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Abstract

This paper defines a general equilibrium model with exchange and
club formation. Agents trade multiple private goods widely in the
market, can belong to several clubs, and care about the character-
istics of the other members of their clubs. The space of agents and
the number of possible club types are finite. It is shown that (i)
approximate competitive equilibrium exists, (ii) the core can approxi-
mately be decentralized. The approximations are close if the economy
is large. The central subtlety is in modeling club memberships and
expressing the notion that membership choices are consistent across
the population.

JEL Classification Numbers D50, D51, D71

Keywords clubs, core convergence, approximate decentralization
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1 Introduction

Consumption is typically a social activity. The company we keep affects
our demand for private goods, and our consumption of private goods affects
the company we seek. General equilibrium theory in the tradition of Ar-
row and Debreu focuses on the anonymous interactions of consumers with
the market, largely ignoring the social aspect of consumption. Club the-
ory in the tradition of Buchanan, on the other hand, focuses on the social
activity of consumption, largely ignoring the anonymous interactions of indi-
viduals with the market. The principal purpose of this paper and our (1997)
companion paper is to integrate club theory and general equilibrium theory,
constructing a framework which incorporates widespread trading of private
goods in competitive markets and individual consumption in small groups
chosen voluntarily in equilibrium. This paper treats large finite economies;
the companion paper treats continuum economies.

Following an idea of Buchanan (1965), we focus on clubs that are small
relative to the economy: marriages, gyms, academic departments, firms, golf-
ing foursomes, or the clienteles of restaurants. It seems natural to assume
that each agent belongs to several such clubs simultaneously, and our model
has this feature. We thus diverge from the previous club literature, which
has assumed that each agent can belong to at most one club, and therefore
that the club memberships form a partition of the population.

We describe a (type of) club as a pair consisting of a description of the
external characteristics of its members and a specified activity; thus we follow
Ellickson (1979) and Mas-Colell (1981) as viewing the activity of a club as
a public project rather than as provision of some level of a public good. A
club membership is an opening in a club available to agents with specified

YThis literature is vast. See for example Berglas (1976), Berglas and Pines (1981), Be-
wley (1981), Brueckner (1994), Conley and Wooders (1994), Gilles and Scotchmer (1997),
Greenberg and Weber (1986), Greenberg and Shitovitz (1988) Ellickson (1973, 1979),
Konishi (1996), Scotchmer (1985a, 1985b, 1994, 1996), Scotchmer and Wooders (1987a,
1987b), Wooders (1978, 1989).



characteristics. Agents choose both private goods and club memberships,
and private goods and club memberships are treated and priced in parallel
fashion.

In most of the club literature (e.g., see Gilles and Scotchmer (1997)
who studied replica economies), prices for memberships are constructed as
willingness-to-pay prices after characterizing the decentralizing prices for pri-
vate goods. This technique does not work if consumers can choose several
club memberships. We treat club memberships and private goods in a unified
manner, integrating private goods and memberships in a single commodity
space.

Despite our unified treatment of private goods and club memberships,
club economies differ in important ways from exchange economies. First,
club memberships are indivisible. This indivisibility leads to an “integer
problem” which is an obstacle both to the existence of equilibrium and to the
decentralizability of core states. Because it seems to us that the indivisibility
of club memberships is central to understanding clubs, we address it directly.

Second, club membership choices must be consistent across the popula-
tion. If a third of the population are women married to men, for example,
then a third of the population must be men married to women. Consistency
must hold simultaneously for all types of clubs, and allow for the possibility
that every individual may belong to several clubs.

Third, there is an important difference in the pricing of private goods
and of club memberships: private good prices must be positive, but club
membership prices may be positive, negative or zero.

We assume that the set of possible clubtypes is finite. Because our com-
modity space accommodates both private goods and club memberships, this
assumption serves the technical purpose of leading to a finite dimensional
commodity space. However finiteness of the set of possible clubtypes could
be derived rather than assumed. The literature following Buchanan assumes
that clubs have finite optimal sizes; hence if the economy is larger than these
optimal sizes, there is only a finite collection that could possibly arise in



equilibrium or in an efficient state of the economy. We restrict to this finite
set at the outset. Of course not all the clubtypes in our finite set need be
chosen. The clubtypes that are chosen in equilibrium will depend on the
aggregate characteristics, and on consumers’ preferences and endowments.

Our work builds on a long tradition in the club literature that seeks to
demonstrate that clubs can arise as an endogenous outcome of competition in
the market. The intuition is that if clubs are “small” relative to the market,

then they have no market power.

In keeping with the view that perfect competition is best demonstrated in
the continuum, our (1997) paper builds a continuum model. In that paper,
we prove that equilibrium exists and that the core coincides with the set of
competitive equilibrium states.

The continuum is convenient for applications, because it enables the ana-
lyst to ignore the “integer” problem, to treat the economy as competitive, and
to assume that equilibrium exists. However, just as for exchange economies,
the continuum would be of little interest if the results did not hold in an
approximate sense for large finite economies. This paper extends approxi-
mation results for large finite exchange economies to club economies, using
the same unrestrictive assumptions as in our paper on the continuum. We al-
low for general large finite economies, not just replicas; we make no convexity
assumptions; and we permit each agent to belong to several clubs.

Our proof that the core can be approximately decentralized follows lines
introduced by Anderson (1978), except that we must also accommodate the
choices of club memberships and the necessity that these choices be consis-
tent. This is accomplished through a combinatorial lemma which guarantees
that if the club memberships chosen by a coalition are “almost” consistent,
then the coalition contains a large subcoalition whose memberships are ex-
actly consistent. The absolute (not proportional) difference in size between
the coalition and the subcoalition is bounded.

In our notion of approximate equilibrium, the consumption of each agent
is in his budget set, and most agents are optimizing. To construct an ap-



proximate equilibrium, we first construct an “equilibrium” for an enlarged
economy, and then, using the Shapley-Folkman Theorem and our combina-
torial lemma, show that there is a feasible state for the original economy that

is “almost” an equilibrium.

To cement the link between large finite economies and continuum econo-
mies, one must also know that the approximations become better as the
economy grows, and converge quickly. Our theorems give rates of convergence
comparable to those known for exchange economies. For the approximate
decentralization theorem, the discrepancy between the core and a Walrasian
equilibrium is measured in terms of consumers’ budgets. We show that the
per-capita budget discrepancy shrinks at rate 1/n, where n is the size of the
population. For existence of approximate equilibrium, the discrepancy from
an equilibrium is measured by the number of agents who are not optimizing
in their budget sets. This number is bounded by a constant, and in particular

shrinks at rate 1/n as a proportion of the population.

The description of the club economy is in Section 2, which also addresses
the First Welfare Theorem. Section 3 presents our approximate decentraliza-
tion result, and Section 4 presents our result on the existence of approximate
equilibrium. Proofs are collected in Section 5.



2 Club Economies

In this section we describe a club economy and define Pareto optimality, the
core and equilibrium for such economies.

2.1 Private Goods

We assume throughout that there are N > 1 private goods, each perfectly
divisible and publicly traded; the space of private goods is therefore RV . For
z,7’ € RN, we write z > 7’ to mean z; > z; for each i, z > z' to mean that
> 7' but z # z', and z >> 7’ to mean that z; > z for each i. We write

lzl = Z:lezl Ix"ll

2.2 Clubs

We describe a type of club by the number and characteristics of its members
and the activity in which the club is engaged.

Formally, we let ) be a finite set of external characteristics (of potential
members of a club). An element w € (2 is (or encodes) a complete descrip-
tion of the characteristics of an individual that are relevant for the other
members of a club. For further discussion of the interpretation of external
characteristics, see Section 2.10.

A profile is a function m : @ — Zy4 = {0,1,...} describing the members
of a club. For w € Q, m(w) represents the number of members of the club
having external characteristic w. For 7 a profile, write |7| = X eq m(w) for
the total number of members. We write 0 for the zero profile (representing

the empty club).

The activities available to a profile of agents belong to a finite set I'.
We interpret the elements y € I' as public projects in the sense of Ellickson
(1979) and Mas-Colell (1980), rather than as public goods in the sense of



Samuelson. Activities are not traded.

A club type is a pair ¢ = (m,7) consisting of a profile and an activity. We
take as given a finite set of possible club types Clubs = {(m,7)}. We find
it convenient to treat singleton clubs separately, so we assume that |7| > 2
for all (7,7) € Clubs.? Formation of the club (7,7) requires a total input
of private goods equal to inp(w,7y) € RY3

A club membership is an opening in a particular type of club for an agent
of a particular external characteristic; i.e., a triple m = (w,m,y) such that
(m,7) € Clubs and m(w) > 1. (An agent can belong to a club only if
the description of that club type includes one or more members of his/her
external characteristics.) Write M for the set of club memberships.

Each agent may choose to belong to many clubs or to none. A lst is a
function £ : M — {0,1,...}; €(w,,) specifies the number of memberships
of type (w,m,~y) chosen by an agent. Write:

Lists = {£: £ is a list }

for the set of lists. We frequently find it convenient to view Lists (which is
a set of functions from M to {0,1,...}) as a subset of R™ (which is the set
of functions from M to R).

2.3 Agents

A complete description of an agent a € A consists of his/her external char-
acteristics, choice set, endowment of private goods and utility function.* An
external characteristic is an element w, € . The choice set X, for an agent

2Gince activities are not traded, the choice of activities of singleton clubs can be incor-
porated into preferences. -

3More generally, we could assume that each project could be produced from any input
vector from some specified set and incorporate the choice of production technology into
our notion of feasibility.

4We use utility functions rather than preferences as a matter of convenience; under the
assumptions made here, the two specifications are equivalent.
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a € A specifies which bundles of private goods and which choices of club
memberships are feasible, so X, C R" x Lists. For simplicity, we assume
that the only restriction on private good consumption is that it be non-
negative, so that X, = RY x Lists(a) for some subset Lists(a) C Lists;
we assume 0 € Lists(a) for each a, so club formation is not necessary for
survival.> We assume that #(w,7,v) = 0 for every (w,7,7) € M for which
w # w,; that is, no individual may choose membership in any club type
containing no members of his/her external characteristic. We also assume
throughout that there is an exogenously given upper bound M on the number
of memberships an individual may choose, so || < M for each £ € Lists(a).
The utility function for agent a is defined over private goods consumptions
and club memberships and is thus a mapping 4, : Xo — R.

We assume throughout that utility functions are strictly monotone in pri-
vate goods; i.e., ug(x,€) > uy(z',€) for a € A,z,7" € RY,z > /. However,
we make no assumption that utility is monotone in the level of any activ-
ity; indeed, in our framework it is meaningless to talk about the level of an
activity. The ranking of activities may be different for different individuals,
and an individual’s ranking of activities may depend on his/her consump-
tion of private goods.® We take the view that an agent’s preferences for
private goods and for club memberships are interdependent and cannot be
disentangled (except for monotonicity in private goods).

2.4 Club Economies

A club economy € is a finite set A of agents and a mapping a — (wa, Xa, €a; Ua)
that assigns to each agent a € A his external characteristic, choice set, en-
dowment and utility function. As above, we assume that utility functions
are continuous and strictly monotone in private goods.

5Thus we incorporate into consumption sets various kinds of restrictions on club mem-
berships. For instance, we may forbid membership in 2 marriages. More general specifi-

cations of consumption sets would be easily accommodated.
6See Diamantaras and Gilles (1996), Gilles and Scotchmer (1997) and Diamantaras,
Gilles and Scotchmer (1996) for further discussion on this point.
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We assume that the aggregate endowment

E=) €

a€A

is strictly positive, so all private goods are represented in the aggregate.

2.5 States

A state of a club economy is a mapping
f=(z,p): A= RN x RM

A state describes choices for each individual agent, ignoring feasibility at the
level of the individual and at the level of society. Individual feasibility means
that (24, tta) € X,. Social feasibility entails market clearing for private goods
and consistent matching of agents.

We define a property of choice functions u : B — Lists and show that
it is equivalent to a property of aggregate membership vectors 3°p pa. For
each integer 7 > 0, let

Ej(w,m,7) = {a € B : pe(w,m,7) > 0}

This is the set of agents who choose j; memberships of type (w,T,7). Write
|E| for the number of agents in E, so that |E(w,,7)| is the number of
agents who choose j memberships of type (w,,7) and j|EJ(w,,7)| is the
number of memberships of type (w,7,~y) chosen by these agents. The sum

> GEL (w, T, )
=1

is thus the total number of memberships of type (w, 7, y) chosen by all agents.
We say that a function p : B — Lists is integer consistent for B if for each
(m,~) € M there is a non-negative integer a(,y) such that

o0

Z]IEZ(“), T, 7)' = Ot(?T, 7)7(("‘))

j=1



for every w € Q.7

We say that a club membership vector i € RM is integer consistent if
for every club type (m,) there is a nonnegative integer a(m,~) such that

Bw,,7) = a(m,7) T(w)
for every w € (). Write
Cons* = {i € R™ : /i is integer consistent }

Write Cons C RM for the linear subspace of R* spanned by Cons*.

The following lemma, whose simple proof is left to the reader, states the
relationship between the two notions of integer consistency.

Lemma 2.1 Let £ be a club economy, let B C A be a nonempty subset, and
let u : B — Lists be a function. Then pu is integer consistent for B if and

only if 3 qcp Ha € Cons®.

We say that the state f = (z,u) is feasible for the subset B C A if it
satisfies the following requirements:

(i) Individual Feasibility
(Tas o) € X, for eacha € A

(ii) Material Balance 8

Yozt >, D Linp(m, 7) palw, m,7) = Y e

a€B a€B (w,m,v)eM |7l'| a€B

7We use the term “integer consistent” to distinguish the present notion from the related,
but different, notion, termed “consistent,” in our companion (1997) paper.
8Material balance means that the social consumption of private goods (within B) plus

the quantity of private goods used as inputs to club activities (by members of B) is equal
to the social endowment of private goods (within B).
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(iii) Integer Consistency

1 is integer consistent for B

We say the state f is feasible if it is feasible for the set A itself.

Our description of feasible states of the economy is different from the
description of feasible states in most of club theory, where the analog of
integer consistency is expressed by a requirement that clubs form a partitition
of the set of agents. Our description allows for the possibility that agents
belong to many clubs, that different agents belong to different numbers of
clubs, and that clubs have overlapping memberships. For instance, agents
may be married, have employment in a firm, belong to a gym, attend movies
and concerts, take meals in a restaurant, and so forth. In the special case
that agents can belong to only one club (M=1), integer consistency reduces
to the assertion that clubs form a partition.

We do not keep track of which person belongs to which club, nor do
we need to do so: every function p : A — Lists assigning memberships to
agents that is integer consistent for A corresponds to an integer consistent
membership vector (and vice versa). Of course, a given membership vector
may correspond to many assignments of memberships to agents, but we do
not need to distinguish them, because we assume that individuals care only
about the external characteristics of their consumption partners, not about
their identities. (See Section 2.10.)

2.6 Pareto Optimality and the Core

As in the exchange setting, we distinguish two notions of Pareto optimality
and the core; the stronger notion allows blocking if some agents (in the
relevant group) are made better off and none are made worse off, the weaker
notion requires that all agents be made better off. For exchange economies,
strict monotonicity of preferences guarantees that the two notions coincide.
Because choices of club memberships are indivisible, however, the notions

10



may be distinct, even if preferences are strictly monotone in private goods.
In this subsection we define two notions of Pareto optimality and the core
and give a natural condition that guarantees that they coincide.

Let f be a feasible state. We say that f is weakly Pareto optimal if there
is no feasible state g such that u,(g(a)) > u.(f(a)) for all a € A; f is strongly
Pareto optimal if there is no feasible state h such that u,(h(a)) > u.(f(a)) for
all a € A and uq/(h(a)) > ue(f(a)) for all a in some nonempty subset A’ C A.
Note that strong Pareto optimality is a more restrictive notion than weak
Pareto optimality. Similarly, f is in the weak core if there is no nonempty
subset B C A state g that is feasible for B such that uy(g(b)) > uy(f(b)) for
every b € B; f is in the strong core if there is no subset nonempty B C A and
state h that is feasible for B such that u,(h(b)) > u,(f(b)) for every b € B
and uy (h(V')) > uw (f(¥")) for all b’ in some nonempty subset B’ C B. The
strong core is a subset of the weak core.

In general, weakly Pareto optimal allocations may not be strongly Pareto
optimal, and the weak core may be a proper superset of the strong core. The
following assumption, adapted from Gilles and Scotchmer (1997), guarantees
that weak and strong Pareto optimality coincide and that the weak and
strong cores coincide.

We say that endowments are desirable if for every agent a and every list
¢ € Lists(a), uqs(€q,0) > u4(0,¢). That is, each agent would prefer to remain
single and consume his endowment rather than to belong to any feasible set of
clubs and consume no private goods. Desirability of endowments is weaker
than the assumption Mas-Colell (1980) refers to as essentiality of private
goods, which in our framework would be:

u4(0,¢) = oD uq(z*, £%)

for every ¢ € Lists(a). We omit the straightforward proof of the following
proposition.®

Proposition 2.2 If endowments are desirable, then weak and strong Pareto

9For details, see our companion paper (1997).
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optimality coincide and the weak and strong core coincide.

When endowments are desirable, we omit the modifiers and refer unam-
biguously to Pareto optimality and the core.

2.7 Equilibrium

Our notion of equilibrium involves the pricing of private goods and of club
memberships. Private goods prices p lie in RY: prices for club memberships
g lie in R™, so the vector of all prices lies in RY x RM. Because we assume
that preferences are monotone in private goods, we will require that private
goods prices be non-negative. However, prices for club memberships may
be positive, negative or zero; prices for club memberships include transfers
between agents in a given club — some agents may subsidize others. For
(z,n) € RY x RM a vector of private goods and club memberships and
(p,q) € RN x RM a vector of prices, write

(p,q) - (&,0)=p-T+q b
for the cost of (z, iz).

A club equilibrium consists of a feasible state f = (z, ), private good
prices p € RY \ {0} and club membership prices ¢ € RM, satisfying the
conditions:

(1) Budget Feasibility for Individuals

For all a € A:
D Ta+q-fha <P-€

(2) Optimization
For all a € A:

(zh, b)) € Xo and ua(T), ) > Ua(Ta, pa) = P-Tu gl > Prea

12



(3) Budget Balance for Clubs
For each club type (7,7) € Clubs:

z 7r(w)q(w,7r, 7) =p inp(ﬂ', 7)

wEN

Thus, at an equilibrium, individuals optimize subject to their budget con-
straint and the total cost of memberships in a given club is just enough to
pay for the inputs to the given activity.

2.8 Pure Transfers

Our formulation of equilibrium requires that the sum of membership prices
in each club type be exactly sufficient to pay for the inputs required for
production of the club activity. An equivalent notion makes clear the role
of membership prices as taxes and subsidies (and will prove to be more
convenient in proofs).

Say that g € RM is a pure transfer if ¢ € Trans, defined as:
Trans = {g € R™ :q- p = 0 for each 1 € Cons}
Thus for each club type (7,7) and g € Trans,

3 m(w)glw,m,y) =0

wWEN

A pure transfer equilibrium is a triple (f,p,q) where f is a feasible state,
p € RY \ {0} is a vector of private good prices and ¢ € RM is a vector of
membership prices satisfying the conditions:

(1) Budget Feasibility
For almost all a € A,

1,
P Tatq pat D p'l—ﬂmp(ﬂ,v)ua(wm,v) < prea
(w,m,y)

13



(2) Optimization
For almost all a € A, if (z), 1) € X, and

ua(:l:;, N:z) > Uq(Ta, Ma)

then

1,
PTLtqpet Y, p-mmp(mv)u;(wﬂm) > p- e
(w,m,y)

(3) Pure Transfers
q € Trans

The following lemma tells us that equilibrium and pure transfer equilib-
rium are equivalent notions; we leave the simple proof to the reader.

Lemma 2.3 Let £ be a club economy. For ¢* € Trans define q € RM by
. 1.
¢ (w,m,7) = qw,m,7) + p- —inp(7,7)

||

Then: (f,p,q) is a pure transfer eguilibrium if and only if (f,p,q*) is an
equilibrium.

2.9 The First Welfare Theorem and the Core

In our club context, as in the exchange case, we easily obtain the first welfare
theorem. We omit the straightforward proof.1°

Theorem 2.4 Every equilibrium state of a club economy belongs to the weak
core, and in particular is weakly Pareto optimal. If endowments are desirable,
every equilibrium state belongs to the strong core, and in particular is strongly
Pareto optimal.

10For details, we again refer to our companion paper (1997).
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2.10 Discussion

In our model, agents care about their own consumption and about the ex-
ternal characteristics of others in their clubs. The characteristics we have in
mind should be observable to others in the club, which is why we call them
external. Such characteristics might include sex, intelligence, appearance,
even tastes and endowments, to the extent that such characteristics can be
observed by others.!! On the other hand, we exclude private characteristics
which are known only to the individual. Because we assume that member-
ships are priced according to external characteristics, our construction can
be viewed as a compromise between the non-discriminatory pricing of com-
petitive equilibrium and the personalized prices of Lindahl. To capture the
essence of club theory, we regard as essential a certain degree of anonymity,
but we also think it important to recognize that clubs offer different types of
membership.'?

One restriction in this model, which would be particularly desirable to
eliminate in future work is that external characteristics are ascriptive, not
acquired. Intelligence and endowments (if observable) are possible external
characteristics, skill and consumption are not.

Of course we could formulate a model in which preferences for club mem-
berships depend on various characteristics of club partners, but insist that
prices be independent of those characteristics. In that case, however, and
in contrast to the results proved here, core allocations might not be decen-
tralizable by prices, and equilibria could fail to exist. (A similar comment

1Byt keep in mind that we assume in this paper that the set of external characteristics
is finite.

12Much of the club literature indexes both the external characteristics and the tastes
and endowments by a single “type;” see Berglas (1976), Gilles and Scotchmer (1997) for
instance. Our use of external characteristics is closer in spirit to Conley and Wooders
(1994), Engl and Scotchmer (1996) and Scotchmer (1996), where prices are understood
as “externality prices.” However, these latter papers treat only finite TU economies with
a single private good, restrict agents to belong to at most one club, and do not discuss
existence.

15



applies to the possibility of preferences that depend on the consumptions of

club partners.)
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3 Approximate Decentralization

In this section we extend Anderson’s (1978) elementary core equivalence the-
orem to the club context, showing that for large finite club economies, core
states can be approximately supported by prices. Because of the integer
consistency requirement for blocking coalitions, the extension is not straight-

forward.

Following Anderson, we define two measures of how well a given price
system approximately decentralizes a feasible state. Let £ be a finite club
economy, let f = (z, 1) be a feasible state, let p€ A= {pe RY : L p; =1}
be a normalized system of private goods prices, and let ¢ € R™ be a club
membership price. For r € R we write

+

r" = max{r, 0}

for the positive part of r. For a € A we define
pa(f,2,0) = [(2,9) (Taspta) — P - €a]*
Pifipa) = max{[p-ea—(p,q) (&, )"+ tale's 1) > Ua(Ta, pta) }

The number pl(f,p,q) measures how far agent (z,, i) lies outside agent a’s
budget set. The number p2(f, p, q¢) measures how much agent a can save and
still choose something preferred to (z,, a). Note that pl(f,p,q) = 0 if and
only if (z,, 4,) lies in agent a’s budget set and that p2(f,p,¢) = 0 if and only
if nothing preferred to (z,, t4,) is strictly cheaper. Define:

1

PMf.pq) = > pa(fip,9)
|A| acA

PA(fipg) = L > p2(f,piq)
|Al acA

The number p'(f,p,q) is a measure of the average deviation from individual
budget sets, and the number p*(f,p, q) is a measure of the average deviation

from individual optimization.
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In what follows we fix the set  of external characteristics, the set Clubs
of possible club types, the bound M on the number of memberships that
may be chosen by any individual, and the number N of private goods. Write
Econ((2, Clubs, M, N) for the set of finite club economies sharing this data.

Our approximate decentralization result is the following:

Theorem 3.1 There is a constant K depending only on 2, Clubs, M, N
such that:

If € € Econ(), Clubs, M, N) is a finite club economy with |A| >
K and f = (z,u) is a core state then there is a normalized price
system (p,q) € A x R such that

P (f,pq) < T%maX{Ieanl :a€A,1<n< N}

K
P(fip,q) < l—A—lmax{Ieanl ;a€A,1<n<N}
and

3" 7(w)q(w,T,7) = p- inp(n,7) for each (m,7) € Clubs
wEeN

(Note that the budgets of club types balance exactly.)

As in Anderson (1978), the proof constructs an approximately decentral-
izing price by separating the convex hull of the aggregate net preferred set
from a translate of an appropriate cone. There are three subtleties:

(i) In Anderson (1978), the cone from which the aggregate preferred set
is separated is the cone of feasible aggregate net trades, which is the
negative orthant. In our context, the set of feasible aggregate net trades
is the product of the negative orthant with the set Cons* of integer
consistent membership choices, but this product is not a convex cone.
The convex cone generated by the set of feasible aggregate net trades
is the product of the negative orthant with the subspace Cons.
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(ii) A hyperplane that separates the aggregate net preferred set from a
translate of the convex cone generated by the set of feasible aggregate
net trades will yield prices (p, q) # 0, but it need not be the case that
p # 0. To ensure p # 0 we separate from a translate of a slightly larger
cone.

(iii) To show that the convex hull of the net aggregate preferred set is dis-
joint from our cone, we will need to show that, if it were not, we would
be able to construct a blocking coalition. In constructing this block-
ing coalition, we must be sure that both private good consumptions
and membership choices are feasible. Feasibility of private good con-
sumption will be accomplished by “throwing out” a few agents. When
we do this, however, we may find that the membership choices of the
remaining agents are no longer integer consistent. The lemmas below
show that we can restore integer consistency of membership choices by
“throwing out” still more agents. This is a subtle and difficult problem
because we must deal head on with the indivisibility and multiplicity
of club membership choices.

We first isolate an abstract idea and result. Write Z7 C R" for the
subset consisting of vectors whose coordinates are non-negative integers. We
say that a non-empty subset H C Z7 is closed under addition and relative
subtraction if:

G) z,z'eH=>z+2' €H
(ii) z,z’ e H,z—2' >20=>z -1 €H
We say that G C H generates H if every element of H can be written as a

non-negative integer combination of elements of G; that is, for every z € H
there are non-negative integers n.(y),y € G with

T = ZnZ(y)y

yeg
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Lemma 3.2 Every non-empty subset H C Z, which is closed under addition
and relative subtraction is generated by a finite set.

Note that Cons* C Z’r is closed under addition and relative subtraction;
let G; be a finite set of generators.

Write
Listsy, = {¢ € Lists : |[{| < M}

We view Listsy, as the unit vectors in RLiStSM , and define a linear map
T: RLIStsM — RM by T(6;) = £ for each unit vector 8. Set

J={ze€ ZI;‘iStSM : T(z) € Cons"}

The set J describes integer consistency in RLlStSM . It is easily checked that
J is closed under addition and relative subtraction; let G, be a finite set of
generators.

Define constants K, K2 by:
— !
Ko = 2(mpxlol +1) (maxle) +1)
K, = K;M|

Note that K;, K, depend only on the set ) of external characteristics, on
the set Clubs of possible club types, and on the bound M on the number
of memberships that may be chosen by an individual. As we shall see, the
constant in the statement of Theorem 3.1 is

K = K;(MN + M|Listsp| + 1) + Ko + N + |Lists |
The following lemma will allow us to “throw out” the right set of agents.

Lemma 3.3 If B is a finite set and v : B — Listsy is a function then there
is a subset B’ C B such that

> v, € Cons*

beB’
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and
|B\ B'| < Kadist (3w, Cons) + K>

beB
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4 Approximate Equilibrium

It is not obvious what the “right” notion of approximate equilibrium should
be. Our approximate decentralization result Theorem 3.1 shows that core
states are approximate equilibria in the sense that, on average, agents are
nearly in their budget sets and nearly optimize in their budgets. In this
section we establish the existence of feasible states satisfying a stronger ap-
proximate equilibrium notion: all agents are in their budget sets and most
agents ezactly optimize in their budget sets. (In both cases we require that
budgets of club types exactly balance.)

As in Section 3, we fix Q, Clubs, M, N. Write
M* = max{|r(w)| : (,7) € Clubs,w € Q}
K, K, are the constants constructed at the end of Section 3.
Theorem 4.1 If £ € Econ(f2,Clubs, M, N) is a finite club economy in
which aggregate endowment is strictly positive, then there is a feasible state
f = (y,v) and a price system (p,q) such that
e all agents choose in their budget sets

e the set of agents who do not optimize in their budget set has cardinality
at most

N + |Listsy| + Ky MM* (N + |Listsy| + |Q]) + Kz
o budgets of all club types balance

The argument parallels the proof of existence of equilibrium for contin-
uum economies given in our (1997) companion paper. In one way the present
argument is a little more delicate because we must work with the convexified
excess demand correspondence (rather than the excess demand correspon-
dence) and appeal to the Shapley-Folkman theorem (instead of to the Lya-
punov convexity theorem). In another way the present argument is a little
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less delicate, because we do not need to construct equilibria for a sequence
of perturbed economies, adjust the membership prices, and take limits. We
construct a single perturbed economy, find an “equilibrium” for this economy,
and then show that this “equilibrium” is in fact an approximate equilibrium
for the original economy.!® The steps are:

1 Construct a perturbed economy £’ by adjoining to A a few agents of
each external characteristic, with appropriate endowments and utility
functions.

2 Identify a compact set of prices in which an “equilibrium” price will be
found.

8 Construct an excess demand correspondence and a convexified excess

demand correspondence.

4 Find a fixed point of the correspondence that maximizes the value of
convexified excess demand.

5 Show that, at the corresponding prices, convexified excess demand for
private goods is equal to 0 and convexified demand for club member-
ships is an element in Cons.

6 Apply the Shapley-Folkman theorem and Lemma 3.3 to find choices for
each agent which are feasible in aggregate and for which most agents
choose in their budget sets and most agents optimize.

7 Apply Lemma 3.3 to find choices constituting an approximate equilib-

rium.

13We enclose “equilibrium” in quotes because choices in the perturbed economy lie in
the convexifications of demand sets, not in the demand sets themselves.
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5 Proofs

Here we collect proofs of most of the results in the text. We begin by proving
the abstract result.

Proof of Lemma 3.2 For each integer k > 0, write H = {z € H : |[z| < k}.
We first establish the following claim:

Claim There is an integer k such that every element of H domi-
nates some nonzero element of H;. That is, for each z € H there
is a y € Hg,y # 0 such that z > y.

To prove the Claim, suppose not. Then for each integer k there is an z* € H
which does not dominate any element of Hi. In particular, z* ¢ H, so
|z*| > k. For each coordinate 1 < i < n, the sequence (z¥) is either bounded
or not. If it is bounded we may use the fact that elements of H have non-
negative integer coordinates to extract a subsequence that is constant valued,;
if it is unbounded we may extract a subsequence that is strictly increasing
to infinity. Applying the same reasoning to each coordinate in turn, we may
extract a subsequence (z* ) that is non-decreasing; i.e., 7% < z**+! for each
j. Set k* = |z*1|. Because k; — oo, there is an index j* such that k. > k*.
Because z*i > z*1 for every j, it follows that z¥i* > z*1. On the other hand,
z¥ is an element of Hi. which is a subset of Hy,., so z¥* dominates an
element of Hy .. This is a contradiction, so we obtain the Claim.

Now let G = H,; we assert that G generates H. We must show that
every element of H can be written as a non-negative integer combination of
elements of G. Note that -

H=UH
r=1
Hence it suffices to show that for each r, every element of H, can be written
as a non-negative integer combination of elements of G. To see this, suppose
not. Then there is a smallest index r such that not every element of H, can
be written as a non-negative integer combination of elements of G. Certainly
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r > k because G D H;. Let z € H,. By the Claim, there is a nonzero
element y € G with £ > y. The hyotheses on H guarantees that z — y € H.
Because |z — y| < r, minimality of r entails that £ — y can be written as a
non-negative integer combination of elements of G. Since z = (z —y) + y
and y € G, it follows that we can also write £ as a non-negative integer
combination of elements of G, as desired. I

We now show that, if v is almost integer consistent for B then it is exactly
integer consistent for a large subset of B.

Proof of Lemma 3.3 The proof proceeds through several intermediate
constructions and estimations. Write

SZZV},ERM

beB

and .
= Z 8, € RLlstsM
beB
We will find a z € J such that 2 < ¢t and estimate [z — t|. Once that is
accomplished it will be easy to constuct a set B’ C B such that |[B\ B| =
|z — t| and
z=)Y 6,€T

be B’

The definition of 7 and the definition and linearity of the mapping T entail
that

=Y T(,)=T (Z 5,,,,) € Cons*

beB' beB' be B’
In order to construct z and estimate |z —t|, we first estimate dist (s, Cons®).
We then construct an z € Cons* for which we can estimate |z — s|; this
estimation is made easier by arranging that £ < s. From this x we construct
ay € J, and estimate |y — t|. Using y we construct the desired z € J with
z <t, and estimate |z — t|. See Figures 1 and 2.

Step 1 We estimate dist (s, Cons®). To this end, choose an element v €
Cons such that
|s — v| = dist (s, Cons)
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u(F.c)

"-.. dist(Sg Vy, , CONS)

®.s=3%gV,

n(M,c)

FIGURE 1: Membership Space

number of lists (1,0)

/ number of 1ists (0, 1)

FIGURE 2: List Space
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Note that v > 0, for otherwise the positive part v* belongs to Cons (by
the definition) and is closer to s (which is positive) than is v. By definition,
for each club type (m,~) there is a real number a(w,~) such that for every
w € Q,

v(w,,7) = a(m, y)r (W)

Since v > 0 and m > 0, we may take a(n,y) > 0 for each (w,7v). For each
(m,7) let a(m,~y) be the greatest integer less than or equal to a(m,~) and let
w € Listsys be defined by

w(w, m,7) = a7, )7 (w)
for each club (m,7). This construction guarantees that w € Cons* and that
0 <v(w,m,y) —ww,m,y) <1
for each membership (w,m,7), so
lw — | < M|

Hence

dist (s, Cons®) < |s — w| < | M| + dist (s, Cons) (1)

Step 2 We construct an element £ € Cons* that is dominated by s. If
w < s, take z = w. If w £ s, there is a membership m € M such that
w(m) > s(m). Use Lemma 3.2 to write

w = Z nw(y)y

yE€G

Pick y* € G; such that n,(y*) > 0 and y*(m) > 0; set

z! = (nw(y*) - 1)y* + Z ny(y)y € Cons’
y#y*

so that z! < w and z'(m) < w(m). Continuing in this way we construct a
decreasing sequence z! > z2... of elements of Cons®*. After at most |s — w|
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iterations, we obtain a vector £ € Cons”* with £ < s. Since we subtract an
element of G; at each iteration, we conclude that

[w 2] < (max gl s ~ w| (2)

Step 3 By definition, s = > b € By, and v, € Lists), for each b. We
construct a function 77 : B — Lists)s such that 7, < v, for each b € B and

Zm=x

beB

To accomplish this, write

B = {b,...,b}
Proceed inductively:
Mo, = min{ubnx}
Mo, = min{Vbzvx - 77b1}

M, = T— Z Mo,

1<ign—-1

Step 4 Set
y= Z 6”76
be B
The definition of T implies that T'(y) = z so y € J. Write
B"={be B:n,=w}
Because 0 <1, < v, foreach b€ B and v, — 1 € Zf, it follows that

|6 — 76l

= 0 if be B”"
vy —me] > 1

if beB\B”
Note that |6,, — 6,,| = 2 whenever v, # 1. Hence

ly—tl =2|B\ B"|. (3)
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Moreover

ls—z|= Y |lv—m|= Y. |v—ml>|B\B"| (4)

beB beB\B"

Step 5 Proceeding exactly as in Step 2 we construct an element z € J such
that z <t and

2=l < (maxlo'l) It— vl Q
9'€G2
Step 6 For each ¢ € Lists,,, write
By={beB:y,=1¢}

By construction, z < t so z(£) < t(£) = |B,| for each £. Hence we may choose
subsets B; C B, such that |B;| = z(f). Setting

=JB;
4
therefore yields a subset B’ C B such that

S b,=z€J

beB'

As noted at the beginning of the proof, linearity of T' implies

> w=Y T(b,)=T(z) € Cons’

be B’ be B’

Our construction implies that

IB\B|= S [B\Bjl= Y [®-z0l=lt—z2 (6

teListsy, teListsy,

Combining (1) — (6), expanding, and substituting the definitions of K, K>
yields the required estimate for |B\ B’|. B

We can now establish our approximate decentralization result.
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Proof of Theorem 3.1 Set

N* = N + |Listsy]|
K = K\(N"M+1)+K,+N*

Let f = (x, u) be a core state. Write

W = max{|esn| :a € A,1 <n <N}

Step 1 For each agent a, consider the preferred set
p(a) = {(z,€) € X : a(,£) > Ua(Ta, ta)}
and the net preferred set:
Y(a) = {(z,£) € RN x RM : (z + e, — 7(£), ) € p(a)}

Set
¥(a) = ¢(a) U {0}
Define the aggregate net preferred set

Z=> Y(a)

acA

Step 2 Define
c* ={(z,n) e R" x RM : ¢ < ~KW1,dist (i, Cons) < 1}

Note that C* is a convex cone. We want to separate Z from C*; to accomplish
this, we must show that C* N conv Z = (). We suppose not and construct a
blocking coalition. ‘

Let 2* = (z*,u4*) € C* Nconv Z. Note that

convZ = Y conv¥(a)

a€A

Hence the Shapley-Folkman theorem guarantees that we can choose elements
(24, Va) € conv ¥(a) for each a € A in such a way that:
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(i) 2* = Zocalzasva)
(ii) [{a € A+ (20,) ¢ U(a)}] < N*
Write
B=1{a€ A:(z,V,) € ¥(a)}

Because agents a € A \ B choose in the convex hull of ¥(a), and there are
at most N* such agents, it follows that:

dist () _ v, Cons) < N*M +dist (", Cons) < N*'M +1

beB

We can therefore use Lemma 3.3 to choose a subset B’ C B such that

> v € Cons"
beB’
and
|B\ B'| < Ky(N*M + dist (u*, Cons)) + K,
Thus

JA\B| < Ki(N*M +1)+ K, + N = K (7)

By assumption, |A| > K, so B’ # (). We assert that B’ is a blocking coalition.
To see this, define y : A — RY by

f e +T() fbED
% = 0 otherwise

and define the state g = (y,v). To see that g is feasible for B’ note first that

1> e — D el <|A\B|(W1) (8)
acA beB’
Combining (7) and (8) with the fact that (2*,4*) € C* yields the material
balance condition. Since v is integer consistent for B’ by construction, g is
feasible for B’. The construction of g guarantees that g(b) is preferred to f(b)
by every agent b € B’; this contradicts the core property of f. We conclude
that C* Nconv Z = @, as claimed.
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Step 4 We now use the separation theorem to find prices (p,¢*) € Rf xRM,
(p,q*) # (0,0) and a real number ¢ such that

rq) (z,n) <o for each (z,u) € C*
(rqg’)-z20 for each z € Z

Because C* contains a translate of —RY x {0}, it follows that p > 0. Because
C* contains a translate of {0} x Cons, it follows that ¢* vanishes on Cons
and hence that ¢* € Trans. We claim that p # 0. To see this, suppose to the
contrary that p = 0. By construction, (p,¢*) # (0,0) so ¢* # 0. Hence there
is a i € R such that ¢*- i > 0. For € > 0 sufficiently small, (—=1,ef) € C*,
so that (p,q*) - (—1,efr) < 0. However

(p, q‘) ' (—1,€ﬂ) = (O,Q*) : (_1’6/_1')

= e¢"p

which, by our choice of [z, is positive. This is a contradiction, so we conclude
that p # 0, as asserted.

After normalizing, we may assume that p-1 = 1, so that p € A. Finally,
because (—KW 1,0) € C*, it follows that

o>p- (~-KW1)=—-KW

Define g by

* 1 *
gm = G, + — p - inp(7,7)
||

for each m € M. Note that

(pv Q) ’ (ma» Nn) = (p7 q‘) : (-’L'a + T(ua)a ﬂ'a)

for each a.

It remains to verify the claimed estimates for p!,p?. To this end, let
E; C A be the set of agents for whom f(a) = (4, te) is not their budget
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set, and let E, = A\ E;. Thus, a € E; if and only if expenditure strictly
exceeds income:

expenditure(a) = (p,q) - (Za, la)
> p-e, = income(a)

and a € E, if and only if expenditure is weakly less than income:

expenditure(a) = (pa q) : (Z‘a, /J'a)
< p-e, = income(a)

Because f is feasible, the sum over A of expenditures equals the sum over A

Y (2,9) (Tarta) =Y _P-€a

a€A acA
Because A = E, U E, , we obtain

0 = > [(pq) (za,ta) — P €]

of incomes:

acA
= Z[(P,q)'(xa,ﬂa)—p-ea]+ Z[@’Q)'(xa,#a)_p'ea]

Hence

Z [(p’ q) ' (Ea,ﬂa) P ea - Z [ D.q maa/l'a) D 6a]

ac Ey acE>

By definition, 0 € ¥(a) for each a, and monotonicity of preferences implies
that (zg, ito) is in the closure of ¥(a) for each a. Using the separation prop-
erty of prices we obtain:

Z [(pvq) : (xm/«"a) —p-ea] >—-KW

a€Ey

Putting these together and keeping in mind that expenditure minus income
is positive for agents in F; and no others yields:

1 =
p(f,p,9) IAI > pa(fip )

acA
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= |A| Z[(pa maal‘a) p ea]+

acA

= |A|,,§ll(p 0) - (Za i) = B €]

- lAl Z [(p’Q) (za’ua)—p e“]

acE;

< KW
4]

which is the desired result.

To estimate p?, let E3 be the set of agents for whom there is a choice
(Ya,va) € Bl(a,p,q) that is strictly preferred to (4,pq). Just as before,
separation implies

3 (,9) - [(Yarva) — (€2,0)] > —KW

ac€EE;
Rearranging yields
KW
3 ea, YayVa S T Al
1 5 0l 0= (o) < T

Since this inequality holds for all choices (y,,v,), we obtain the desired in-

equality. H

We now turn to the existence of approximate equilibrium.
Proof of Theorem 4.1 Write
W = max{eg, : a € A,1 <n < N}
By assumption, aggregate endowment € is strictly positive; say € > wl >> 0.

Step 1 We construct a perturbed economy £’ by adjoining to the agent set
A a single agent of each external characteristic. That is, the agent set for
the perturbed economy is:

A'=AU{a, :weN}
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External characteristics, consumption sets, endowments and utility functions
for agents in A are as in the original economy £. For agents a,, € A* = A'\A
we define external characteristics, consumption sets, endowments and utility
functions by:

We, = W
X,, = RY x {£€Listsy : £, 7,7) =0if v # w}
€, = W1

Ug,(Z,8) = |z

Step 2 Choose a real number € > 0 so small that

W(|A| + |92
1= v - ] [FUEID vy o - v - w14+ 1) > 0
Having chosen €, choose a real number R > 0 so big that

(1~ (N = 1)e] [ gz = WAL+ 19D] = (¥ = )W (4] +10) > 0

Define :
A, = {PERf:pn26foreach n}
Qr = {gq€ Trans:|gn| < R for all m € M}

Step 3 We define an excess demand correspondence. Let p € Ac,q € Qr.
For each agent a € A, write

B(a,p,q) = {(z,n) € RY x Lists(wa) :p-z+q-p+p-7(1) Sp- €}
Let

d(a,p, q) = {(1«',#) € B(aapa Q) :
Ua (T, 1) 2 ug(e', ') for all (z', 1) € B(a,p,q)}

be agent a’s demand set and let
z(a,p,q) = d(a,p,q) — (€4, 0)
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be agent a’s excess demand set. Excess demand sets are uniformly bounded
(because endowments are bounded, private good prices are bounded away
from 0 and club membership prices are bounded above and below). Define
the aggregate excess demand correspondence

Z: A x Qp — RY x RM
to be the sum of the individual excess demand correspondences:

Z(p,q) = Y 2(a,p,q)

acA’
Note that Z(p, q) is bounded but need not be convex.

Step 4 Individual (and aggregate) excess demands for private goods lie in
the compact set

Xz{xERN:—ngngé(W—{—RM) for each n}

and individual and aggregate demands for club memberships lie in the set

C={peRM: Y a(m)< M}
meM

Define a correspondence
DA XQrX X XC oA XQrxXxC
by
®(p,q, 3, p) = [argmax {(p",q") (1) : (p",q") € De X Qr}] x conv Z(p,q)

It is easily checked that ® is an upper hemi-continuous correspondence, and
that its values are non-empty compact convex sets. Hence Kakutani’s fixed
point theorem guarantees that ® has a fixed point. Thus there is a price
pair (p,q) € A: X Qr and a consumption/club membership pair (z, i) €
conv Z(p, q) such that

(p,q) - (2,) = max{(p",q")- (2", ")  (P",q") € De X Q, (=",1°) € Z(P, )}
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Step 5 We show that Z = 0 and i € Cons. The argument is in several
parts. Keep in mind throughout that

(z,m) = z {(xa,ﬂa) - (e;,O)}
acA’
where, for each a, the choice (z, 1,) is a convex combination of demands —
optimal choices at prices (p,q).

Step 5.1 We show first that
q-p=0

. Suppose that this is not so; we obtain a contradiction by looking at excess
demands (at prices p,q) of agents in A* = A’ \ A. Maximality and the
definition of ® entail that ¢- i > 0 (because 0 - z = 0). Maximality entails
that ¢ € bdy Qg so that |gf,| = R for some m € M. The budget balance
condition for clubs means that if some price has large magnitude and is
positive then some other price must have large magnitude and be negative.
Thus there is a membership m* = (w*,7*,~*) such that g, < —R/M*.
The agents a,. € A’ whom we have adjoined to the original set of agents,
and whose external characteristic is w*, could obtain a subsidy of R/M* by
choosing the membership m* (and no other). Because this agent does not
care at all about club memberships and finds all private goods to be perfect
substitutes, it follows that his (convexified) excess demand for one of the
least expensive private goods — which we may as well suppose to be good 1
— is at least

R
>
Cl(b’ y 2 Q) = NM*

Keeping in mind that the (convexified) excess demand of every agent in A’
is bounded below by —W1 and that the number of agents in A’ is |A| + |2},
the aggregate (convexified) excess demand for éood 1 and for other private
goods satisfy:

R
NM- W(|Al +19])

Zn 2 —W(A[+1Q])

N
K
v
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Define p € A, by:

[1-(N-1e if n=1
Pn = € if n>1

Calculation shows that

R
N M+
Our choices of R,e guarantee that this is strictly positive so

(p’O) : (Z,ﬁ) >0= (p,Q) : (f,ﬂ)

which contradicts maximality. We conclude that ¢ - & = 0, as desired.

P22 (1= (V = el [0 — WAL+ 1] - sV - )W (1] + 1)

Step 5.2 We show next that z € Cons. If not, we could find a pure transfer
g* € Trans such that ¢* - & > 0 and hence could find a ¢** € Qg such that
q** - i > 0, contradicting maximality.

Step 5.3 We claim that p, > € for each n. Suppose not; we once again obtain
a contradiction by considering the excess demand of agents in A* = A’ \ A.
Every agent in A* finds all commodities to be perfect substitutes, and there-
fore demands only the least expensive commodities. Because agents in A*
have endowment W1 and hence wealth W, there is at least one commodity,
say commodity 1, for which the excess demand of each agent in A* is at least

4%
> —_—
¢i(a,p,q) 2 Ne

Summing over all agents and keeping in mind that individual excess demands
are bounded below by —W'1 | we conclude that

WAl+19)

> (141 + |2)

2z

zn > —W(lA[+1Q])

Define p € A; by

_ 1-(N=-1)¢ if n=1
Pn = € if n>1
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Calculation gives

w(l4| : ) _ wal+ 10n| —e(v-1yw (Al +19)

P22 [1- (N - e | =

Our choice of € guarantees that this is strictly positive and hence that

(p,O) ) (zaﬂ) >0= (p,Q) ) (2,/7/)
which again contradicts maximality. We conclude that p, > ¢ for each n.

Step 5.4 We show that z = 0. If z # 0 there are indices i, j such that z; < 0
and z; > 0. Since (p,q)- %,i2) = 0 and ¢- 2 = 0 it follows that p-Z = 0. Since
p; > €, we can construct a price p € A, by setting

Di — % i — E) ifn=1
Pn=2 pi+ipi—¢e) ifn=j
Pn otherwise

Since p- z = 0, it follows that p- Z > 0, a contradiction. We conclude that
z=0.

Step 6 Applying the Shapley-Folkman theorem, we find choices (Zq, i) €
convd(a,p,q) and a set A” C A’ such that

L EaeA’(xa? /l'a) = (27/‘7’)
® (Za; pa) € d(a,p,q) if a € A"
e |A'\ A”| < N + |Lists,,|
Set B = AN A”; note that
|A\ B| £ N + |Listsy| (9)

and
|A"\ B| < N + |Listsy| + |©]
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By construction,
Z pe = i € Cons®

ac A’
)
dist (3 pta, Cons*) < MM*(N + |Listsn| + [©2])
a€eB
Apply Lemma 3.3 to find a subset B’ C B such that

E e € Cons’
a€B

and

|B\ B'| < Kydist (Y pta, Cons®) + Ko

a€EB

Define a state f = (y,,Va) by

| (@a,vs) if a€B
(¥, v2) “{ (0,00 if a¢B

(10)

(11)

The state f is feasible for A and has the property that all agents choose in
their budget sets and agents in B’ optimize. Combining equations (9), (10)
and (11) yields the desired estimate on the cardinality of the set of agents

who do not optimize in their budget sets. I
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