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Abstract

This paper defines a general equilibrium model with exchange and
club formation. Agents trade multiple private goods widely in the
market, can belong to several clubs, and care about the character-
istics of the other members of their clubs. The space of agents is
a continuum, but clubs are finite. It is shown that (i) competitive
equilibria exist, and (ii) the core coincides with the set of equilibrium
states. The central subtlety is in modeling club memberships and ex-
pressing the notion that membership choices are consistent across the
population.
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Keywords clubs, continuum economies, non-atomic econormies, core
equivalence
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1 Introduction

Consumption is typically a social activity. The company we keep affects
our demand for private goods, and our consumption of private goods affects
the company we seek. General equilibrium theory in the tradition of Arrow
and Debreu focuses on the anonymous interactions of consumers with the
market, largely ignoring the social aspect of consumption. Club theory in
the tradition of Buchanan, on the other hand, focuses on the social activity
of consumption, largely ignoring the anonymous interactions of individuals
with the market. The principal purpose of this paper, and also of our (1997)
companion paper, is to integrate club theory and general equilibrium theory,
constructing a framework which incorporates widespread trading of private
goods in competitive markets and individual consumption in small groups
chosen voluntarily in equilibrium. This paper treats continuum economies

and the companion paper treats large finite economies.

Cornes and Sandler (1986, p. 159) define a club as “ ...a voluntary
group deriving mutual benefit from sharing ... production costs, the mem-
bers’ characteristics, or a good characterized by excludable benefits.” Follow-
ing Tiebout (1956), one tradition in the literature focuses on clubs as political
jurisdictions, assumes that each agent can belong to at most one jurisdiction
and takes a partition into jurisdictions as part of the basic description of
a feasible state of the economy.! A different tradition, following an idea of
Buchanan (1965), focuses on small clubs: a marriage, a gym, an academic
department, a golfing foursome, or the clientele of a restaurant. When clubs
are not to be thought of as political jurisdictions, we see no reason why each
agent should belong to a single club nor why the club structure should be (or
induce) a partition. In keeping with this view, we build here a framework in
which each agent may belong to several clubs (partitions are a special case).

1See for example Berglas (1976), Berglas and Pines (1981), Bewley (1981), Brueckner
(1994), Conley and Wooders (1994), Gilles and Scotchmer (1997), Greenberg and Weber
(1986), Greenberg and Shitovitz (1988) Ellickson (1973, 1979), Konishi (1996), Scotchmer
(1985a, 1985b, 1994, 1996), Scotchmer and Wooders (1987a, 1987b), Wooders (1978, 1989).



Our work builds on a long tradition in the club literature, beginning
with Buchanan (1965), that seeks to demonstrate that club activities can be
interpreted as competitive, for example, Gilles and Scotchmer (1997), who
studied replica economies. In keeping with the tradition in general equilib-
rium theory that perfect competition is best demonstrated in the continuum,
we build a model in which the space of agents is a continuum, but we restrict
clubs to be finite. Thus, as suggested by Buchanan (1965), clubs are “small”
compared to society. In the continuum framework, the “integer problem”
and other non-convexities disappear. As a result, we establish the existence
of equilibrium and verify a fundamental test of perfect competition, the coin-
cidence of the core with the set of equilibrium states. Central to our work is
that we view clubs and club memberships as primitives on equal footing with
more conventional primitives of general equilibrium theory. This view leads
to a fuller integration of club theory into general equilibrium theory, and to a
more general interpretation of clubs. Other papers in the same spirit include

Makowski (1978) and Cole and Prescott (1994).

We describe a (type of) club as a pair consisting of a description of the
external characteristics of its members and a specified activity; thus we follow
Ellickson (1979) and Mas-Colell (1981) as viewing the activity of a club as
a public project rather than as provision of some level of a public good. A
club membership is an opening in a club available to agents with specified
characteristics. Agents choose both private goods and club memberships,
and private goods and club memberships are treated and priced in parallel

fashion.

Despite the parallel treatment of club memberships and private goods,
there are important differences from exchange economies. First, club mem-
berships are indivisible. Cole and Prescott (1994) deal with this indivisibility
by viewing the objects of choice as lotteries on private goods and club mem-
berships. It seems to us that the indivisibility of club memberships is central
to understanding clubs, and we prefer to address it directly.

Second, club membership choices must be consistent across the popula-
tion. If a third of the population are women married to men, for example,



then a third of the population must be men married to women. Consistency
must hold simultaneously for all types of clubs, and allow for the possibility

that every individual may belong to several clubs.

Finally, there is an important difference in the pricing of private goods
and of club memberships: private good prices must be positive, but club

membership prices may be positive, negative or zero.

Our proofs follow lines that are typical of general equilibrium theory, but
there are many subtleties. The central subtlety is in accommodating the club
consistency condition, which has no analog in exchange economies.

Our proof of equivalence of the core with the set of equilibrium states
follows an outline parallel to Schmeidler’s (1969) proof of Aumann’s (1964)
core equivalence theorem: Begin with a core state, construct individual net
preferred sets in the space of private goods and club memberships, and then
an aggregate net preferred set. Use the Lyapunov convexity theorem to show
that the aggregate net preferred set is convex and the core property of the
given allocation to show that the aggregate net preferred set is disjoint from
an appropriate cone. Obtain equilibrium prices by separating this aggregate
net preferred set from an appropriate cone. Because we work in the space
of private goods and club memberships, however, our argument differs from
Schmeidler’s, and we must work much harder to be certain that the private
good prices we construct are not zero. And we must restrict the space of
club memberships to accommodate the matching property.?

Our proof that equilibrium exists also follows a familiar outline: Con-
struct an excess demand correspondence in the space of private goods and
club memberships. Use the Lyapunov convexity theorem to show that this
correspondence is convex valued. Apply Kakutani’s fixed point theorem to
find a zero. Because we work in the space of private goods and club mem-
berships, however, and club membership prices may be positive, negative or

2In contrast to the proof outlined above, decentralization is usually accomplished in
the club literature by first constructing prices for private goods and then defining prices
for club memberships in terms of willingness to pay. Because we allow agents to belong
to more than one club, the sequential construction does not work.

g



zero, there is no natural price domain on which to work. We must therefore
work in perturbations of the original economy which have the property that
equilibrium prices are known a priori to lie in some compact set, construct
equilibria for these perturbed economies, show that equilibrium prices for
the perturbed economies can be chosen to be bounded, and take limits as we

relax the perturbations.

Following this Introduction, Section 2 provides some motivating exam-
ples. The formal model is described in Section 3. Section 4 establishes the
first welfare theorem and Section 5 shows that the second welfare theorem
may fail. This is not surprising in finite economies, but our examples show
that it may fail even in atomless economies. Section 6 establishes the equiv-
alence of the core and the set of equilibrium states and Section 7 establishes
the existence of equilibrium. The text outlines the main proofs; details are
collected in Section 8.



2 Examples

In this section we present four examples illustrating various aspects of com-
petitive equilibrium in a club economy with a continuum of agents. The first
example, a version of a familiar crowding story, illustrates the nature of com-
petitive equilibrium in a setting where the composition of club memberships
does not matter.

Example 2.1 Crowding

Consider an economy with a continuum of consumers uniformly distributed
on [0,10] and a single private good. The endowment of consumer & is e; =
k. In addition to the private good, consumers have the option of using a
swimming pool which they can enjoy alone or in a club. All consumers have
the same preferences: a consumer who consumes z units of the private good
derives utility u(z;0) = z if using no pool and u(z;n) = 4z /n if she belongs
to a swimming pool club with n members. (We assume a consumer can
belong to at most one such club.) Building a swimming pool requires an

input of 6 units of the private good.

Although swimming pool clubs could in principle be arbitrarily large, in
equilibrium there will be no clubs of size greater than 4. Since consumers
care only about the number and not other characteristics of fellow pool club
members, all consumers belonging to the same club share equally in its cost.
Normalizing the price of the private good to one, the price of a membership is
¢n = 6/n for n = 2, 3 or 4. (Consistent with this formula, a swimming pool
costs 6, but we prefer to treat singleton “clubs” separately.) The normal-
ization also implies that consumer k has wealth k. Choosing no pool yields
utility k& and enjoying a pool by herself yields utility 4(k — 6). After paying
her share of the cost, sharing a pool in a club with n members yields utility

2k —3) ifn=2
u(k—qn;n) = %(k——Q) if n=3;

k—% if n=4.



Solving for the equilibrium choices of individuals is easy: the wealthiest
consumers, with wealth k& € (9,10], have a pool of their own; consumers
with wealth k € (6, 9] share a pool with one other person; and the poorest
consumers, with wealth k € [0, 6], consume the private good but do not enjoy
the use of a pool. Clubs of size greater than two do not form in equilibrium.

&

The second example, motivated by the commentary by Arrow (1972) on
Becker (1957), illustrates the importance of allowing for membership prices
which discriminate among types of membership (i.e., on external character-
istics).

Example 2.2 Segregation
Consider an economy with a continuum of consumers uniformly distributed
on [0,1]: consumers in [0,.3) are blue, consumers in [.3, 1] are green. There is
a single private good. All consumers have endowment e, = 2. In addition to
the private good, duplex apartments are available. The utility of a consumer
depends on his external characteristic (blue or green), on consumption of the
private good, on whether or not housing is consumed, and on the external
characteristic of the consumer with whom the housing is shared. (We assume
that no consumer desires more than one unit of housing.) A blue or green
consumer who consumes no housing and z units of the private good derives
utility

up(z;0) = ug(z;0) = =
Using the obvious notation for the external characteristics of the occupants
of a duplex, a consumer who lives in a duplex and consumes z units of the
private good derives utility

ug(z;BB) =4r and  up(z; BG) =6z

if blue and
uc(z; GG) = 6z and  ug(z; BG) =4z



if green. Note that a blue (respectively, green) consumer cannot consume
housing in a duplex with two green (respectively, blue) consumers because
there would be no space for her.

Assuming that a duplex can be produced using two units of the private
good and that race-discriminatory pricing is possible, the prices blue or green
consumers pay for segregated and integrated duplexes must satisfy:

2¢5(BB) = 2
2qG(GG) = 2
g8(BG) +4o(BG) = 2

(Again the notation should be self explanatory.) At these prices, a blue or a
green consumer can obtain utility 2 by choosing no housing. Alternatively, a
blue consumer can obtain utility 4 by choosing a segregated duplex at price 1
or utility 6(2 — gg(BG)) by choosing an integrated duplex at price gg(B G).
Green consumers can obtain utility 6 by choosing a segregated duplex for
price 1 or utility 4(2 — ge(BG)) by choosing an integrated duplex for price
ge(BG). In order that integrated housing be chosen at equilibrium it is nec-
essary that 6(2 — gs(BG)) > 4 and 4(2 — ¢e(BG)) > 6 or, equivalently,
gs(BG)) < 4/3 and gg(BG) < 1/2 whence gs(BG) + ¢c(BG) < 4. How-
ever, we already know that gg(BG) + ge(BG) = 2, so no integrated housing
will be chosen at equilibrium. Equilibrium prices for segregated housing are
gs(BB) = ¢c(GG) = 1 while equilibrium prices for integrated housing are
indeterminate, constrained only by the requirements

4 1
q(BG) 2 3 9¢(BG) > 50 qs(BG) + gc(BG) =2

At equilibrium, all consumers choose segregated housing.

Suppose the government offers a subsidy s > 0 for integrated housing,
reducing its price to 2 — s. Equilibrium prices must then satisfy

29p(BB) = 2
gs(BG) +qe¢(BG) = 2-—s

7



In order that integrated housing be chosen at equilibrium it remains necessary
that g (BG)) < 4/3 and q¢(BG) < 1/2. Because gg(BG) +4¢c(BG) = 2—s5,
integration is possible only when s > 1/6.

Suppose that 1/6 < s < 1. The number of green consumers choosing
integregated housing must equal the number of blue consumers choosing
integregated housing. Because there are more green consumers than blue
consumers, some green consumers must choose segregated housing. Because
all green consumers must enjoy the same equilibrium utility, it follows that
ge(BG) = 1/2 and hence qg(BG) = 3/2 — s > 1/2. In equilibrium all blue
consumers and 3/7 of the green consumers will choose integrated housing;
the remaining green consumers will choose segregated housing.?

Thus the government subsidy achieves integration — but only if housing
prices are discriminatory: qg(BG) > 1/2 = qc(BG). In order to achieve
integration with non-discriminatory prices, the government must raise the
subsidy to s = 1.4 &

Our third example illustrates some of the subtleties inherent in allowing

for membership in several clubs.

Example 2.3 Monogamy, Polygamy and Group Marriage

Consider an economy comprised of a continuum of consumers uniformly dis-
tributed on [0,11]; consumers in [0,6) are male, consumers in [6,11] are
female. There is a single consumption good; endowments are

e — {a if0<a<6
*l1 if6<a<ll
(Thus, male endowments are uniformly distributed between 0 and 6; female

endowments are identically 1.) In addition to consuming the private good,
individuals may enter into several kinds of marriage: exclusive monogamy (1

3If s = 1/6 equilibrium choices are indeterminate, constrained only by the requirement

that the same number of blue consumers and green consumers choose integrated housing.
4We leave it to the reader to examine the welfare consequences of various methods by

which the government could tax individuals to provide the necessary subsidy.
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male and 1 female, symbolized m,); non-exclusive monogamy (1 male and 1
female, symbolized my,); and a group marriage (1 male and 2 females, sym-
bolized m,). Males have the option of belonging to one or two non-exclusive
marriages; females can be in only one. (We could incorporate these restric-
tions into consumption sets or into preferences.) A consumer consuming z
units of the private good derives utility according to sex and marital status
shown in the following table:

single | Me | Mpe | 2Mne | My
M| z |{3z/2(3z/2| 3z |15z/4
F z 9z 8z 36z/5

Note that the choice of two non-exclusive marriages and the choice of a group
marriage are distinct and males prefer the latter (holding consumption fixed).

We assume that all marriages are costless activities. Hence, if gas(m.),
am(Mmye), qu(m,) are the prices paid by males to enter an exclusive, non-
exclusive or group marriage, respectively, and gr(me), gr(mne), gr(mg) are
the corresponding prices paid by females, it follows that:

gm(me) + qr(me) = 0 (1)
qM(mne) + QF('m'ne) =0 (2)
qm(mg) +2qr(mg) = 0 3)

To determine the equilibrium, note first that, because both males and
females find any form of marriage preferable to being single, having both
unmarried males and unmarried females would contradict the Pareto opti-
mality of an equilibrium. Because males outnumber females, some males
must necessarily be single and hence all females must be married at equilib-
rium. Write a, b, ¢, d for the fraction of males choosing 1 exclusive marriage,
1 non-exclusive marriage, 2 non-exclusive marriages and 1 group marriage,
respectively. Keeping in mind that males who choose two non-exclusive mar-
riages or one group marriage are involved with two females, it follows that

a+b+2c+2d=5 (4)

9



Because non-exclusive marriage is less desirable than exclusive marriage for
females, non-exclusive marriage will be more expensive at equilibrium. Be-
cause males find one non-exclusive or one exclusive marriage to be perfect
substitutes, no men will choose one non-exclusive marriage. Therefore,

b=0 (5)

It is evident that wealthier males choose more desirable marriage ar-
rangements. Thus, males in [6 — d,6] choose 1 group marriage, males in
[6~c—d, 6—d) choose 2 non-exclusive marriages, males in [6—a—c—d,6—c—d)
choose 1 exclusive marriage, and the remaining males choose no marriage at
all. Because male 6 —d must be exactly indifferent between choosing 1 group
marriage or 2 non-exclusive marriages, it follows that:

3(6 — d — 2qu(mac)) = -6~ d — que(my) ©)

Similarly, the indifference of male 6 — c — d between choosing 2 non-exclusive
marriages or 1 exclusive marriage implies

26— c—d—gu(m.)) =3(6 - c = d — 2qu(mnc)) (7)

and the indifference of male 6 —a—c—d between choosing 1 exclusive marriage

or remaining single implies

6—a—c—d=%(G—a—c—d—qM(me)) (8)

Because all females are identical, their equilibrium utility is independent
of marital state. Consequently,

9(1 - gr(me)) = 8(1 — gr(rmnc) = (1 = ge(my) Q

Solving equations (1)-(9) yields

10



qm(m,) =3

| O

qM(me) =1 qM(mne) =

and 3
gr(me) = =1 qr(mpe) = — gr(mg) = —3

> ot

Thus, at equilibrium, the wealthiest é of males enter into group marriage,
the next wealthiest é enter into 2 non-exclusive marriages, the next wealthiest

% enter into 1 exclusive marriage, and the poorest % of males remain single.

&

To this point, all of our examples have involved a single private good,
so that there is no trade between clubs. Our final example shows that the
interaction between the demand for club memberships and the demand for
private goods can have profound and unexpected consequences when there
are multiple private goods.

Example 2.4 Marriage and the Market

Consider an economy with a continuum of consumers uniformly distributed
on [0,1]; consumers in [0, §) are male, consumers in [8,1] are female. There
are 2 private goods and each consumers has endowment e, = (10,10). For
consumers remaining single,

up(z1,22;0) = 11 and ur(z1,22;0) = T2

while for those who marry

5
UM(xl, Tg; M) = uF(xla-'L'2§m) = ‘2‘\/$1I2

Write gar, gr for the marriage prices paid by males and females, respec-
tively. (Because sex is the only characteristic that matters to others, we as-
sume that all males pay the same price and all females pay the same price.)
Because marriage is costless, marriage prices ga +qr = 0 (i.e., one sex bribes
the other to be married).

11



To solve for equilibrium, it is convenient to work backwards from a hy-
pothesized distribution of marriages and single individuals. To give the
reader a flavor of the solution, consider a hypothetical distribution in which
all males are married and some females remain unmarried; of course this
requires # < 1/2.

Normalizing so that private good prices sum to 1, all individuals have
wealth 10. Unmarried females spend all their wealth on good 2. Married
females spend g and married males g to enter a marriage, each spending
half of their remaining income on each of the private goods. Consequently,
the market clearing conditions for z; and z, become:

10 — 0-—
,H[ L 1 QF} _ 10
2p: 2p

10 — amM 10 — qr
2po 2p90

10
(1-28)—+8 [ +
P2
Solving yields p; = fand po=1-— 0.

To solve for marriage prices, keep in mind that unmarried females and
married females must obtain the same equilibrium utilities and that males,
all married, must obtain at least as much utility in the marriage as they
would if they were single. These considerations lead to:

10 5 |(10—gr\(10—gr
1-4 2 ( 26 )(2(1—,6))

and

Solving yields

and



Because qu; + gr = 0, this entails 3 > 1/5 and hence 1/5 < 8 < 1/2.

Proceeding in similar fashion for other possible distributions of marriages
and single individuals, we can work out the equilibrium correspondence as
{3 varies from 0 to 1. As in the case above, private good prices vary linearly
with £:

m=pf ad p=1-0

The proportion of married males is somewhat more complex:

(0 if0< B <1/2
[0, 5] if =1/5;
B if 1/5 < B <1/2;

1-4 if 1/2 < B < 4/5;
0,1~ 5] if B =4/5;
L0 if4/5 <B<1.

(If B = 1/5 or 4/5, the proportion of married males is indeterminate.) Note
that, when the males and females are too far out of balance, marriage is
priced out of existence! The price gr females pay to be in a marriage varies
with 3 as follows:

1-
gr = { [~2,2] if B=1/2
~10+8,/75 if1/2<pA< L

As the proportion of males increases from 0 to 1/2, the price females pay
for marriage decreases toward 2, and becomes indeterminate in the interval
[—2,2] at B = 1/2. Once B exceeds 1/2, the position of males and females
is reversed: females receive the subsidy, and it increases as the proportion of

10—8,/—% if0<B<1/2

males increase. &

13



3 Club Economies

In this section we describe a club economy and define Pareto optimality, the
core and equilibrium for such economies.

3.1 Private Goods

We assume throughout that there are N > 1 private goods, each perfectly
divisible and publicly traded; the space of private goods is therefore RY. For
z,z' € RN, we write £ > 1’ to mean z; > z| for each 4, > ' to mean that
z > 7' but £ # 2/, and T >> 7’ to mean that z; > x; for each i. We write

|z| = Erlz\.r:l |Zx].

3.2 Clubs

We will describe a type of club by the number and characteristics of its
members and the activity in which the club is engaged.

Formally, we let Q be a finite set® of external characteristics (of potential
members of a club). An element w € (1 is (or encodes) a complete descrip-
tion of the characteristics of an individual that are relevant for the other
members of a club. For further discussion of the interpretation of external
characteristics, see Section 3.10.

A profile is a function 7 : @ — Z, = {0,1,...} describing the members
of a club. For w € Q, m(w) represents the number of members of the club

having external characteristic w. For 7 a profile, write |7| = > ,cq m(w) for
the total number of members. We write 0 for the zero profile (representing

the empty club).

The activities available to a profile of agents belong to a finite set I'.

5We could relax the constraint that Q be finite, and allow ) to be a compact metric
space. However, this would increase the complexity of the model and of the arguments.

14



We interpret the elements v € T as public projects in the sense of Ellickson
(1979) and Mas-Colell (1980), rather than as public goods in the sense of

Samuelson.

A club type is a pair ¢ = (7, ) consisting of a profile and an activity. We
take as given a finite set of possible club types Clubs = {(m,v)}. We find
it convenient to treat singleton clubs separately, so we assume that |r| > 2
for all (m,7) € Clubs.® Formation of the club (m,7) requires a total input
of private goods equal to inp(m,v) € RY.7

A club membership is an opening in a particular type of club for an agent
of a particular external characteristic; i.e., a triple m = (w,7,7) such that
(r,7) € Clubs and m(w) > 1. (An agent can belong to a club only if
the description of that club type includes one or more members of his/her
external characteristics.) Write M for the set of club memberships.

Each agent may choose to belong to many clubs or to none. A list is a
function £ : M — {0,1,...}; £(w,T,~) specifies the number of memberships
of type (w,T,~) chosen by an agent. Write:

Lists = {£: £ is a list }

for the set of lists. We frequently find it convenient to view Lists (which is
a set of functions from M to {0,1,...}) as a subset of R*™ (which is the set
of functions from M to R). For m € M we write 6,, for the list defined by

5,,,(m') — {1 1fm=m’

0 otherwise

That is, 6, is the list specifying 1 membership of type m and no others.

8Since activities are not traded, the choice of activities of singleton clubs can be incor-
porated into preferences.

7More generally, we could assume that each project could be produced from any input
vector from some specified set and incorporate the choice of production technology into
our notion of feasibility.

15



3.3 Agents

The set of agents is a nonatomic finite measure space (4, F, A); that is, A is
a set, F is a o-algebra of subsets of A and ) is a non-atomic measure on F
with A(A4) < c0.®

A complete description of an agent a € A consists of his/her external
characteristics, choice set, endowment of private goods and utility function.®
An external characteristic is an element w, € €. The choice set X, for an
agent a € A specifies which bundles of private goods and which choices of club
memberships are feasible, so X, C R" xLists. For simplicity, we assume that
the only restriction on private good consumption is that it be non-negative,
so that X, = RY x Lists(a) for some subset Lists(a) C Lists.1® We assume
that £(w,m,vy) = 0 for every (w,7,y) € M for which w # w,; that is, no
individual may choose membership in any club type containing no members
of his/her external characteristicc. We also assume throughout that there
is an exogenously given upper bound M on the number of memberships an
individual may choose, so |¢| < M for each ¢ € Lists(a). The utility function
for agent a is defined over private goods consumptions and club memberships
and is thus a mapping u, : X, — R.

We assume throughout that utility functions are strictly monotone in
private goods; i.e., ug(T,£) > us(z',€) for a € A,z,2' € RY,z > z/. How-
ever, we make no assumption that utility is monotone in the level of any
activity; indeed, in our framework it is meaningless to talk about the level
of an activity. The ranking of activities may be different for different in-
dividuals, and an individual’s ranking of activities may depend on his/her

8There would be little loss of generality in assuming that A = [0, 1], F is the o-algebra
of Lebesgue measurable sets, and A is Lebesgue measure.

9We use utility functions rather than preferences as a matter of convenience; under the
assumptions made here, the two specifications are equivalent.

10Thus we incorporate into consumption sets various kinds of restrictions on club mem-
berships. For instance, we may forbid membership in 2 marriages. More general specifica-
tions of consumption sets would be easily accommodated at the cost of complicating some
definitions (of a linked state and of an irreducible economy) and proofs (of the coincidence
of weak and strong Pareto optimality and of quasi-equilibrium and equilibrium).

16



consumption of private goods. We take the view that an agent’s preferences
for private goods and for club memberships are interdependent and cannot
be disentangled (except for monotonicity in private goods).!! Activities are
not traded.

3.4 Club Economies

A club economy £ is a mapping a — (wq, Xa, €4, Ua) for which:

e the external characteristic mapping a +— w, is a measurable function

e the consumption set correspondence a — X, is a measurable corre-
spondence

e the endowment mapping a — ¢, is an integrable function

e the utility mapping (a,z,£) — u.(z,£) is a (jointly) measurable func-
tion (of all its arguments)*?

As above, we assume that utility functions are continuous and strictly mono-
tone in private goods.
We assume that the aggregate endowment
E= /A e. dX(a)

is strictly positive, so all private goods are represented in the aggregate.

3.5 States

A state of a club economy is a measurable mapping
f=(z,pn): A— RN x RM

11Gee Diamantaras and Gilles (1996), Gilles and Scotchmer (1997) and Diamantaras,

Gilles and Scotchmer (1996) for further discussion on this point.
121t can be shown that this measurability requirement is equivalent to the usual require-

ment on measurability of preferences.
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A state describes choices for each individual agent, ignoring feasibility at the
level of the individual and at the level of society. Individual feasibility means
that (4, s) € Xa. Social feasibility entails market clearing for private goods
and consistent matching of agents.

We define consistency as a property of choice functions o : B — Lists,
and show that it is equivalent to a property of aggregate membership vectors
Jg adX(a). For each integer j and each membership (w,7,), let

Ei(w,7,7) = {a € B : po(w,™,7) = j}

be the set of all agents who choose j memberships (w,7,v). If we inter-
pret A\(E) as the proportion of agents who belong to a set £ C A, then
A(Ef(w,m,7)) is the proportion of agents who choose j memberships of
type (w,m,7) and j/\(Eﬂ(w,W,'y)) is the proportion of memberships of type
(w,7,y) chosen by these agents. Hence the sum

oo

> IMEL(w, ;7))

=1

is the proportion of memberships of type (w,w,~) chosen by agents in A. We
therefore say that a function u : B — Lists is consistent for B if

= INB(w,m,7) _ 7w)
=1 IMEL (W, m,y))  w(w)

for each (m,7) € Clubs and each w,w’ € Q. Equivalently, ; is consistent for
B if for each (m,~) there is a real number a(w, ) such that

S AB T, 7) = afr, (o)

for each w € Q. Thus, consistency means that the distribution of club
membership choices in the population is the same as in the club itself.!3

13Consider Example 2.3 for instance. Keeping in mind that some males may choose one
non-exclusive marriage, and some may choose two, consistency entails that the number
of non-exclusive marriages chosen by males is the same as the number of non-exclusive
marriages chosen by females.
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We say that a club membership vector i € RM is consistent if for every
club type (m,7) there is a real number a(w,~) such that

pw,m,y) = a(m,7) 7(w)
for every w € ). Write
Cons = {s € RM: i is consistent }

Note that Cons is a subspace of R™. Because agents will choose lists of
memberships that are nonnegative, the feasible states will have membership
vectors in the positive part of Cons.

The following lemma, whose simple proof is left to the reader, states the
relationship between these two notions.

Lemma 3.1 Let € be a non-atomic club economy, let B C A be a measurable
set, and let . : B — Lists be an integrable function. Then the function p is
consistent for B if and only if the membership vector [g p, dA(a) is consistent.

We say that the state f = (z,u) is feasible for the measurable subset
B c A if it satisfies the following requirements:

(i) Individual Feasibility
(Tq, o) € X, for eacha € A

(ii) Material Balance

/ TgdA(a) + / > 1 1np(7r v) to(w, T, ) dA(a) = /Bea d\(a)

(w,m, 'y)eM

14Material balance means that the social consumption of private goods (within B) plus
the quantity of private goods used as inputs to club activities (by members of B) is equal
to the social endowment of private goods (within B).
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(iii) Consistency

i is consistent for B

We say the state f is feasible if it is feasible for the set A itself.

Our description of feasible states of the economy is different from the
description of feasible states in most of club theory, where the analog of
consistency is expressed by a requirement that clubs form a partitition of the
set of agents. Our description allows for the possibility that agents belong
to many clubs, that different agents belong to different numbers of clubs,
and that clubs have overlapping memberships. For instance, agents may be
married, have employment in a firm, belong to a gym, attend movies and
concerts, take meals in a restaurant, and so forth. In the special case that
agents can belong to only one club (M=1), the consistency condition reduces
to the assertion that clubs form a partition that is “measure consistent” in

the sense of Hammond, Kaneko and Wooders (1989).

We do not keep track of which person belongs to which club, nor do we
need to do so: every function u : A — Lists that satisfies the consistency
condition corresponds to a consistent assignment of individuals to clubs (and
vice versa). Of course, a given p may correspond to many consistent as-
signments, but we do not need to distinguish them, because we assume that
individuals care only about the external characteristics of their consumption
partners, not about their identities. (See Section 3.10.)

3.6 Pareto Optimality and the Core

As in the exchange setting, we distinguish two notions of Pareto optimality
and the core; the stronger notion allows blocking if some agents (in the
relevant group) are made better off and none are made worse off, the weaker
notion requires that all agents be made better off. For exchange economies,
strict monotonicity of preferences guarantees that the two notions coincide.
Because choices of club memberships are indivisible, however, the notions
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may be distinct, even if preferences are strictly monotone in private goods.
In this subsection we define two notions of Pareto optimality and the core
and give a natural condition that guarantees that they coincide.

Let f be a feasible state. We say that f is weakly Pareto optimal if
there is no feasible state g such that u,(g9(a)) > u.(f(a)) for almost all
a € A; f is strongly Pareto optimal if there is no feasible state h such that
ua(h(a)) > us(f(a)) for almost all @ € A and ug(h(a)) > uu(f(a)) for
all a in some subset A’ C A having positive measure. Note that strong
Pareto optimality is a more restrictive notion than weak Pareto optimality.
Similarly, f is in the weak core if there is no subset B C A of positive
measure and state g that is feasible for B such that uy(g(b)) > us(f(d))
for almost every every b € B; f is in the strong core if there is no subset
B C A of positive measure and state h that is feasible for B such that
up(h(b)) > up(f(b)) for every b € B and uy(h(b)) > up(f(')) for all ¥ in
some subset B’ C B having positive measure. The strong core is a subset of
the weak core.

In general, weakly Pareto optimal allocations may not be strongly Pareto
optimal, and the weak core may be a proper superset of the strong core. The
following assumption, adapted from Gilles and Scotchmer (1997), guarantees
that weak and strong Pareto optimality coincide and that the weak and
strong cores coincide.

We say that endowments are desirable if for every agent a and every list
¢ € Lists(a), us(€q,0) > u4(0,¢). That is, each agent would prefer to remain
single and consume his endowment rather than to belong to any feasible set of
clubs and consume no private goods. Desirability of endowments is weaker
than the assumption Mas-Colell (1980) refers to as essentiality of private
goods, which in our framework would be:

ua(oa ) = (z‘IBi)IéX ua(x"et)

for every ¢ € Lists(a).

Proposition 3.2 If endowments are desirable, then weak and strong Pareto
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optimality coincide and the weak and strong core coincide.

Proof Let f be a feasible state not in the strong core. By definition, there
exists a subset B C A of positive measure and a state g that is feasible for B
such that uy(g(b)) > us(f(b)) for every b € B and up(g(b)) > us(f(b) for all
b in some subset B’ C B having positive measure. Because endowments are
desirable, in the state g all members of B’ must be consuming strictly positive
amounts of private goods. Making use of continuity and strict monotonicity
of preferences, we can find a small transfer of private goods from members of
B\ B’ that leads to a state g’ which is feasible for B and which all members
of B strictly prefer to f. That is, f is not in the weak core.

The same argument with B = A establishes coincidence of weak and
strong Pareto optimality. Il

When endowments are desirable, we omit the modifiers and refer unam-
biguously to Pareto optimality and the core.

3.7 Equilibrium

Our notion of equilibrium involves the pricing of private goods and of club
memberships. Private goods prices p lie in RY; prices for club memberships
q lie in RM, so the vector of all prices lies in Rf x R™. Because we assume
that preferences are monotone in private goods, we will require that private
goods prices be non-negative. However, prices for club memberships may
be positive, negative or zero; prices for club memberships include transfers
between agents in a given club — some agents may subsidize others. For
(z,p) € RYM x RM a vector of private goods and club memberships and
(p,q) € RY x RM a vector of prices, write

(pq)- (Z,p)=p-T+q Pk
for the cost of (Z, fi).

A club equilibrium consists of a feasible state f = (z, ), private good
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prices p € Rf \ {0} and club membership prices ¢ € RM, satisfying the
conditions:

(1) Budget Feasibility for Individuals
For almost all a € A:
PTatq-faSP-ta
(2) Optimization
For almost all a € A:
(z!, 1) € Xa and ug(x), 1) > Ua(Ta, o) = pTLqp, > pea
(3) Budget Balance for Clubs

For each club type (m,7) € Clubs:

3 w(w)q(w,m,7) = p- inp(r,7)

wWEN

Thus, at an equilibrium, individuals optimize subject to their budget con-
straint and the total cost of memberships in a given club is just enough to
pay for the inputs to the given activity.

A club quasi-equilibrium differs from a club equilibrium only in the op-
timization condition (2) above is replaced by the weaker quasi-optimization
condition:

(2') Quasi-Optimization
For almost all a € A:

(24, 1h) € Xa and ua(z}, py) > Ua(Zas Ha) = PTa+qHg 2 Pea

That is, nothing that is feasible and strictly preferred can cost strictly less
than agent a’s wealth. An equilibrium is necessarily a quasi-equilibrium.
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3.8 Equilibrium and Quasi-Equilibrium

In the exchange case, the possibility of a quasi-equilibrium that is not an equi-
librium is frequently viewed as a mere technical problem; the combination of
strictly monotone preferences and strictly positive aggregate endowments is
enough to assure that this problem does not occur. However, the indivisibil-
ities and activities in our setting make the issue more subtle. The following
example illustrates the problems that may arise when private goods are used
as inputs to club activities; see Gilles and Scotchmer (1997) for an example
illustrating the problems that may arise when endowments are not desirable

Example 3.3 Consider an economy with two private goods, a single exter-
nal characteristic w and a single club ¢ = (2, ) consisting of two people, re-
quiring inputs inp(c) = (2,0). We assume agents are constrained to choose
at most one club membership. All agents are identical, with endowments
es = (1,1) and utility functions:

Ug(z,0) = 1—e ™77

ua(-raé(w,c)) = \/1'—1'*‘\/52-

Reminder: 8, is the list specifying choice of the unique membership (w, ¢).
Because endowments are desirable, the weak and strong cores coincide. In-
deed, there is a unique state f in the core: all agents belong to clubs, consume
none of good 1 and 1 unit of good 2, and the entire supply of good 1 is used
to provide the input to the club activity. However, the state f cannot be sup-
ported as an equilibrium, because the marginal rate of substitution of good 1
for good 2 is infinite, so the equilibrium price ratio would have to be infinite
also. On the other hand, f can be supported as a quasi-equilibrium: quasi-
equilibrium prices are p = (1,0), g(w,c) = 1. (This is not an equilibrium,
because good 2 is free and every agent desires more of it.) &

In the familiar exchange setting, a quasi-equilibrium may fail to be an
equilibrium if some agents are in the “minimum expenditure situation;” that
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is, when quasi-equilibrium consumptions require expenditures exactly equal
to wealth and slightly smaller expenditures are not possible. As the exam-
ple above illustrates, it is easier for this minimum expenditure situation to
arise in club economies, because private goods are used as inputs to club
activities and club choices are indivisible. Various assumptions would en-
able us to avoid the minimum expenditure setting and guarantee that a
quasi-equilibrium is an equilibrium; we take a route parallel to the exchange
setting.

Let £ be a club economy and let f = (z,u) be a feasible state. Write
6; for the consumption bundle consisting of one unit of good j and nothing
else. Say that f is club linked if whenever

1uJ={1,...,N}

is a partition of the set of private goods and z4; = 0 for all i € 1 and almost
all a € A, then for almost all a € A there exist r € Ry, j € J such that

ug(€q + 765,0) > Ua(Za, o)

That is, if (as in Example 3.3) the entire social endowment of the private
goods in I is used in the production of club activities, then for almost all
agents a, there is some good j ¢ I and some sufficiently large level of con-
sumption of good j such that agent a would prefer consuming his endowment
together with this large level of good j, and belong to no clubs, rather than
consume the bundle z, in the club memberships p,. Say that £ is club
irreducible if every feasible allocation is club linked.!®

Proposition 3.4 Let £ be a club economy for which endowments are desir-
able. If (f,p,q) is a club quasi-equilibrium and f is club linked, then p >> 0
and (f,p,q) is an equilibrium.

15We use the terms “club linked” and “club irreducible” because these notions play the
same role for us that linked allocations and irreducibility play in the exchange setting; see
Mas-Colell (1985) for instance.
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Proof We show first that all private good prices are strictly positive. If
not, let I be the set of indices for which p; > 0, and let J # @ be the
complementary set of indices. Fix ¢ € I. If zq; # 0 for some set of consumers
having positive measure, then some of these consumers could sell a small
amount of their consumption of z; and buy an unlimited quantity of z;
(for any j € J) and be strictly better off with a lower expenditure; this
would contradict the quasi-equilibrium conditions. We conclude that, for
each i € I, 7,; = 0 for almost all a € A. Club linkedness guarantees that all
consumers would prefer to consume their endowments plus a large quantity of
some commodity z; rather than their quasi-equilibrium consumption. Since
aggregate endowments of private goods are strictly positive, the endowments
of some consumers have a strictly positive value and those consumers would
(by continuity of preferences) prefer to consume a very large fraction of their
endowment plus a large quantity of commodity z;, rather than their quasi-
equilibrium consumption. Again, this would contradict the quasi-equilibrium
conditions, so we conclude that all private good prices are strictly positive.

If (f,p,q) is not an equilibrium, then there is an agent a who is quasi-
optimizing, but not optimizing. Hence there is a choice (z', ') € X, which
is strictly preferred to agent a’s quasi-equilibrium choice and costs no more
than his endowment. Desirability of endowments entails that =’ # 0, so
p-z' > 0. Continuity of preferences entails that there is a bundle z” such
that p-z"” < p-z', (z",1') € X, and (2", p') is strictly preferred to agent a’s
quasi-equilibrium choice — but costs strictly less than his endowment. This
is a contradiction, so the proof is complete.

3.9 Pure Transfers

Our formulation of equilibrium requires that the sum of membership prices
in each club type be exactly sufficient to pay for the inputs required for
production of the club activity. An equivalent notion makes clear the role
of membership prices as taxes and subsidies (and will prove to be more

convenient in proofs).
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Say that ¢ € RM is a pure transfer if ¢ € Trans, defined as:
Trans = {g € RM :q- pu =0 for each u € Cons}
Thus for each club type (m,7) and g € Trans,
S r(wglw,m,7) =0

we

A pure transfer equilibrium is a triple (f, p,q) where f is a feasible state,
p € RY \ {0} is a vector of private good prices and g € RM is a vector of
membership prices satisfying the conditions:

(1) Budget Feasibility

For almost all a € A,

1.,
P Tatq pat ¥, P inp(m,Mie(w, ) < Prea
(w,m,y) |7r|

(2) Optimization
For almost all a € A, if (z}, p;) € X, and
Ua(Tq) Ha) > Ua(Tas Ha)
then

1,
P T, +q gt Y P-mlnp(ﬂ,v)ua(wm,v) > p-éa
(w,my7)

(3) Pure Transfers
g € Trans

We define a pure transfer quasi-equilibrium in the obvious way.

The following lemma tells us that equilibrium (respectively quasi-equi-
librium) and pure transfer equilibrium (respectively quasi-equilibrium) are
equivalent notions; we leave the simple proof to the reader.
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Lemma 3.5 Let £ be a club economy. For ¢* € Trans define ¢ € RM by

. L.
q (w’ T, ’7) = q(w’ U ’7) +p: mlnp(ﬂ-v 7)
Then: (f,p,q) is a pure transfer equilibrium (Tespectively, pure transfer quasi-
equilibrium) if and only if (f,p,q") is an equilibrium (respectively, quasi-
equilibrium).

3.10 Discussion

In our model, agents care about their own consumption and about the ex-
ternal characteristics of others in their clubs. The characteristics we have in
mind should be observable to others in the club, which is why we call them
external. Such characteristics might include sex, intelligence, appearance,
even tastes and endowments, to the extent that such characteristics can be
observed by others.'® On the other hand, we exclude private characteristics
which are known only to the individual. Because we assume that member-
ships are priced according to external characteristics, our construction can
be viewed as a compromise between the non-discriminatory pricing of com-
petitive equilibrium and the personalized prices of Lindahl. To capture the
essence of club theory, we regard as essential a certain degree of anonymity,
but we also think it important to recognize that clubs offer different types of

membership.!”

One restriction in this model, which would be particularly desirable to
eliminate in future work is that external characteristics are ascriptive, not

16But keep in mind that we assume in this paper that the set of external characteristics
is finite.

7Much of the club literature indexes both the external characteristics and the tastes
and endowments by a single “type;” see Berglas (1976), Gilles and Scotchmer (1997) for
instance. Our use of external characteristics is closer in spirit to Conley and Wooders
(1994), Engl and Scotchmer (1996) and Scotchmer (1996), where prices are understood
as “externality prices.” However, these latter papers treat only finite TU economies with
a single private good, restrict agents to belong to at most one club, and do not discuss
existence.
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acquired. Intelligence and endowments (if observable) are possible external
characteristics, skill and consumption are not.

Of course we could formulate a model in which preferences for club mem-
berships depend on various characteristics of club partners, but insist that
prices be independent of those characteristics. In that case, however, and
in contrast to the results proved here, core allocations might not be decen-
tralizable by prices, and equilibria could fail to exist. (A similar comment
applies to the possibility of preferences that depend on the consumptions of
club partners.)
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4 The First Welfare Theorem and the Core

In our club context, as in the exchange case, we easily obtain the first welfare
theorem.

Theorem 4.1 Every equilibrium state of a club economy belongs to the weak
core and, in particular, is weakly Pareto optimal. If endowments are desir-
able, every equilibrium state belongs to the strong core and, in particular, is
strongly Pareto optimal.

Proof Let &£ be a club economy and let f = (z,4) be an equilibrium state,
supported by the prices p € RY \ {0},q € R™. If f is not in the weak core,
there is a subset B C A of positive measure and a state g = (y,v) that is
feasible for B and preferred to f by every member of B. Feasibility of g for
the coalition B entails the material balance condition:
1,
[wdr@ + [ 5 —inp(r,y)valw,m,7)dNa) = [ eadA(a)
B B (yamreM 7| B

and the budget balance condition for each club type (,7):

> m(w)g(w, ) = p- inp(m,7)

weN
Combining these with the consistency condition, we conclude that

[0 (s ) dN@) < [ p-cad(a)
Hence there is a set B’ C B having positive measure for which
(0, 9) - (Yo, 5) <P
for every b € B’. Since g is unanimously preferred to f by members of B,

this contradicts the equilibrium nature of f. We conclude that f is in the
weak core, as desired.

That f is weakly Pareto optimal follows immediately by taking B = A
in the argument above.

If endowments are desirable, the weak and strong cores coincide and weak
and strong Pareto optimality coincide, so the proof is complete. l
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5 Failure of the Second Welfare Theorem

For exchange economies, the second welfare theorem asserts that every Pareto
optimal allocation can be realized as an equilibrium allocation after a suit-
able redistribution of endowments. For finite economies, the second welfare
theorem depends on convexity of preferences; because the indivisibility of
club memberships introduces an essential non-convexity in our context, it
should come as no surprise that the second welfare theorem may fail for fi-
nite club economies. More surprising is that the second welfare theorem may
fail even for non-atomic club economies. The following simple examples (see
also Example 6.2) illustrate what may go wrong.

Example 5.1 We consider an economy with a single consumption good.
Agents have one of two external characteristics, @ = {M, F'} (males and
females); a single club ¢, a monogamous marriage,-requiring no inputs, is
_ possible, and agents are constrained to choose at most one club membership.
In this case M = {(M,c), (F,c)}. Agents in the interval [0,1/2) are male,
agents in the interval [1/2,1] are female. Males love marriage and females
hate it:

U (2,0) = =z for all a € [0, 1]

Ua(Z, 6(M,c)) 2z for alla € [0,1/2) (males)
u(z,8(r)) = 1—e™ foralla€[1/2,1] (females)

Endowments are e, = 1 for all a. Define = by

2 = 712—a for all a € [0,1/2) (males)
1 for all a € [1/2,1] (females)

and set f = (z,0). It is easily checked that f is a Pareto optimal feasible
state, but cannot be supported as an equilibrium following any redistribution
of endowments: Whatever the marriage price, some males will be rich enough
to desire and afford marriage; those males will not be optimizing. &
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Example 5.2 The economy is as described in Example 5.1. Consider the
feasible state in which there is no exchange of the consumption good, but all
agents are married. That is, g = (1,v), where v is defined by:

o 6m,e) for all a € [0,1/2) (males)
¢ §rey  for all a € [1/2,1] (females)

Again, it is easily checked that g is Pareto optimal, but cannot arise as an
equilibrium state, no matter what the endowments: No matter what the
prices, females — who hate marriage — cannot be optimizing when they are
married. &

The role of unbounded consumption in the failure of the 2nd welfare
theorem seen in Example 5.1 foreshadows the role unbounded endowments
will play in the failure of core equivalence in Example 6.2. The failure of the
9nd welfare theorem seen in Example 5.2 reflects the fundamental asymmetry
between initial states (in which agents choose no clubs) and other feasible
states (in which agents may choose various clubs).'®

18This problem might be “solved” by allowing for endowments of clubs, but it is not clear
what endowments of clubs should mean. Here we follows tradition in the club literature
and assume endowments consist of private goods only.
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6 Core/Equilibrium Equivalence

In this section we establish that non-atomic club economies pass a familiar
test of perfect competition: coincidence of the core with the set of equilibrium
states.

Theorem 6.1 Let £ be a non-atomic club economy in which endowments
are desirable and uniformly bounded above. Then every core state can be
supported as a quasi-equilibrium and every core state that is club linked can
be supported as an equilibrium. In particular, if € is club irreducible, then
the core coincides with the set of equilibrium states.

In the proof (which we defer to Section 8), we find it convenient to
construct a pure transfer equilibrium. The argument parallels Schmeidler’s
(1969) proof of Aumann’s core equivalence theorem for exchange economies:

1 Construct a preferred net trade correspondence and aggregate net pre-
ferred set.

2 Apply the Lyapunov convexity theorem to show that the aggregate net
preferred set is convex.

3 Use the core property to show that the aggregate net preferred set is
disjoint from a cone that represents feasible net trades (for all coali-

tions).

4 Construct a quasi-equilibrium price as a price that separates the net
aggregate preferred set from this cone. Use linkedness to conclude that
the quasi-equilibrium is an equilibrium.

The argument contains two surprises. The first is that we require endow-
ments to be bounded; no such assumption is required in the familiar exchange
case. This is not merely an artifact of the proof, however: if endowments
are unbounded, the core may not coincide with the set of equilibrium states
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and equilibrium may not exist. The following variant of Examples 5.1 and
5.2 illustrates the problem.

Example 6.2 We consider an economy with a single consumption good.
Agents have one of two external characteristics, 8 = {M, F} (males and
females); a single club ¢, a monogamous marriage requiring no inputs, 1is
possible, and we we assume agents are constrained to choose at most one
membership. Agents in the interval [0,1/2) are male, agents in the interval
[1/2,1] are female. Males love marriage and females hate it:

ug(2,0) = =z for all a € {0,1]
Ua(Z,0M,)) = 21 for all a € [0,1/2) (males)
Ua(2,8(r)) = 1—e™® foralla€ [1/2,1] (females)

Endowments are e, = 71; It is easily checked that the initial state is the
unique element of the core but cannot be supported as an equilibrium: there
is no upper bound on the amount men would pay to enter a marriage (be-
cause males are willing to give up half their endowment to enter a marriage,
and male endowments are unbounded), but no female is willing to enter a
marriage at any price. &

The other surprise in the proof is that it will not be quite good enough
to find prices (p,q) that separate the aggregate net preferred set from the
cone representing feasible net trades; we must also be sure that p # 0. To
achieve this we will separate the aggregate net preferred set from a cone that
is larger than the cone representing feasible net trades. To show that the
aggregate net preferred set is disjoint from this cone, we will need to show
that if g = (y,v) is a state, B C A is a coalition, and v nearly satisfies the
consistency condition with respect to B, then there is a large subset B'cB
such that v ezactly satisfies the consistency condition with respect to B'.

We formalize this idea in the following Lemma, but we must first introduce
a little notation. For L ¢ R™ write conv (L) for its convex hull. We have
assumed that individuals are constrained to choose lists with no more than
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M memberships; write
Listsy = {£ € Lists : |{| < M}

(Recall that M is the given upper bound on the number of memberships that
may be chosen by any individual.) Set

D = {L C Listsy, conv (L) N Cons = 0}

and
D = inf {dist (conv(L),Cons) : L € 'D}

Lemma 6.3 Let B C A be a measurable set of positive measure and let
v : B — Listsy, be a measurable function. Then there is a measurable subset
B’ C B such that

/,Vb d\(b) € Cons

and

MB') > A(B) — %dist ([ wdA®) , Cons) (10)
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7 Existence of Equilibrium

In this Section we establish the existence of equilibrium for non-atomic
economies.

Theorem 7.1 Let £ be a non-atomic club economy. If endowments are de-
sirable and uniformly bounded above, then a quasi-equilibrium exists. If in
addition £ is club irreducible, then an egquilibrium ezists.

The basic idea of the argument will be familiar: construct an excess
demand correspondence, use a fixed point theorem to find a zero, and show
that this zero is an equilibrium price. However, the club structure gives rise
to many subtleties:

e The balance condition for private goods translates to the requirement
that the excess demand for private goods be 0; the balance condition
for club memberships translates to the requirement that the demand
for club memberships be in Cons, a more subtle condition to verify.

e In equilibrium, prices for private goods must be positive, but prices
for club membership prices may be positive, negative or 0. Hence the
relevant space of all prices is not a proper cone, and the usual forms of
the excess demand lemma will not apply.

e Private good prices can be normalized to sum to 1; club membership
prices admit no obvious normalization or bound. Hence it is not clear
how to construct a domain for prices on which to apply a fixed point

theorem.

e We assume that all private goods are present in the aggregate, but
we do not assume that all external characteristics are present in the
aggregate, and some clubs may not be chosen at equilibrium. In effect,
therefore, we must construct reservation prices for unavailable club

memberships.
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One reason that membership prices may be unbounded is that they may
be indeterminate. The following variant on Example 5.1 illustrates the point.

Example 7.2 We consider an economy with a single consumption good.
Agents have one of two external characteristics, @ = {M,F} (males and
females); a single club ¢, a monogamous marriage requiring no inputs, is
possible. Agents are constrained to choose at most one membership. The
agent space is A = [0,1]; agents in [0,1/2] are male, agents in {1/2,1] are
female. Endowments are ¢, = 1 and utility functions for all agents are:

Uq(z,0) =z for all a
ue(T,6m)) = 1—e* forae€(0,1/2)
ue(z,8(rc) = 1—e€* fora€(l/2,1]

In this example both males and females hate marriage. The core consists of
the single autarkic state, and is supported as an equilibrium by any prices
p,q such that p > 0 and q(M,c) + ¢(F,c) = 0 (because agents will never
choose to marry, no matter what the subsidy). &

With multiple club memberships the problem is more subtle, as the fol-
lowing example illustrates.

Example 7.3 We consider an economy with a single consumption good.
Agents have one of two external characteristics, ) = {M, F'} (males and
females); two club types c;, cs, each consisting of one male and one female
and requiring no inputs, are possible. Agents are allowed to choose at most
2 memberships. The agent space is A = [0,1]; agents in [0,1/2] are male,
agents in [1/2,1] are female. Endowments are ¢, = 1. Utility functions for
males a € [0,1/2) are:

uq(z,0) =z

ua(Z, 6(M,cr)) = Ua(T,6Me)) = 1—e€
U (T, 26(0,c1)) Ua(Z,20(M,cp)) = 1—€7°7
Uqg (.’II, 5(M,c1) + 6(M,c2)) = 2

-
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(Note that &(as,c,) + 8(as,c,) is the list representing choice of one membership
of type (M, c;) and one membership of type (M,c;).) Utility functions for
females a € [1/2,1] are:

uq(z,0) =z

ua(ma‘s(F,cl)) uq (7, 6(F,62)) = 1—¢"
ua(ilt,?&(p’cl)) ua(x, 2(5(1:"62)) = 1—¢e*
Uq (‘Ta 6(F,c1) + 6(F,c2)) = 2z

Thus, both males and females hate belonging to a single club or two clubs
of the same type, but love belonging to two clubs of different types. The
core consists of a single point: all agents choose one club of each type and
consume their endowments. This state is supported as an equilibrium by any
private good prices and club membership prices such that p > 0 and

q(M,c1) + q(F,c1)

q(M,c2) +q(F,c2) =
q(M,c;) +q(M,c;) =
q(F,e1) + q(Fic2) =

o O O O

(Because agents will never choose to belong to only one club or to two clubs
of the same type, no matter how big the subsidy. &

As these examples suggest, some of the indeterminacy would disappear if
we regarded lists as the primary objects and priced them directly. However,
doing so would lead to a less appealing notion of equilibrium, in which the
price of a list might not be the sum of the prices of its component member-
ships. We shall therefore work directly with membership prices, keeping list
prices in the background.

Finding upper and lower bounds for list prices is much simpler than find-
ing a bounded domain for membership prices: If we normalize private good
prices to sum to 1 and assume that individual endowments are uniformly
bounded, then individual incomes also will be uniformly bounded. Hence if
g € R is a vector of membership prices, £ € Lists is a list, and g- £ exceeds
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the bound on individual incomes, then no agent will be able to afford the
list £, and the demand for £ will be 0. Thus the upper bound on individual
incomes provides an upper bound for list prices. To construct a lower bound
for list prices (keeping in mind that list prices might be negative), we show
that, if some individuals are paying large negative list prices then others are
paying large positive list prices, which is impossible. The construction we
use is formalized in Lemma 8.1.

As does the proof of core/equilibrium equivalence (Theorem 6.1), the
argument for Theorem 7.1 proceeds by constructing a pure transfer quasi-
equilibrium. To deal with the difficulties identified earlier, we work with
perturbations of the true economy, and then take limits as we make the
perturbation disappear. The argument is divided into 8 steps:

1 For each k, construct a perturbed economy £* by adjoining to A a few
agents of each external characteristic, with utility functions unbounded
in private good consumption.

2 For the perturbed economy £*, identify a compact set of prices in which
an equilibrium price will be found.

3 Construct an excess demand correspondence.

4 Find a fixed point of the correspondence that maximizes the value of
excess demand.

5 Show that, at this fixed point, excess demand for private goods is equal
to 0 and demand for club memberships is an element in Cons.

6 Construct an equilibrium for £*.

7 Show that the equilibrium state can be supported by prices satisfying
a uniform bound independent of k.

8 Take limits of these uniformly bounded equilibrium prices as k — oo
and apply Fatou’s lemma to construct an equilibrium for £.
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8 Proofs

Here we collect proofs of most of the results in the text. We first show that if
v is “almost” consistent for B then it is exactly consistent for a large subset

of B.

Proof of Lemma 6.3 If Lists), C Cons then dist (f5 1 dA(b) , Cons) = 0,
D = 0 and D = oo, so we may take B’ = B. Assume therefore that

Listsys ¢ Cons.

For each ¢ € Lists,,, write
By=vi{f)={beB:y,=1¢}

and let L = {£ € Listsy : A\(B;) > 0}. Note that ¥sc; A(B¢) = A(B) and

that
A(Be)

NB)

/B vy dA(b) = E/\(Bl) £= A(lB) Z

({37 fel

In particular

/Bubd)\(b) € A(lB)conv (L)

If conv (L) N Cons = @ then the right hand side of (10) is non-positive, so
we may take B, = @ for each £. We therefore assume conv (L) N Cons # 0.

Consider the linear programming problem:

maximize > Be

lel

subject to 0 < B < A(Be)
> Bt € Cons

el

The feasible set for this problem is non-empty (it contains the origin), so this
problem has a solution; let {3 : £ € L} be any such solution.

For each ¢, write oy = A(B¢) — By > 0. Write L' = {£ : ap > 0}. If
L' = @ we are done, so assume not. Write @ = min{ey : £ € L'}. If
conv (L') N Cons # () there are non-negative real numbers €, summing to
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1 with 3;,€£ € Cons. Set 8; = B¢ + €y for £ € L' and f; = f¢ for
¢ ¢ L'. Then {B; : £ € L} satisfies the constraints in the linear programming
problem and yields a larger value of the objective, contradicting the choice
of {B;} as the solution. We conclude that conv (L’) N Cons = 0.

For each ¢ € Listsy,, non-atomicity of A guarantees that we can choose
B, C By such that A(B;) = ;. Set

B'= B

el

By construction,

/B' vpdA(b) = > _A(By)¢ € Cons

fel

We need only estimate A(B’). To this end, note first that, because Cons is
a linear subspace,

dist (z — y, Cons) = dist (z, Cons)

and
dist (rz, Cons) = rdist (z, Cons)

for every z € RM,y € Cons,r € R. Hence

dist (3 A(Bg)¢,Cons) = dist (D A(B:)f - > Bet) , Cons)

Lel el tel
= dist ()_ (A(Be) — B)¢, Cons)
fel’!
= dist () a, Cons)
el

. Qy
= dist oy [ } ¢, Cons)
(lgt lg’ ZfGL’ Qg
. Qy
= Qyp dist
(R

feL’ teL’ X

> ay dist (conv (L'), Cons)

eL’

4, Cons)

v
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= Y (MBe) — B) dist (conv (L'), Cons)

el
> DY (B -
teL’
= DZ (Be) — Be)
teL

= D[X(B) - (B
Rearranging terms yields the desired inequality (10). H

With this lemma in hand, we turn to the proof of core/equilibrium equiv-
alence.

Proof of Theorem 6.1 Let f = (z,u) be a core state. We show that f
can be supported as a pure transfer quasi-equilibrium.

Step 1 For each agent a, consider the preferred set
®(a) = {(z,£) € Xo : wa(z,€) > Ua(Ta, tha) }
For each club (,7) € Clubs, consider the bundle |1np(7r «v); this is what

each agent would be required to contribute to the club (m,~) if inputs were
imputed equally to all members. For ¢ € Lists(w,), define
1,
T(Z) = z e(wa T, ’7) |——|'lnp(7l', 7)
(w,m,v)EM T
This is the total an individual would be required to contribute to all clubs

if £ is the chosen list of memberships and inputs were imputed equally to all
members.

Define the net preferred set for agent a as:
¥(a) = {(z,0) e RN x RM : (z + e, — 7(£),£) € ®(a)}

and set

¥(a) = ¢(a) U {0}
It is easily checked that W is a measurable correspondence. Define the ag-
gregate net preferred set to be the integral of the correspondence W:

Z = /A U(a) d\(a)
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(We refer the reader to Hildenbrand (1974) for discussion of the integral of
a correspondence.)

Step 2 In view of the Lyapunov convexity theorem, Z is a non-empty convex
subset of RN x RM. (See Hildenbrand (1974).)

Step 3 Write 1 = (1,...,1) € Rf . By assumption, endowments are
uniformly bounded; say e, < W1 for each a € A. Set

C={#peR"xRM:2<0, iz € Cons}

C is a convex cone in RY x R™. The core property of f implies that
Z N C = and hence that Z can be separated from C by a price pair (p, q).
Unfortunately, it might happen that the separating price has p = 0. (See
Example 6.2.) In order to guarantee that p # 0, we separate Z from a
“fatter” cone.

Define
. = = L M. = W ..
C*={(z,peR*"xR": 2 < —T)—dlst (&, Cons)1}

We claim that ZNC* = §.

To see this, suppose not; we construct a blocking coalition. Choose z* =
(z*,p*) € ZN C*. By definition, there is a measurable selection a — (y,, V;)
from the correspondence ¥ such that

2" = /A(ym Va) d’\(a)

Let B = {a € A: (Y, vs) € ¥(a)}; this is the set of agents for whom (y,, V,)
is in their net preferred set. Note that A(B) > 0 and

2 = [ (vo,v) dX(a)

SO

= [ wd\a), w" = [ nd\@ (11)

43



We now apply Lemma 6.3 to choose B’ C B such that
/ v,d\(a) € Cons (12)
BI

and

A(B') > M(B) — %dist ( /B v dA(b) , Cons) (13)

We assert that B’ is a blocking coalition. To see this, note first that, be-
cause endowments are bounded above by W1, net preferred sets are bounded
below by —W1. Hence

[ wadA(@) 2 -A(BW1
B
Because 2* = (z*,u*) € C*, equation (11) entails that

w .
/};yad)\(a) < —Bdlst (/B v,dA(a) ,Cons)

Hence

dist ( / VedA(a) , Cons) < A(B)D
B
so A(B’) > 0. Define a state g by
g(a) = (ya + €a — 7(Va), Va)

To see that the state g is feasible for B’ note first that equation (11) and the
definition of C* entail that

w w
zt = /Bya d\ < — 5djst (u*,Cons)l = — Edist (/B v,dA(a),Cons)l
(14)
Additivity of integration entails that

/yad)\:/ yad)\+/ Yo dX (15)
B B B\B'

Our bound on endowments and the definition of individual excess demand
entails that
/ vadA > — A(B\ B YW1 (16)
B\B'
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Combining equations (13), (14), (15) and (16) yields

[ vadr(@) <0
BI
and hence that
/B v + (%) dA(@) < /B ead)
which is the material balance condition. Since equation (12) entails consis-
tency for B’, we conclude that the state g is feasible for B’. By construction,

g is preferred to f = (x,u) by every member of B, so this contradicts the
assumption that f is a core state. We conclude that ZNC* = @, as asserted.

Step 4 We now use the separation theorem to find prices (p,q) € Rf x RM,
(p,q) # (0,0) such that
(p,q) - (£,8) £0 for each (z,1) € C*
(p,@)-220 for each z € Z

Because C* contains the cone —RY x {0}, it follows that that p > 0. Because
C* contains the subspace {0} x Cons, it follows that ¢ vanishes on Cons
and hence that ¢ € Trans. To see that p # 0, supppose to the contrary that
p = 0. By construction, (p,¢*) # (0,0) so ¢ # 0. Hence thereis a 1 € RM
such that ¢z > 0. For ¢ > 0 sufficiently small, (—1,efi) € C*, so that
(p,q) - (—1,en) < 0. However

(pa Q) : (—1’8[1’) = (0, q) ’ (_1a€ﬁ‘)
= &q-p

which, by our choice of i, is positive. This is a contradiction, so we conclude
that p # 0, as desired.

We claim that (f,p,q) is a pure transfer quasi-equilibrium. Feasibility
of f is guaranteed by assumption; we need to check budget feasibility and
quasi-optimization. To this end, let E; C A be the set of agents for whom
f(a) = (za,pq) is not in their budget set; that is, a € E; if and only if
expenditure strictly exceeds income:

expenditure(a) = p-[ZTa + T(la)] + G lha

> p-e, = income(a)
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Write E, for the set of agents for whom income strictly exceeds expenditure.
Measurability of the endowment mapping e implies that E,, F; are measur-
able sets. Feasibility of f implies that the integral (over A) of expenditure
must equal the integral of income. Hence, if A(E;) > 0 it must also be the
case that A(F;) > 0. Strict monotonicity of preferences in private goods
means that, for each a € A and each € > 0, the choice vector (z, + €€, tg)
is strictly preferred to f(a) = (zq,e). Hence if a € E; then there is an
€q > 0 such that (x4 + £4€, itg) costs strictly less than e, and is strictly pre-
ferred to f(a); we may choose €, to be a measurable function of a. Define
g:A— Rf x RM by

_J (@a+ € —€a,pa) ifa€ Er
9(a) = { (0,0) otherwise

By construction, g is a measurable selection from the correspondence ¥, so
Ja9(a)dX(a) € Z. However, our construction guarantees that

(#,9)- [ 9(@dNa) = [ (p.9) - g(@) dX(a) < 0

which contradicts the fact that (p, q) separates Z from C*. We conclude that
A(E;) = 0; that is, almost all agents are choosing in their budget set.

To check the quasi-optimization conditions, write Fj3 for the set of agents
who are not quasi-optimizing in their budget set; suppose that A(E3) > 0.
Note that a € E; if and only if there is a choice vector (y,, V) Which is strictly
preferred to (z4,p,) and costs strictly less than a’s endowment; we may
choose these choice vectors so that the mapping a +— (y,, v,) is measurable.

Define h: A — RY x R™ by

| (o —€a,va) ifa€ ks
ha) = { (0,0) otherwise

By construction, h is a measurable selection from ¥ so [, h(a)dX(a) € Z.
However, our construction guarantees that

(v,9)- [ 9(a)dXa) = [ (7,q) - 9(a) dA(a) <O
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which contradicts the fact that (p, q) separates Z from C*. We conclude that
A(Es) = 0; that is, almost all agents are quasi-optimizing in their budget set.

It follows that (f,p,q) is a pure transfer quasi-equilibrium. Setting
* 1 4
Gm = 4qm + 'I?Ip : lnp(ﬂ’ 7)
for each m € M yields a quasi-equilibrium f,p,q*. If f is club linked, it
follows from Proposition 3.4 that (f,p,¢") is an equilibrium.

Finally, if £ is club irreducible, then every feasible state is club linked and
hence every core state can be supported as an equilibrium. By Theorem 4.1,
every equilibrium state belongs to the core. Hence the core coincides with
the set of equilibrium states. Wl

We now turn to the task of establishing existence of equilibrium. We
begin by finding upper and lower bounds for list prices.

Write Listsy = {¢ € Lists : |¢| < M}. By analogy with a notion from
cooperative game theory, we say that a set L C Listsy is strictly balanced
if there are strictly positive real numbers {e.(€) : £ € L} (which we call
balancing weights) such that

> e ()t € Cons

el

Lemma 8.1 There is a constant R* with the following property:

If L C Listsys is a strictly balanced collection and g € Trans is
a pure transfer then

x&%xq-l > —R Illélll:lq-e
Proof For each strictly balanced collection L, choose strictly positive bal-
ancing weights {e.(¢) : £ € L} and set

max{e.(f) : £ € L}

min{e.(¢): £ € L}

R(L) =
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Define
R = mgx(R(L)(|L| - 1))

where the maximum extends over the finite set of strictly balanced collections

L.

To see that R* has the desired property, let ¢ € Trans be a pure transfer
and observe that

doec(l)g-O)=q- ) e () =0 (17)

fel lel
Choose a list £* € L such that

q-¢ :r}?qu-K

Rearranging terms in equation (17) and carefully keeping track of signs, we
find:
g Y el
. = ——— L .
€L(€*) sef7ser

eL(f) q
te L4 er(€*)

> — (Ll - )min(R(L)(g- D)
> —(minq-E)R'

£eL

which is the desired inequality. Il
With this lemma in hand we establish the existence of equilibrium.

Proof of Theorem 7.1 By assumption, aggregate endowment € is strictly
positive and individual endowments are uniformly bounded above; say that
€ > wl >> 0 and that e, < Wyl for all a € A. Write W = max{W,,1}. We
assume without loss that A\(A) = 1.

Step 1 Fix an integer k > 0. Choose a family {A* : w € Q} of pairwise
disjoint intervals in R, each of length 1/k. Write

A= 4

weN
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We define the agent space (A*, F*, \*) for the perturbed economy E£*
by setting A¥ = AU A*, defining F* to be the o-algebra generated by F
and the Lebesgue measurable subsets of A*, and defining A¥ to be A on
A and Lebesgue measure on A*. Note that \¥(AF) = 1 + J%l External
characteristics, consumption sets, endowments and utility functions of agents
in A are just as in the original club economy £. For agents a € A*, we define:

W, = w
X, = RY x {€eListsy : {(',7,7) =0 if o # w}
e, = W1

U(z,f) = |z|

Step 2 The demand functions of these added agents is such that, for com-
modity prices near the boundary of the simplex and for membership prices
that are large in absolute value, their commodity excess demand will be very
large. This will lead to aggregate excess demands that are impossibly large.
As a consequence, we can write down compact price sets that contain an
equilibrium price for £F.

To define these sets, set
M* = max{|n]|: (7,7) € Clubs}

Choose a real number £ > 0 so small that

w €2 €2
1-(N 1)5][m—W(1+—E—]—€(N—1)W(1+ k)>0
Having chosen £, choose a real number R > 0 so big that
R 2| €2
[kNM" W1+ T)} [1— (N —1)] e(N HW(l + % )>0

Of course ¢, R depend on k. Define a price simplex for private goods and a
bounded price set for club memberships:

A, = {pERf:anEforeach n}
Qr = {gq€ Trans:|¢,| < R forall m € M}
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Step 3 We define an excess demand correspondence. As in the proof of
Theorem 6.1, define

1.
@)= > w7, v)=inp(r,7)
(w,m,y)EM |7r|

Let p € A.,q € Qgr. For each agent a € A, write
B(a,p,q) ={(z,0) € Xo:p-z+q-L+p 7({) <p-ea}

As in the proof of Theorem 6.1, this is agent a’s budget set, assuming that
he is required to pay his share of the inputs to club activities. Let

d(a,p,q) = argmax {ua(z,?) : (z,¢) € B(a,p, )}

be the set of utility optimal choices in agent a’s budget set; that is, d(a,p, q)
is agent a’s demand set. Define agent a’s excess demand set to be

C(av y 2 q) = d(aapa Q) - (eaa 0)

It is easily checked that excess demand sets are uniformly bounded (because
endowments are bounded, private good prices are bounded away from 0 and
club membership prices are bounded above and below). Moreover the corre-
spondence (a,p, q) — {(a,p, q) is measurable and, for each fixed a, is upper
hemi-continuous (in p,q). Define the aggregate excess demand correspon-
dence

Z:A. x Qr— RY x RM

to be the integral of the individual excess demand correspondences:

2(p,q) = [ ¢(a,p,9)dN(a)

As the integral of an upper hemi-continuous correspondence with respect to
a non-atomic measure, Z is upper hemi-continuous, with compact, convex,
non-empty values.

Step 4 We find a fixed point of the excess demand correspondence, in a
slightly roundabout way. Note first that individual income comes from sell-
ing private good endowments and receiving subsidies for club memberships;
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because private good endowments are bounded by W, private good prices
are bounded below by £ and sum to 1, and club membership prices lie in
the interval [— R, +R], this means that individual demand for private goods
is bounded above by (W + RM). Hence individual (and aggregate) excess
demands for private goods lie in the compact set

Xz{zERN:—-WS:z:nSE(W—i-RM) for each n}

By assumption, agents can choose at most M memberships, so individual
and aggregate demands for club memberships lie in the set

C={peRy: ) A(m)< M}
meM

Define a correspondence
P A XQrX X XC oA xQrx X xC
by
®(p,q,7, ) = [argmax {(¢p",q") - (z, 1) : (r",q") € Ac X Qr}| X Z(p,9)

It is easily checked that ® is upper hemi-continuous with compact convex
values. Hence Kakutani’s fixed point theorem guarantees that ® has a fixed
point. Thus there is a price pair (p*,¢¥) € A, x Qg and a consumption/club
membership pair (2%, i¥) € Z(p*, ¢*) such that

(", ¢")-(z", &%) = max{(p",¢')-(z, ) : (", ") € AXQr, (2,10) € Z(p*, ")}
Walras’s law implies that

(#",4%) - (5, 5%) =0

Step 5 We show that z*¥ = 0 and z* € Cons. The argument is in several
parts.
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Step 5.1 We show first that ¢* - i* = 0. Suppose that this is not so.
We obtain a contradiction by looking at excess demands (at prices p*, ¢*) of
agents in A* \ A. Maximality and the definition of ® entail that ¢* - z* > 0
(because 0 - i* = 0). Maximality entails that ¢* € bdy Qr so that |¢gf,| = R
for some m € M. The budget balance condition for clubs means that if some
price has large magnitude and is positive then some other price must have
large magnitude and be negative. Thus there is a membership m* such that
¢t. < —R/M*. The agents in A¥. (whom we have adjoined to the original
set of agents, and whose external characteristic is w*), could obtain a subsidy
of R/M* by choosing the membership m* (and no other). Because agents in
AF. don’t care at all about club memberships and find all private goods to
be perfect substitutes, they will choose to consume only the least expensive
private good and to choose all club memberships whose prices are negative
and no club memberships whose prices are positive. It follows that their
excess demand for the least expensive private good — which we may as well
suppose is good 1 — is at least

R
k _k >
Cl(b,p,q)_NM,

Keeping in mind that A(A¥.) = 1/k and that the excess demand of each agent
is bounded below by —W1, it follows that the aggregate excess demand for
good 1 and for other private goods satisfy:

1 R 9]
ks = _ 134
a 2 gy WA+
zZk > —W(1+|—kﬂ—|)

Define p € A, by:

_J1-(N=-1) if n=1
Pn=1 ¢ if n>1

Calculation shows that

R €] 2]
kNM*_ (1+—i€—) —E(N—-l)W(1+—k—)

p-zkzu—w—l)e][
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Our choices of R, e guarantee that this is strictly positive, so that
(p, 0) ' (Zkaﬁk) >0= (pkaqk) ) (zk’ﬂ‘k)
which contradicts maximality. We conclude that ¢* - iF = 0, as desired.

Step 5.2 We show next that ji* € Cons. If not,we could find a pure transfer
q* € Trans such that ¢* - i* > 0 and hence could find a ¢** € Qr such that
q** - ji* > 0, contradicting maximality.

Step 5.3 We claim that p¥ > ¢ for each n. Suppose not; we once again obtain
a contradiction by considering the excess demand of agents in A* = A%\ A,
Every agent in A* finds all commodities to be perfect substitutes, and there-
fore demands only the least expensive commodities. Because agents in A*
have endowment W1 and hence wealth W, there is at least one commodity,
say commodity 1, for which the excess demand of each agent in A* is at least

w

k _k
> —
Gla,p",q") 2 Ne

Integrating over all agents and keeping in mind that individual excess de-
mands are bounded below by —W1 and that A¥*(AX) = 1/k, we conclude
that

1w 1|
ks 2V 134
a 2 pxp W)
zZr > —W(1+-|%|)

Define p € A, by

1-(N—-1¢e if n=1
oo {1700

€ if n>1

Calculation gives

p-2f 2 [1— (N -1 [%—W(l‘l"%) —s(N—l)W(1+|§:—I)
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Our choice of £ guarantees that this is strictly positive and hence that
(p’ 0) : (zka p'k) >0= (pkaqk) ) (zk,p’k)
which again contradicts maximality. We conclude that p& > ¢ for each n.

Step 5.4 We show that z¥ = 0. If zF # 0 there are indices i, j such that
zF < 0 and 2¥ > 0. Since (p*,¢%) - (2*,2*) = 0 and ¢* - i* = 0 it follows that
p*F - zF = 0. Since pf > ¢, we can construct a price p € A, by setting

pF—iF—e) ifn=i
Po=1 i +50f—¢) ifn=j
o otherwise

Since p* - z* = 0, it follows that p- z¥ > 0, a contradiction. We conclude that
k
2" =0.

Step 6 By definition, there is a selection g(a) = (Ya, #a) from the individual
excess demand sets which integrates to (2*, ji*). Set

Yo = Yot € — T(lha)

Setting f* = (y*,u) yields a state of the economy £*. Since we have just
shown that commodity excess demand z* = 0 and that ¥ € Cons, we
conclude that (f*,p*,q"*) constitutes a pure transfer quasi-equilibrium for
E*. Since £F is club irreducible, (f*,p*, ¢*) in fact constitutes a pure transfer
equilibrium for £*.

Step 7 Our price normalization entails that private good prices p* are
bounded by 1; our construction entails that club membership prices ¢* are
bounded by R, but R depends on k. We now replace the sequence of mem-
bership prices ¢ by membership prices ¢* which lead to the same demands
and are bounded independently of k.

Passing to a subsequence if necessary, we may assume that for each £ €
Listsas the sequence (g* - £) converges to a limit G, which may be finite or
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infinite. Define:

L = {f€listsy:q¢"-£—> G, eR}
L, = {f€Listsy:¢" £ — +o00}
L. = {f€Listsy:q¢* £ - — o0}

Choose G € R so large that |¢¥ - £| < G for each k, each £ € L.

Define a linear transformation T : Trans — R’ by T(g), = q - £. Write
ran T = T(Trans) C R’ for the range of T and kerT = T~!(0) C Trans
for the kernel (null space) of 7. The fundamental theorem of linear algebra
implies that we can choose a subspace H C Trans so that H Nker T = {0}
and H + kerT = Trans. Write Tjy for the restriction of 7' to H. Note
that Tjy : H — ran T is a one-to-one and onto linear transformation, so
it has an inverse S : ran T — H. Because S is a linear transformation, it
is continuous, so there is a constant K such that |S(z)| < K|z| for each

rz€ranT.

Let R* be the constant constructed in Lemma 8.1. Choose kg so large
that k > kg implies

¢t > +2KG+W ifte L,
¢t < -2KG-R'W iftel._
Write ST for the composition of S with T'. For each k > ko set
g = ST(¢*) — ST(¢*) + ¢* € Trans
Because S, Tjy are inverses the composition T'S is the identity, so

T(g*) = TST(¢*) — TST(¢*) + T(¢*) = T(q")

We claim that for k > ko, the triple (f*, p*, §*) constitutes a pure transfer
equilibrium. To see this, we first consider the prices of lists. For £ € L, gl =
¢* - £ because T(§*) = T(¢*). For £ € Ly, §*-£ > W because |ST(¢*)| < KG,
|ST(¢*)| < KG and ¢¥-£ > W +2KG. For £ € Ly, §* - £ < —R*W because
IST(¢*)] < KG, |ST(¢*)| < KG and ¢ - £ < —R*'W — 2KG.
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To check the equilibrium conditions, keep in mind that individual de-
mands for private goods and club memberships depend only on the prices
of private goods and of lists, not directly on the prices of memberships. Be-
cause endowments are bounded above by W and private goods prices sum to
1, individual wealth is also bounded above by W. Hence no list whose price
exceeds W is ever demanded; in particular, no list in L, is demanded at
prices p*, g* or at prices p*,@". Moreover, because the set of lists demanded
at an equilibrium is strictly balanced, it follows from Lemma 8.1 that no list
in L_ is demanded at prices p*,q*. By construction, prices for lists in L_
are higher with respect to g* than with respect to g%, so no lists in L_ are
demanded at prices p¥,g*: if no one is willing to buy a list when a large
subsidy is provided, no one will be willing to buy it when the subsidy is
reduced. Since prices for lists in L are the same with respect to g* as with
respect to ¢¥, it follows that demands are the same with respect to p*, ¢
as they are with respect to p*,¢*. (In words: When we replace membership
prices ¢* with membership prices @ we lower the prices of some unaffordable
lists, but we keep them so high that they remain unaffordable. We also lower
the subsidies of some lists, but lists that are not demanded when subsidies
are large will not be demanded when subsidies are smaller. Hence we do not
change demands.) It follows that (f*,p*,@") is a pure transfer equilibrium
for £%. By construction, |§* - £| < 2KG + |¢*° - ¢| for k, £; because singleton
memberships are themselves lists, it follows that (¢*) is a bounded sequence

in Trans.

Step 8 In view of this construction, we have bounded sequences (p*) of
private goods prices, (¢°) of membership prices and (u*) of aggregate mem-
bership choices. Passing to a subsequence if necessary, we may assume that
P — p*, @& — ¢, i¥f —» p*. We may now employ Schmeidler’s version
of Fatou’s lemma (see Hildenbrand (1974)) to conclude that there is is a
measurable mapping f*: A — RY x RM such that

e for almost all a € A, f*(a) € Ba,p*,q*) C Xa

e for almost all a € A, f*(a) belongs to agent a’s quasi-demand set; that
is, there does not exist (z’,£') € X, such that u,(z',£') > ua(f*(a))
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and (p*,¢") - («',£) +p* - 7(¢) <p" - €

b fA f‘(a) di = (éa ﬂ")
By definition, (f*,p*,q*) is a pure transfer quasi-equilibrium for £. Club

irreducibility implies that (f*,p*,q*) constitute a pure transfer equilibrium

for £, so the proof is complete. B
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