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Abstract

We analyze the dynamics of a simple growth model in which production occurs with
a delay while new capital is installed (time-to-build). The time-to-build technology
is shown to yield a system of functional (delay) differential equations with a unique
steady state. We demonstrate that the steady state, though typically a saddle, may
exhibit Hopf cycles on a measurable set of the parameter space. Furthermore, the
optimal path to the steady state is oscillatory. A counter-example to the claim that
“models with a time—to—build technology are not intrinsically oscillatory” is provided.
We also provide a primer on the central technical apparatus — the mathematics of
functional differential equations.
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1 INTRODUCTION

THE PREPARATION OF THIS PAPER was prompted by a desire to clarify the precise theoreti-

cal relationship between time-to-build (investment gestation lags) and cycles in deterministic
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neoclassical growth models. Is the time-to-build feature essential to cyclical fluctuations—
as argued by Kydland & Prescott (1982) — or is it some other feature of this class of models
that delivers the oscillatory behavior — as argued by loannides & Taub (1992)? Of related
interest is the optimality of oscillatory paths in this class of models.

How would one convince an economist of the relationship between time-to-build and
cycles in this class of models? One obvious strategy is to write down a simple growth
model, introduce a time-to-build technology through production lags, and then analyze the
dynamics of the model using appropriate methods. Since it is well known that the standard
deterministic growth model with one good never admits cycles; this strategy enables the
precise theoretical role of the time-to—build technology to be clearly established.!

The above mentioned strategy is the one that we follow in this paper. We investigate the
dynamics of a simple equilibrium growth model with an infinitely lived representative agent
who trades a single consumption-investment good. Investment gestation lags are introduced
by assuming production occurs with a delay while new capital is installed. We demonstrate
that the optimality conditions of the model yield a system of functional (or delay) differential
equations with a unique steady state. A constructive proof demonstrates that the steady
state, though typically a saddle, may exhibit Hopf cycles on a measurable set of the parameter
space. We show that the presence of cycles is due entirely to the time—to—build technology
and that oscillating paths are optimal.

The idea that lags, represented by functional differential equations, can induce cyclical
behavior is not new. Researchers at least since the time of Jevons have conjectured that
production lags can induce cycles in output.? However, despite the long history of its use in
economic analysis, delay differential equations have rarely been used in modern (equilibrium)

neoclassical macroeconomics.® El-Hodiri et al. (1967) is to the best of our knowledge, the

1Benhabib & Nishimura (1979) show that the representative agent model can generate cycles only if there
are three or more consumption goods.

2Gee also Frisch & Holme (1935) and James & Belz (1938) for early work along these lines.

3There are several examples of models using delay differential equations in microeconomics. Howroyd &
Russell (1984) develop a Cournot oligopoly model in which each firm adjusts its output to counter competitors



first paper in modern macroeconomics to incorporate lags into an optimal growth model.
However, the authors did not analyze the relationship between lags and cycles. Rustichini
(1987, 1989) introduces a sophisticated lag structure in the optimal growth model and pro-
vides a rigorous proof of the existence of cycles.

The present analysis differs from these papers in that the production process is such
that only the lagged state variable yields output and depreciates, not the current state. If
production depends on both the lagged and current state, the optimality conditions yield a
system of mixed functional differential equations with advanced and delayed time arguments,
as in Rustichini (1989). In contrast, in the present analysis, we show that even a simple
productioﬁ lag structure will admit cycles.

The rest of the paper is organized as follows. In Section 2 we provide a primer on
the mathematics of functional differential equations — the technical apparatus needed to
understand the main ideas in the paper. In Section 3 we characterize the dynamics of a
simple determinisﬁc continuous-time growth model with a time-to-build technology. In
Section 4 we demonstrate the optimality of Hopf cycles in this class of models. Section 5

concludes the paper.

2 FUNCTIONAL DIFFERENTIAL EQUATIONS WITHOUT TEARS

In this section we provide an accessible primer on the mathematics of functional differential
equations (FDEs). A retarded functional differential equation is a di.fferential equation in
which the current behavior of the system depends on past history.* Henceforth, the abbre-
viation FDE will denote FDEs of retarded type. We limit our attention to FDEs of retarded

type, because it is the class of equations relevant to the present analysis. Readers familiar

with a lag that signifies the time it takes for information to be received and processed. Béliar & Mackey
(1989) and Mackey (1989) consider the dynamics of price adjustments in which prices are a function of past
values which produces a system of delay differential equations.

4Functional differential equations that depend on future states are referred to as advanced functional
differential equations.



with FDEs can proceed directly to the next section.
Functional differential equations generalize ordinary differential equations (ODEs) by
allowing the state of the system at time ¢ to depend on states other than at the current time,

via a feedback mechanism. A typical representation is
#(t) = Flt, z(t)g(z(t — )], (1)

where #(t) is the derivative of z(t), g(-) is the feedback function and r > 0 is the time delay.
One of the simplest FDEs is a delay differential equation (DDE) in which the feedback

mechanism is the identity function. An example is the linear DDE
(t) = az(t) + bz(t — r) + f(¢),

where a and b are constants, and f(t) is the forcing function. Other examples of DDEs are:

1. A two-delay differential equation

i(t) —u(t—1)—u(t-2)=0.

2. A second order delay differential equation

i(t) — u(t — 1) +u(t) = 0.

3. A neutral DDE (i.e. it has a time-delayed derivative)

i(t) — ci(t —r) — Az(t) — Bz(t —r) — f(t) = 0.

4. A DDE often used to model population growth

N(t—r)

N() =k[1- B

IN (1), (2)

where the delay r > 0 represents periods before reproductive maturity is reached and P and

k are positive constants.



2.1 Solving functional differential equations

DEFINITION 1 (HALE 1977) Supposer > 0 is a given real number, R™ is an n-dimensional
vector space over the reals with norm |- | and C([a,b], R") is the Banach space of continuous
functions mapping the interval [a,b] into R™ with the topology of uniform convergence. If
[a,b] = [-r,0], let C = C([-r,0],R") and designate the norm of an element ¢ in C by
|¢| = sup_,<p<ol@(d)}. Ifo € R,A 20 andz € C(le — r,o + A],R™), then for any
t € 0,0 + A] we let z; € C be defined by z:(0) = z(t + 9), for —r < 0 < 0. If D is a subset
of RxC,f:D — R is a given function and - represents the right hand derivative, we say
that the relation

&(t) = f(t,z¢) (3)

is a retarded functional differential equation on D. A function z is said to be a solution of (3)
onlo—r,0+A) if there are 0 € R and A > 0 such thatz € C([lo—r,0 +Al,R™),(t,2;) € D
and z(t) satisfies (3) with boundary condition ¢ at o if there is an A > 0 such that z(o, ¢, f)

is a solution on C([oc —r,0 + A) and z,(0, ¢, f) = ¢.

Definition 1 is sufficiently general to encompass ordinary differential equations, delay
differential equations and integro—differential equations.

Next, we turn to the boundary conditions required for unique solutions to DDEs. Since
DDEs rely on history to determine current behavior, a single datum such as z(tg) = o,
which would be used to pin down a solution for an ODE, doe not generally contain sufficient
information to provide a solution to a DDE.5 An initial function which identifies the relevant
history of the equation before the system begins its motion must be specified. In (1) where
the delay is > 0, an initial function on [tg — 7, to] must be given when 2 is the time at

which the system starts.®

5Note that standard definitions used to describe ODEs equations such as “linear, ” “homogeneous,”
“autonomous” and of “nt? order” all apply to DDEs.
6 An example of an initial function would be the initial distribution of wealth. See Bélair & Mackey (1989)

for an innovative use of this type of initial function.



The algebraic methods of steps can be used to prove the existence of a solution to a con-

stant coefficient DDE. For example, consider a generic linear DDE with constant coefficients

A and B and delay r > 0, given by

i(t) = Az(t) + Bz(t — ) + f(t). (4)

The following theorem formalizes the notion of a solution to the generic DDE (4).

THEOREM 1 (HALE 1977) If ¢ is a given continuous function on [—r,0], then there exists
a unique function z(¢, f) defined on [—r,o00] which coincides with ¢ on [—7,0] and satisfies

(4) for allt > 0.

PROOF: Apply the method of steps repeated on intervals of length r beginning with [-r,0].
.

To illustrate the method of steps, consider the DDE used to model population growth
given by (2). Observe that by making a change of variables z(t) = N(rs)/P — 1 and ¢ = kr,

(2) can be written as

£(t) = —cz(t — 1)[1 + z(2)). (5)

Now suppose one is given the initial function ¢ defined on [-1, 0] and would like to solve
the equation for a function z, where z(t) = ¢(t) on the interval [—1, 0] and where z satisfies
(5) for t > 0. This can be done by partitioning [0, c0) into steps the size of the delay, which
in this case is 1. Initially, we limit our attention to (5), defined on the interval [0, 1], given
the function ¢(t) (which we assume is continuous in this example, though discontinuities can

be handled as well). Writing the equation on [0, 1] explicitly, we have

(t) + cod(t — z(t) = —co(t — 1),

which is an ordinary differential equation with initial condition z(0) = ¢(0) because the

function ¢(t — 1) is known. Using an integrating factor exp[ Js cp(s — 1)ds], one finds the

6



unique solution on [0, 1] is
’ 1)d
z(t) = [¢(0) + 1]e‘fo cdls—ds _ 1,

Once it is found that the solution is on the interval [0, 1], the procedure is repeated on
the interval [1,2] as the past history of z(t) is now known for [0, 1]. It is readily apparent
that the delay in a DDE provides a natural method by which the class of constant coefficient
equations can be solved, even when the equations are nonlinear, as in this example. It is
equally obvious that this method requires tedious computations and often yields cumbersome
solutions.

An alternative method of solving DDEs—similar to methods used to solve ODEs — uses
the characteristic equation associated with the DDE. The characteristic equation of a linear

DDE with delays r;

n
g(t) =D Ajy(t =), (6)
j=1
is given by DET[IA -7, Aj;e~*i] = 0. If r; = 0 for all j, then (6) is an ordinary differential
equation and the characteristic equation has the familiar polynomial form.

One solves a non—homogeneous FDE the same way as one would an ODE. First, find a
general solution to the homogeneous problem; then, find a particular solution to the nonho-
mogeneous problem; finally, apply the principle of superposition. Recall that the principle of
superposition states that a linear combination of solutions to a differential equation is also
a solution. The eigenvalues which solve the characteristic polynomial and their associated
eigenvectors are the elements from which a solution to a DDE is constructed.

To see this, consider the homogeneous part of (4). That is
i(t) — Az(t) — Bz(t —r) = 0.
The characteristic equation is

h(A)=A—A—Be ™™ =0, (7)

7



The characteristic equation is found by substituting candidate solutions of the form e

into the dynamical system. The exponential term associated with the delayed argument can
be thought of as a “time consistency” construct.

The general solution to a non-homogeneous FDE is found by using the characteris-
tic polynomial and a generalization of the method of steps—the Laplace transform. The
particular Laplace transform we use is the inverse of the characteristic polynomial of the
homogeneous problem, ~~}(A). An intermediate result is needed before we state the next

theorem.

LEMMA 1 (EXISTENCE AND CONVOLUTION OF THE LAPLACE TRANSFORM) :

If f : [0,00) = R is measurable and satisfies |f(t)| < ae” for t € [0,00) for some constants
a and b, then the Laplace transformation L (f) given by L (f)(A) = [5° f(t)e™dt exzists
and is analytic for Re(\) > b. If f o g is defined by f o g(t) = fo f(t — s)g(s)ds, then L
(f 0 9) =L()L(g).

Lemma 1 establishes that a Laplace transform exists under weak restrictions on the

function f. These are the conditions under which a solution to a general DDE exists.

THEOREM 2 (HALE 1977) The solution to the generic DDE given by (4) with initial func-
tion z(t) = 0 fort < 0 and z(t) = 1 for t = 0 is the fundamental solution. That is, 1t
satisfies £ (z)(A) = h™Y(X); and, for any ¢ > b, z(t) = [ hY( Nerd),t > 0, where b is

the bound on z(t), |z(t)| < ae™,t > 0 and the notation [ = limr_c1/2 o

Although Theorem 2 appears quite complicated, it states that solutions to FDEs will, in
general, exist if the transition equation F(¢,z(t), z(t—r)) in (1) is continuous and defined on
a compact Banach space. Uniqueness follows if F(-)is Lipschitzian in ¢, the initial function,
on a compact set. Solutions to FDEs are usually continuous functions of time and depend
continuously on the parameters of the problem, including the delay, r.

Linear constant coefficient DDEs are often solvable for exact solutions using a modified

variation of parameters procedure from ODEs. The homogeneous problem is solved first and

8



then a particular solution is appended to form the general solution. However, it is nonlinear
delay differential equations which generally arise in nontrivial economic applications and
these almost never admit exact solutions.” As a result, after identifying several differences
between DDEs and ODEs, the next section addresses the qualitative analysis of DDEs using
characteristic equations.

Up to this point we have shown that the nature of the solutions and the methods
used to solve DDEs are quite similar to ODEs. Nevertheless, DDEs exhibit more com-
plicated behavior even in the simplest linear case. In particular, scalar linear first order
homogeneous DDEs with real coefficients can have nontrivial oscillating solutions unlike
ODEs. For example, Kalecki’s (1935) model of business cycles has the investment equation
J(t) = AJ(t)= BJ(t—r), which has cyclic solutions of the form J(t) = e%[cy cos(t)+cg sin(t)],
for a%(). Secondly, solutions to DDEs may be discontinuous with backwards continuation of
solutions being non-unique. This is markedly different from the existence and continuation
solutions for ODEs. Winston & Yorke (1969) have shown that a solution may not exist at

all if one defines the initial condition for t < tg as z(t) = o, as in ODEs.

2.2 Stability analysis

Consider the FDE i(t) = f(t, z(t)) and suppose f(t,0) = 0 for all ¢t. Let B(z(t),a) be an

open ball of radius a. The solution z(t) = 0 is

e stable if for any s € R and p > 0, there exists a § = 6(u,s) such that the initial

function ¢ € B(0,6) = z(t)(s,¢) € B(0, ) for t > s.

e z(t) = 0 is asymptotically stable if it is stable and there exists b = b(s) > 0 such that

¢ € B(0,b) = z(s,¢(t)) — 0 ast — oo.

7As with ODEs, series solutions can be used to approximate exact solutions to nonlinear DDEs (Bellman
and Cooke (1963 p.98ff) provide an elegant exposition). However, this method is generally tedious and yield
complicated solutions which obscure many interesting analytical issues. As a result, we do not pursue it any

further here.



In most applications, the stability of a fixed point of an FDE is established either by
examining the roots of the characteristic equation or by constructing Lyapunov functionals.
We focus on the former here (for the latter see Hale (1977 pp. 105ff)) and discuss stability
issues for linear FDEs. Since the dynamics of nonlinear FDEs can be characterized by taking
a first—order Taylor series approximation in a neighborhood of a fixed point, the techniques
below are also used for local stability analysis of nonlinear systems.

A fixed point of an FDE can be shown to be stable if all roots of the characteristic equation
have real parts less than zero. A fixed point is called hyperbolic if there are no eigenvalues
) such that Re()) = 0. It is worth noting that although stability analysis of FDE parallels
that of ODEs, FDEs display some peculiar properties. For instance, the stability properties
of constant coefficient non-autonomous DDEs may change as the initial time to varies.®
A second peculiarity which at first appears untenable is that any hyperbolic fixed point
of a linear FDE (subject to some technical restrictions on boundedness and continuity) is
typically a saddle point.® The veracity of this claim will become clear after a short digression
on the dimension of FDEs.

One generally determines the dimension of a dynamical system by examining the number
of linearly independent roots of the characteristic polynomial. Applying the same logic to
the homogeneous part of the linear DDE given by (4), which has characteristic polynomial
(7), one arrives at the conclusion that (4) describes an infinite dimensional problem because
(7) has an infinite number of (complex) roots.

To see this, suppose A = p + iw is a solution to (7), where p and w are real. Then,

separating the real and imaginary parts and using Euler’s Theorem, roots of the characteristic

equation solve

pu— A — Be!" cos(wr) =0,

w — Be*"sin(wr) = 0.

8Driver (1974 p.362).
9Hale (1977, p.228).
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It should be apparent that for almost every combination of parameter values, there is an
infinite number of solutions to these equations. Note that in the example above, the value of
the delay r is critical in determining the behavior of solutions to the characteristic equation,
which is only well-defined if r is rational.’®

The saddle—point property mentioned above should not seem so odd. With an infinite
number of roots to the characteristic equation, it would be unlikely to find all roots having

real parts strictly less than or strictly greater than zero. Thus, we expect fixed points of

FDEs to have the saddle point property.

The stability of a one-delay differential equation has been solved by Hayes (1950). He

derived conditions under which the characteristic polynomial

AN = (A+a)e* +b=0, (8)
for a,b € R indicates that a fixed point of the DDE is stable.!!
THEOREM 3 (HAYES) Equation (8) has all roots with negative real parts if and only if
1. a> -1,
2. a4+b>0,
3. b < psin(p) — asin(p),
where p is the root of p = — arctan(p),0 < p < 0o, ifa #0; p=7/2 ifa=0.

PROOF: See Bellman & Cooke, (1964) p.444. .
This important theorem is applicable to homogeneous scalar linear first-order one delay

differential equations.

10Bellman & Cooke (1964) have an extensive chapter detailing the location of the roots of exponential
polynomials. In many applications, one may apply the Argument Principle from complex variables to find
zeros of analytic functions (see Churchill, Brown and Verhey, (1976 p296ff).

11 The complexity of DDEs can be appreciated by noting that a general stability theorem does not exist for
the two-delay differential equation (2DDE). Stability in a 2DDE varies radically depending on the particular
values of the delays. See Mahaffy, Zak and Joiner (1995).
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Next, we extend this analysis to nonlinear systems. Suppose the FDE in question is

scalar, autonomous, and given by
ao(t) = h(v(t), v(t - 1), (9)

with an appropriately defined initial function. If h(c,c) = 0 for some constant c, then
w(t) = c is a constant solution for ¢ > r. Differentiating (9) with respect to both arguments

yields the variational equation
ai(t) = hi(c, c)u(t) + ha(e, c)u(t — ), (10)

where u(t) = v(t) — w(t),t > r, and h; is the partial derivative of h with respect to the
ith term. By a generalization of the Poincaré-Lyapunov Theorem, solutions of (10) are
isomorphic to those of (9) in some neighborhood of w(t) = c. More general methods of
stability analysis for nonlinear systems, in particular the analysis of periodic solutions, may
use higher order approximations as the analytical basis.'?

Periodic solutions to FDEs typically arise in two ways, either in non-autonomous systems
with forced periodic components, or via a Hopf bifurcation in autonomous systems.!® The
class of models considered below are all autonomous, and we restrict our discussion of cycles
to this case. Hopf cycles appear when a fixed point loses or gains stability due to a change
in a parameter value and, simultaneously, a cycle emerges from or collapses into the fixed
point. There are two distinct cases of interest. One is a stable fixed point surrounded by
an unstable cycle (a subcritical Hopf bifurcations). The other occurs when a stable fixed
point loses stability and a stable cycle appears (a supercritical Hopf bifurcations) as some

parameter a approaches a critical value a*. This critical value causes the fixed point to lose

its hyperbolicity. That is, Hopf bifurcations appear about nonhyperbolic fixed points.

12Differentiation of current and lagged terms is not always possible when linearizing FDEs. For example,
the famous Volterra equations have an infinite number of delays which precludes differentiating each term.
See Hale (1977) and Gyori & Ladas (1991) for an analysis of DDEs with an infinite number of delays.

13There are other ways in which periodic orbits may arise, such as heteroclinic orbits. Since these are
“rare” events and beyond the scope of the current paper, interested readers are referred to Walther (1989)
for a more complete treatment.
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To illustrate stability analysis we return to the DDE that describes population growth.
The transformed DDE is
(t) = —az(t — 1)[1 + z(t)], (11)

where a > 0. The linear part of (11) is
y(t) = —ay(t - 1),
which has the characteristic equation
Ae* +a = 0. (12)

Using Hayes’ Theorem, it is straightforward to verify that all roots of (12) have negative
real parts if 0 < a < 7/2. Extending this result, one can show that the roots are purely
imaginary if @ = /2, and that (11) has a nontrivial periodic solution for all a > 7 /2.

The usual method of stability analysis is to linearize the equation about a fixed point and
then apply theorems that provide criteria under which the steady state is stable or unstable.
Hayes’ Theorem is the natural first candidate one would use prove stability. However, for
cases where this theorem does not apply, for instance, as in systems of DDEs, one must
derive conditions for stability unique to the system. Determining critical parameter values
at which hyperbolicity is lost identifies not only when cycles appear but also the boundary
of the region of stability.}

FDEs often admit chaotic orbits with the behavior of orbits depending critically on the
“smoothness” of the feedback mechanism g(-) in (1). In fact, there is no underlying vector
field for (1), only a continuous semiflow. Recall that a semiflow only considers time in
positive increments. Continuity of the semiflow can be shown piecewise using the method of
steps (the solution is right—continuous at the initial point ¢g).

The general method of analysis should now be clear and will be used in the next section to

analyze the dynamics of a simple deterministic growth model. The steps may be summarized

14Gee Mahaffy, Zak and Joiner (1995) for an extensive discussion of this application.
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as follows. First, linearize the nonlinear system. Second, decompose the characteristic
equation into real and imaginary parts using A = p +iw along with Euler’s Theorem. Third,
use the criteria for stability and cycles along the lines of Hayes’ Theorem. With this general
method, many functional differential equation systems may be subjected to rigorous local

analysis even when the original system is highly nonlinear.!®

3 A SiMPLE TIME-TO-BUILD MODEL

We now apply the tools developed in the previous section to analyze a deterministic rep-
resentative agent growth model with a simple time-to-build lag. Consider an economy that
is inhabited by infinitely-lived households with unit aggregate measure. The representative
individual’s preferences are represented by a continuous, strictly increasing and concave util-
ity function U(c(t)) and subjective discount rate p > 0. In this economy it takes r > 0
periods to install new capital equipment. The infinite horizon planning problem for this

economy is given by

o0
U(c(t))e " dt, 13
max /0 (c(t))e (13)

subject to
k() = F(k(t = 7)) = 6k(t ~ ) — c(2),

k(t) = ¢(t) for all t € [-r,0],

where 0 < c(t) < f(k(t —7)),6 € [0,1] is the rate at which capital depreciates, f(.) is a
neoclassical production function, k(¢ — r) is the productive capital stock at time ¢, and o(t)
is the initial capital function. By assumption, the production function and utility function

satisfy the standard Inada conditions.

135Gee Gyori & Ladas (1991) for a rigorous mathematical account as well as a generous spate of examples
of delay differential equations.
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Let c(t) be the control variable and k(t—r) the state variable. Setting up the Hamiltonian
and solving for the Euler equations provides the pertinent system of equations. Note that the
generalized Maximum Principle applies to control problems with time delays of the sort we
study here (see Pontryagin et al. 1962). The first order conditions of this model do not yield
an advanced time argument because the co—state variable has the same timing convention
as the time the decision is made.

The Euler equations for the optimization problem are

()= g p-+6 = [t~ r)] (14
k(t) = f(k(t — 7)) = 6k(t — 1) — c(¢). (15)

These first order conditions are similar to those of the standard optimal growth model with
the exception of the time delay in production. The steady state is exactly the same as that

of the standard optimal growth model

= f(k*) — 6k*,

FE) = p+6,

and is unique given the Inada conditions.
Linearizing (14) and (15) about the steady state, and solving for the characteristic equa-

tion yields

h(A) = A2 = ABe™ — Ce™ =0, (16)
where B= f'(k*)—6=p>0and C = ﬂ%ﬂ > 0. Since (16) has an infinite number of
roots, the steady state is generally a saddle.

Decomposing the eigenvalue X into real and imaginary parts, A = p+iw, w, p € R, yields

a pair of transcendental equations which describe stability near the steady state

p? — w? — (up + C)e ™ cos(rw) — wpe ™ sin(rw) = 0, (17)

15



2uw + (up + C)e™ ™ sin(rw) — wpe ™™ cos(rw) = 0. (18)

One can determine the region of stability for any production lag r, rate of time preference
p, and steady state value of C defined above. The eigenvectors of the linearized system can be
used to partition the (local) eigenspace into three distinct subspaces: the stable £°, unstable
E*, and center subspaces E° respectively.

The subspace E° is spanned by the eigenvectors whose eigenvalues have positive real
parts; E* is associated with eigenvalues which have negative real parts; E. is associated with
eigenvalues which have real parts equal to zero. Under certain technical conditions, each
of these subspaces has an invariant manifold that is tangent to it and on which the local
dynamics are the same as that of the original system. Given the infinite number of roots of
(16), we can restrict our investigation of the dynamics of the system to the dynamics on the
finite dimensional center manifold, if it exists. The following theorem demonstrates that it
does.

THEOREM 4 Restrict the values of w > 0. Then, a center manifold for the system (14),
(15) exists for some value of 7 > 0. In addition, the unstable subspace has dimension of at

least 1.

PrRoOOF: To show that a well-defined solution (r*, w*) exists for the decomposed character-
istic equation system (17), (18), when X = iw, it is sufficient to prove that a center manifold

exists. Let A = iw and solve the imaginary equation (18) for
wp
t = —, 19
an(wr) C (19)

where p and C are strictly positive. Since equation (17) must also be satisfied, equation (19)

can be decomposed into

. —wp
snler) = Zomrror
and
-C
cosler) = AT oT

16



Making this substitution into the first equation and solving for w > 0 yields,

1
W= :/—_5\//)2 + /p +4C2.

JFrom this equation the required r* is

1 w*p
* = —arctan( ) > 0.
" w* C

Next, we demonstrate that the dimension of the unstable subspace is at least one. This
is equivalent to proving that at least one root of (16) has positive real part. Observe that we
can restrict all the complex roots of the characteristic equation to have negative real parts

if either

r < cot™! (C a pu) : (20)
pw
for r € (%’Lﬂ, @"—;;1)1) or
r > cot™! (C + pu) , (21)
pw

2ntl)m (2n42) _
forr € (( ”QW)”, e ”) ,n=012....

We prove the second restriction on r, given by equation (21), because the proof of the
first restriction (20) is identical except for a sign change. Using the decomposition of the

characteristic equation into real and imaginary parts, note that Im[h())] + Re[r())] = 0.
Thus, proving that Im[a()A)] > 0 implies that Re[h())] < 0.

Im[h())] = 2pw + e ™[(C + pu)sin(rw) — pw cos(rw))
> e ™[(C + pu)sin(rw) — pw cos(rw)]

> 0

This implies that

(C + pu) sin(rw) > (pw) cos(rw),

which in turn implies

C + pu S cos(rw)

= cot ,
pw sin(rw) (rw)

17



or

forr € ((2n24‘-01)7r’ (2n2-;2)7r>.

The production lag r is well defined because the cotangent function is positive on the
specified interval. Thus, we can restrict all complex roots of the characteristic equation to
have negative real parts.

Finally, consider the characteristic equation when A € R:
h(A) =A% - X\p—C =0.

Taking limits one finds that
}\1—13(1) h(X\) = -C,

and
lim A(X) = oo.
A—+00
Therefore, a real positive root to the characteristic equation (16) always exists. .

Remark 1 It is straightforward to show that the center manifold exists only if the rate of
time preference, p, is strictly positive. In addition, just as in the standard optimal growth
model where a particular initial condition “zeros-out” the positive (unstable) root of the local
eigensystem yielding a stable one-dimensional manifold; an appropriate initial function in
the time—to—build model nullifies all eigenvalues except a pair of purely imaginary ones. If
the value of the delay r satisfies the conditions in Theorem 4, and we restrict attention
to initial functions that begin the motion of the system on the center manifold, then the

dynamics of the system as a whole are isomorphic to those on the center manifold.!® O

The main theorem of this paper, which follows below, shows that the conditions for

a generalized version of the Hopf bifurcation theorem to hold are satisfied on the center

160n this issue see Hale (1977) or Schmidt (1976).
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manifold. That is, cyclic solutions to the model exist. We apply a theorem of Chaffee (1971)
which covers the case when the “transverse crossing” condition fails in an FDE, as it does
in this case. In the standard version of the Hopf bifurcation theorem, this condition says
that roots to the characteristic equation must cross from the complex to the imaginary axis
with positive speed for a Hopf bifurcation to occur. This condition is not met using (16)
due to the periodicity of the sine and cosine functions. Chaffee’s Theorem uses a speed of
crossing condition on higher order derivatives which is satisfied for the production lag model

considered here.
THEOREM 5 The values (r*,w*) defined in Theorem 4 induce a Hopf bifurcation.

PROOF: (Sketch) We show that two conditions are met for values (r*,w*). First, that
no other eigenvalues, ) , have Re(A) = 0. Second, a transverse crossing condition must be

satisfied.

;From Theorem 4, note that the product r*w* € (0,7/2) and all complex eigenvalues

have negative real parts if

pw
tan(rw) > ,
(rw) > 57 ”
for rw € (0,7/2). A center manifold exists if
pw”
tan(r*w*) = ,
(o) = 2
pw*
C+pp’

for any p,p > 0. Thus, at (r*,w*) all other complex non-real eigenvalues A that solve (16)
have Re(\) < 0. In addition, we know that there is always one real positive root when r = r*
and w = w*. Hence, there are no other roots that have Re(\) = 0.

Finally, we show that at » = r* and w = w*, the roots passing into the imaginary plane
do so with nonzero speed. Direct calculation reveals that dB‘%[(h?%;)Dl = (. Differentiating a

second time yields

2 RelhA0)]

e = Cw*? cos(r*w*) + wpsin(r*w*). (22)

r=r* w=w*
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Using tan(r*w*) = ‘”—éﬁ to solve for sin(r*w*) and cos(r*w*) as in Theorem 5, equation (22)

can be rewritten as

Re[h(A(r))] _ =C%*%p w*p?
dr? T Vol 1 C2 Jrlpl+ C2

r=r* w=w*

d? < 0.

|r=r+w=w+ # 0 and the transverse crossing condition of the Chaffee

h
Therefore, d? &[%ZDI

version of the Hopf bifurcation theorem is satisfied.!” .

Remark 2 Observe that Theorem 5 depends critically on the production lag, r, to generate
cycles. If the lag is zero, there are no complex roots of the characteristic equation. Thus,
cycles are not possible in the standard optimal growth model and their presence here is
due entirely to the production lag. In addition, the restrictions on r and w that generate
cycles are defined over an interval. Hence, cyclic solutions occur for a measurable set of the

parameter space. O

Remark 3 In a similar time-to-build model, Ioannides & Taub (1992) claim that such a
model is “not intrinsically oscillatory.” Using the method of proof above, we provide a
counter—example to Ioannides & Taub’s claim. In their model, a lag structure on invest-
ment produces a system of integro—differential equations. After a number of simplifying

assumptions, a first—order approximation of the system has the characteristic equation
A— (OX+8)re™, (23)

where J is the time-to-build delay, ©® > 1 is an amalgamation of production and preference
parameters and 6 € [0, 1] is the rate of depreciation. It is straightforward to show that for
the parameter values, © = 2, § = 1, J = 1.19 this system exhibits a Hopf cycle without

violating any primitive parameter restrictions.!® O

17Geveral technical conditions are required to apply the Chaffee Theorem. Lengthy calculations show that
these conditions are satisfied. The transverse crossing condition is nonstandard so it is verified directly
while the calculations for the others are omitted. All omitted calculations are available on request from the
authors.

1811 their analysis, Ioannides & Taub (1992) correctly note that there is an infinite number of roots to the
characteristic equation (23), but they fail to examine complex roots. As a result, they do not find cycles.
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4 OPTIMALITY

The optimality of oscillatory paths in growth models is an important but often over-looked
property of this class of models. In this section we show that a Hopf cycle is an optimal so-
lution to the planning problem.!® The presence of cyclic solutions requires that the standard
transversality condition must be modified as a limiting boundary condition. The follow-
ing transversality condition is valid for both cyclic and noncyclic solutions, including the

standard model for which r = 0,

limsupe ”k(t —r) =0 (24)

t—00
for p > 0 and some fixed r > 0. We are now ready to demonstrate optimality.

THEOREM 6 If the conditions of Theorem 4 are satisfied and the initial function ¢(t) for
t € [r,0] places the local dynamics of system (14), (15) on the center manifold, then a Hopf

cycle is optimal.

PROOF: A solution to problem (13) is optimal if two conditions are satisfied, feasibility
and maximization (Nishimura & Sorger (1996)). To establish feasibility, consider an initial
function and the parameter restrictions of Theorem 4 that induce Hopf cycles. Given these
conditions, the only dynamic paths of the system are a nondegenerate cycle or the degenerate
dynamics of the fixed point. Consider the nondegenerate cycle. By construction, the cycle
satisfies the resource constraint (13). In addition, since the solution is bounded for all ¢, it
also satisfies the transversality condition (24). It is therefore feasible. Maximization follows
directly since the first order conditions are necessary and sufficient for an optimum under the
Inada conditions. Therefore the solution maximizes (13). Now, consider a degenerate cycle
at the interior fixed point. Clearly, it is feasible and maximizing as it satisfies the resource
constraint, transversality condition and optimality condition. Therefore, all Hopf cycles are

optimal. "

19We are grateful to a referee for suggesting this line of inquiry and to Ken Cooke who motivated the
theorem below with several insightful queries.
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In Theorem 6 we have demonstrated that both nondegenerate and degenerate cycles are
optimal. However, for all initial conditions that begin the dynamical system on the cen-
ter manifold, the fixed point constitutes a set of measure zero. Therefore, we can restrict
our attention to nondegenerate Hopf cycles. Moreover, the above Theorem shows that the
particular Pareto optimal solution found for the planner’s problem is, for a fixed set of pa-
rameter values, parameterized by the initial function ¢. Since there are an infinite number of
roots to the characteristic equation, most initial functions induce equilibrium paths that are
high-dimensional saddles leading to the interior fixed point. Thus, depending on the initial
function (for a given set of parameter values), the dynamic path of this economy either i)
diverges and is therefore not an equilibrium path; i) is a (high-dimensional) saddle path
leading to the steady state which is optimal; or i) is a Hopf cycle surrounding the steady
state which is optimal. Figure 1 depicts the phase portrait of the system on the (local) center

manifold showing an optimal cyclic solution to the model.

[PLACE FIGURE 1 ABOUT HERE.]

[13

In an early contribution, Sutherland (1970) writes, “... there can exist several optimal
programs which are stationary, so that the long-term behavior of an optimal program may
depend on its initial state.” (p. 588).20 That is, the particular Pareto optimal solution
one solves for depends upon initial conditions of the system. This is precisely what initiates

cycles in the time-to-build model—parameter values and initial conditions such that the only

solution is a cycle. Theorem 6 shows that such a cycle is optimal.

5 Conclusion

Business cycles are persistent and oscillatory. What is unclear is whether the oscillations

are intrinsic—like the response of an undamped pendulum—or whether the oscillations are

20Surveys of neoclassical models with optimal cycles can be found in Reichlin (1997), Nishimura & Sorger
(1996) and Boldrin & Woodford (1990).
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like an overdamped pendulum in response to stochastic shocks. This paper revisits the
debate over the source and nature of aggregate fluctuations. We analyze a version of the
neoclassical growth model with a lag between investment and production (time-to—build)
and demonstrate that the optimality conditions lead to a system of functional differential
equations. The associated characteristic equation is the similar to that of the standard
neoclassical growth model, except that there is an additional exponential factor due to the
time-to-build feature that opens up the possibility of complex roots. Contrary to Ioannides
& Taub (1992), we show that the dynamics are intrinsically oscillatory and that this is
entirely due to the time-to-build technology. Moreover, the oscillating paths are shown to

be optimal.
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Figure 1: PHASE PORTRAIT OF THE SYSTEM ON THE CENTER MANIFOLD



