x | v)dG(v) o’

denote the marginal revenue to the decision maker from increasing 7, i.e.
choosing a slightly higher signal.

Definition 1 We say that a real function H(v) is quasi-monotone if
(QM) Hv)>0=H{)>0 forallv >w.

Definition 2 A real function u(v,a) has the weak single crossing prop-
erty in (a;v) on T if, for any fized pair a’ > a, we have

(WSCP)I Dy a(v) := u(v,a’)—u(v,a) satisfies (QM)T.

Definition 3 Given two real functions u;(v,a) and uy(v,a), we say that
ur = uyr on I if uy — uyy satisfies (WSCP)I.

Definition 4 Given a family {X"},ck, the transformation T, 4., (-) is defined
by
Tyow: R — R:isincreasing and Tj00(X" | v) ~ X |v.

Definition 5 Consider a family of signals { X"}, p. We say that this family
of signals is A-ordered by 7 if, given any n in E, we have %Tn,g,"(z)L:ﬂ is
nondecreasing in v, for all v and T in the support of X" | v. If this quantity
is strictly increasing in v, we say that the family is strictly A-ordered.

Theorem 7 Consider an A-ordered family of signals and assume that, for
all z, Zu"(v,z) satisfies (QM). Then MR(n) > 0.
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Theorem 8 Suppose two payoff functions, say u;(v,a) and urr(v,a) are as-
sociated to the same A-ordered statistical structure, giving rise to two infor-
mation acquisition problems. If for all z and n we have u}(v,z) > u},(v, 1),
then for alln, MR(n) > MR;(n).
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Appendix B

Revenue Ranking

In the notation of Appendix A, let for m = I, II

Rp(z,2) == /:o Um(v, % (2))dG? (v | 2)

denote the (expected) revenue in decision problem m to an agent observing
signal z who plays according to the optimal strategy as if he had observed
z. Denote by

Rm(z) := Rm(z, z),

the expected revenue to type z who plays his optimal action. Consider two
mechanisms, I and I, and assume R;(z) = R;(z) where z is the lowest
type (signal). Then a sufficient condition for R;(z) > R;,(z) for all z is that

Ri(z) = Rii(z) = R (z) > ®); () (B.1)

Now observe that, for m = I, I] we have

%, () i= - Fon(z) = 2 Fn(z )

0
et =

zZ= zZ=x

ad
'ézﬁm(x1 Z)

zZ=T
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where the last equality follows from the first order conditions with respect
to z. Hence, we can rewrite B.1 as

o
> 5;3?11(13,2)

z=x

821(12) = R”(z) = -aa—zéRI(z:,z) (B2)

zZ=T

Using the specific structure of the payoff function, we can rewrite the above
as

/_:o [u;(v,a‘}(:v)) - u"(v,ag,(z))] dG*(v|2z)=0= (B.3)

0 [ furtv, (@) = wirlo, (@) dG°(w 1 2)| 20

6z —00 zZ=x

Since G®(v | z) has the monotone likelihood ratio property, a sufficient
condition for (B.3) is that

ur(v,a%(z)) — uss(v,a9,(z)) be quasi-monotone in v (B.4)

(for this last fact see Athey [1], or Persico [10] Lemma 2).
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Appendix C

Miscellaneous Results

Proof of Theorem 1.

Proof  Because increasing Accuracy is not observed by the opponent, when
calculating the revenue from doing so we take his behaviour as fixed. Thus,
we are dealing with a decision problem. In view of Theorem 7, it suffices
to show that, for a first or second price, -;%u"(vl,zl) satisfies (QM). Let
us start with a second price: there, denoting by 54(-)) the best response of
player 1 with Accuracy 8 to b(-)), |

817 (¥8(=1))
lonz) = [0 [i(v,y) — B S (v | w)dy

- 00

whence

0
—‘ufq('vl; xl) =

69:1
b7 (8 (2))88 (1) [0n, 83 (1)) - B(@1)] 783" B(=1) | €9)D)

This is the product of a QM function (in brackets) with nonnegative
functions of v;, which is therefore QM.
For a first price, we have

, 17 00@)) [ .
W)= [ [iony) - 8] | vy
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whence

-ai—lugr(vl,ml) = (=) {637 (H}(z1)) [ﬁ(vl,b;'"(b‘{(zl))) - bf(zl)] X
X f, 37 (08(21) | v1) — F3, (637 (#(21)) | v1) } (C.2)
The same reasoning as before applies, since

F3, (637 (#(21)) | v1)
RCECIENIEN)

is monotonic in v (recall %:—;’-'l:-:ll)) is decreasing in v; because X, and V] are

affiliated), and hence QM. Thus, again 3:—1110(01,-’171) satisfies (QM) and we
are done. 1

b3~ (84(z1)) [a(vn, b (B (@) — b(a)| -

Proposition 3 In a symmetric mineral rights auction with pure common
values and affiliated signals an equilibrium in strictly increasing stralegies
erists.

Proof  To prove the result it suffices to show that
F?Yz (xl | U)

e na(v,2) = |0(1 = (@) =) 2| el 19

F?
is quasi-monotone in v, which is clearly the case since )ﬁ-‘g:—:}; is decreas-
X2

ing in v by affiliation. ]

Proof of Theorem 6.

In order to prove Theorem 6, we need to present a number of Lemmas.
From now on we will refer to ”equilibrium” quantities as to those concerning
the equilibrium with no information acquisition, the one in which Z in not
known by anybody; and to "optimal” quantities as to those regarding the
optimal decision of player 1 that knows X, Z and is responding to a player
2 that plays "equilibrium” strategy. First, recall the following result from
Milgrom and Weber [9].
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Lemma 1 Consider the symmetric equilibrium in strictly tncreasing strate-
gies of any sealed bid auction mechanism m. Let C™(y;z) denote player
1’s ezpected payment conditional on winning with signal X = z againts all
opponents’ types lower than y. Then

a) if X and Y are independent, C™(x; x) is independent of m.

b)if X and Y are affiliated, C5(z;z) > CF(x;x), where F and S stand
for first and second price auction, respectively.

Proof  See Milgrom and Weber. 1

The following Lemma can be interpreted in the following way: if the addi-
tional piece of information leads one to modify one’s bidding so as to reduce
its correlation with the opponent’s bidding, then a second-price auction will
make a fuller use of it; this is because there one is not hampered by the
need to ”stay near” the opponent’s bid. So, the behaviour in a second price
auction will be more responsive to the additional piece of information. Of
course, we must define the appropriate unit of measure for ”staying near”
and “more responsive”. Indeed, one cannot use for this purpose the bidding
units (money), since the second price auction has naturally more variance
in its equilibrium bidding behaviour than a first price. The comparison has
to be done, instead, in ”opponent’s types over which to win”, so the unit if
measure must be ”types”.

Lemma 2 Consider the symmetric equilibrium in strictly increasing strate-
gies of a first- and second-price auction with affiliated information, and as-
sume A 1. The optimal opponent type over which to win is more reactive to
additional independent information in a second price than in a first price.

Proof  Suppose 1 knows X = z, 2 knows Y = y, and 1 also covertly
observes Z, independent of Y. Let y™(z, z) denote the optimal opponent’s
type over which to win in mechanism m, i.e.

y"(z,2) € argmax, [V(z,z,y) - C"(y;2)] P(Y <y | X =1z),

where CM(y; z) denotes the expected cost — conditional on observing X -
of winning against types y or lower, in mechanism m. This quantity is
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independent of Z since Y is. Let II™(z, 2,y) denote the expected profit with
observation z, i.e.

™(z,2,y) = V(z,2,y) - C"(y; 2)] P(Y <y | X = z).
The first order conditions with respect to y read

%H"'(m, z,9) = %Vs(% z,y)F(y | z) + V(z,2,9)f(y | 2)-
v=y"(2,2)
CT' (i 2)F(y | =) — C™(y: 2)f (¥ | ©)yymz,zy = 0- (C.3)
Part i): if there is a z9(z) such that y¥(z, 29(z)) = = (i.e. upon learning
Z = z(z) the bidding remains unchanged in a first price auction), then
y3(z, 20(z)) = z (the bidding is unchanged in a second price auction too).
We can rewrite the first order conditions in (C.3) as

Vs(z, 20(z), 2) F(z | 2)+V(z, 20(2), 2) f (2 | T)—CF (z;2) F(x | x)—CF(x;(a:)f(a: | z) =0.
C.4)

However, equilibrium first order conditions tell us that
Cf (z;2)F(z | z) + CT(z; 2) f(z | ) = Va(z,2) F(z | 2) + V(z,2)f(z | =)
=Gy (z; 2)F(z | 2) + C°(z; 2) f(z | 7)

Substituting the last term for the first one in (C.4), we see that 2o(z) also
solves y5(z, zp(z)) = z. Therefore, 2(z) leaves the bidding unchanged in a
second price auction, too.

Part ii): we want to show that for z > 2zo(z), we have z < yf(z,2z) <

s
¥ (z,2).
Take any y > z: equilibrium first-order conditions tell us that, for any y

[Cf (v:9) + () L y)] = [Cf w3) + Oy L y)]

F(yly) F(y|y)

Now, C3(y;y) > CF(y;y) (Lemma 1), and %&‘-’}) is nondecreasing in s, by
affiliation. Therefore, since z < y, we obtain

f(ylx)]
F(y| z)

@mw+@mw%%%]

[dmw+ﬁmw

- | |
v=v!(z2) v=y'(z:2)
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Since CF(:;+) ( and hence CF (-;-)) do not depend on their second argument,
using A 1 we get

[@@w+ﬂmw%ﬂﬂ

Plugging this inequality into the following expression

> oo+ cwn ]

y=v!(z,z) v=y/(z,2)

0 f(y|x)
5;vww¢r=ﬂwuzw+vwsz(,J (C5)

[erwo) + o LD Ly 1),

we see that equilibrium conditions imply

——a—HF(:c,y, 2) < 2l'I'S'(ar:,y,.v:) for all z,2,y > .

5y By |
Since y™(z, 2) is found equating expression (C.4) to 0, this shows that

yF(z,2) > z = y5(x, 2) > yF(z,2). (C.6)

Furthermore, since V(z, z,y) is nondecreasing in z, it is clear that z >
z(z) = y"(z,2) > z, whereby taking into account equation (C.6), we con-
clude
z > z(x) = ¥°(z,2) > vF (z, 2).
Part iii) Reasoning symmetrically for the case where y*(z,2) < = we
obtain ¥3(z, 2) < y*(z,2) < z. |

Remark 4 Of course, when X and Y are independent, A 1 holds with
equality, and Lemma 2 reads "the optimal opponent types over which to win
is equally reactive to independent information in a first as in a second price
auction”. <

Lemma 3 Suppose Z is independent of Y, and v(z, z,y) is increasing in z.
Then £V(z,2,y)F(y | z) is nondecreasing in y.
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Proof:
o* &
5y @ VFW9) = 5 [ o(z,z,9)fy(s | 2)ds =
7]
= fr(y| 2)5,v(z,2,9)
which is greater than 0 by assumption. ]

We are finally ready to present the main result of this section.
Proof of Theorem 6:
Proof Let

G™(z,2) := max[V(z, z,9) — C™(u;2)| P(Y <y | X = 2) - Q(z, 2)

denote the gain in mechanism m from covertly learning Z = 2. Q™(z,z2) is
the expected profit in mechanism m to player 1 when Z = 2z, he does not
know Z and therefore plays his symmetric equilibrium strategy. As usual, let
y™(z, z) denote the optimal opponent’s type over which to win in mechanism
m when observing X = z and Z = z (the argmax in the above problem),
and let

G™(z,2,7) = Ve, 2,4™(x,2)) - C"(y"(z,7); 2)| P(Y < y™(z,7) | X = 2)-Q™(=,2).

G™(z,2,2') denotes the expected gain in mechanism m when observ-
ing z,z but playing (subotptimally) y™(z,2). It is clear that G™(z,2) =
G™(z,z,z).

By definition of y™(-,:) we know that

Gi(z,z2,2) := %G’"(z,z,z’) =0. (C.7)

2=z

We can also compute that
-(%Q'"(z:, z) = %V(m, 2,z)Fy (z | z)independent of M. (C.8)
Now, observe that

9 ' 2 me, i
G;n(ﬁ,Z,Z) = a_sz(IB,Z,Z) = —Z~V($,z,y (:L‘,z))F(y (Z,Z) l.’E)

2'=z2 zl=z

33



By Lemma 3 this quantity is increasing in y™. Furthermore, Lemma 2 says
that if z > zo(z), then z < y/(z, 2) < y/(z, 2), and the opposite inequalities
hold if z < 2(z). Therefore,

Gf(z,2,2) < G3(z,2,2) if 2> z(z)

Gi(z,2,2) > G3(z,2,2) if 2z < z(z) (C9)

We are interested in the quantity G™(z,z) = G™(z, z,z), the the gain
from acquiring the observation of Z when Z = 2. So, observe that

GF("D1 zo(x)) = G’S(:I:,zo(:z:)) =0

and we can compute
iGF(:c 2) =Gi(z,2,2) + GE (z,2,2) - —a—Q'"(a: z).
dZ ) 2 [ Rl } 3 1~ az )

In view of equations (C.7), (C.8) and (C.9), we can conclude that

4GF(z,2) < £G5(z,2) if 2> z(z)

2GF(x,2) 2 £G5(z,2z) if 2 < z(z) (C.10)

This implies, integrating forward and backward from z(z),
GF(z,2) < G%(x, 2).

Taking expected value over all possible values of z, we find that the in-
centives to acquire Z are higher in a second than in a first price auction.
|

Remark 5 If X and Y are independent, then the incentive to acquire Z
independent of Y is the same in a first and second price auction. This follows
from the proof of Theorem 6, taking into account Remark 4. o
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