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Abstract

We propose a theoretical framework for assessing whether a forecast model estimated over
one period can provide good forecasts over a subsequent period. We formalize this idea by
defining a forecast breakdown as a situation i which the out-of-sample performance of the
model, judged by some loss function, is significantly worse than its in-sample performance.
Our framework, which is valid under general conditions, can be used not only to detect past
forecast breakdowns but also to predict future ones. We show that main causes of forecast
breakdowns are instabilities in the data generating process and relate the properties of our
forecast breakdown test to those of existing structural break tests. The main differences are
that our test is robust to the presence of nustable regressors and that it has greater power than
previons tests to capture systematic forecast errors cansed by recurring breaks that are ignored
by the forecast model. As a hy-product. we show that our results can be applied to forecast
rationality tests and provide the appropriate asvmptotic variance estimator that corrects the
size distortions of previous forecast rationality tests. The empirical application finds evidence
of a forecast breakdown in the Phillips’ curve forecasts of U.S. inflation, and links it to inflation
volatility and to changes in the monetary policy reaction function of the Fed.
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1 Introduction

This paper proposes a new method for evaluating a forecasting model for a macroeconomic or
financial variable. There is a large literature claiming that certain models are good at predicting
macroeconomic variables such as output growth and inflation (Stock and Watson, 2003b and Clark
and MeCracken, 2003) and that a range of variables have predictive power for stock market returns
(e.g., the references in Goyal and Welch, 2004 and Campbell and Thompson, 2005). These claims
are based either on sone measure of a model’s in-sanple fit (most of the literature on stock return
predictability), or on the model’s out-of-sample performance (e.g., Stock and Watson, 2003b). The
robustness of these results has been however recently challenged. On the one hand, Goyal and
Welch (2004) showed that for models of stock returus good in-sample fit does not necessarily imply
good out-of-sample performance. On the other hand, even models that fare well out-of-sample may
not do so when different subsamples of a time series are considered (Stock and Watson, 2003a).
Underlying these findings is the possibility that the economy - and the forecasting ability of models
- may not be stable over time, as has been forcefully argned by Clements and Hendry (1998, 1999).

From the perspective of the forecaster, it is thus hmportant to know whether a model estimated
over one period can provide good forecasts over a subsequent period. The goal of this paper is to
develop a formal testing framework for answering this question. Note that onr question is different
from asking whether the model is a good approximation of the data-generating process. Rather,
our concern here is with whether a model’s future performance is consistent with what’s expected
based on its past performance, which fundamentally hinges on the snccess of the model at adapting
to changes in the economy. This in turn reflects a desire to mimic the environment faced by actual
forecasters, where models are likely misspecified, variables are inherently difficult to forecast, and
data-generating processes may be unstable, so that consistency with expected performance can be
viewed as a minimal requirement that a forecasting model should satisty.

Formally. we define a forecast breakdown as a situation in which the out-of-sample performance
of a forecast model, judged by some loss function, is significantly worse than its in-sample per-
formance. We propose a forecast breakdown test for detecting whether a forecast model broke
down in the past and further suggest relating the differences between the model’s out-of-sample
and in-sample performance to economic factors, with the goal of predicting future breakdowns.

Our notion of forecast breakdown is a formalization and generalization of what Clements and
Hendry (1993, 1999) called a “forecast failure”, described as a “deterioration in forecast performance
relative to the anticipated outeome™ (Clements and Hendry, 1999, p. 1). We formalize the definition
of a forecast breakdown by comparing the model’s out-of-sample performance to its in-sample
performance computed in one of three ways: (1) over a fixed initial sample (“fixed” scheme); (2)

over a rolling window that includes only most recent observations (“rolling scheme™); and (3) over



an expanding window that includes all observations from the beginning of the sample (“recursive
scheme”). The fixed scheme presumes an interest in comparing performance before and after a
specific date, whereas the rolling and recursive schemes mimic adaptive forecasting.

We illustrate how to construet an appropriate estimator for the asymwptotic variance for the
forecast breakdown test, that depends on the forecasting scheme and that explicitly takes into
account the effect of estimation uncertainty in the model’s parameters. Our test is valid nnder
general assumptions. In particular, we allow the data to be heterogeneous (e.g., the variables in
the model can have time-varying marginal distributions) and impose only weak restrictions on the
loss function used for evaluation and on the type of estimators used in constructing the forecasts.
We show, however. that in the common case in which the same loss function is used for estimation
and evaluation (e.g., OLS and guadratic loss), estimation uncertainty is asymptotically irrelevant
and the asymptotic variance is simpler to compute.

A further contribution aims at understanding the causes of forecast breakdowns. We show
that forecast breakdowns are caused by instability in the model’s parameters as well as by other
instabilities in the data-generating process that result in a non-coustaunt expected loss (e.g., for
a quadratic loss, changes in the variance of the disturbances). We also investigate the role of
overfitting - which we define as the difference between in-sample and out-of-sample performance
present in finite samples when parameter estimates are chosen to minimize the average in-sample
loss - and propose a simple correction to the test statistic that eliminates its effects.

The two closest literatures to the present paper are the literature on forecast optimality testing
(e.g., Mincer and Zarnowitz, 1969, Patton and Timmermann, 2003, Elliott, Komunjer and Tim-
meriann, 2005) and the literature on structural break testing (e.g., Brown, Durbin and Evans,
1975; Andrews, 1993; Andrews and Ploberger, 1994; Dufour, Ghysels and Hall, 1994; Chu. Hornik
and Knan, 1995a, 1995b; Bai and Perron, 1998; Ghysels and Hall, 1990; Elliott and Muller. 2003;
Rossi. 2005). Regarding the former, we point out that the same theory derived here can be applied
to forecast optimality testing, after suitably re-definining the loss function and the null hypothesis.
For example, a forecast unbiasedness test is related to a forecast breakdown test assessing whether
the first moment properties of the forecast errors are consistent in-sample and out-of-sample. Our
contribution to this literature is to show that the asymptotic variance estimator to be used in
the forecast mmbiasedness test (and, more in general. in a forecast rationality test) necessitates a
correction in order for the test to have good size properties.

Regarding the structural break testing literature, although our foeus is different from that of
structural break tests (stability of forecast performance vs. stability of model’s parameters), the
two are related since instability in model’s parameters is a cause of forecast breakdowns. In the
paper, we shed some light on the properties of our forecast breakdown test relative to those of

struetural break tests both analytically and in Monte Carlo simulations. Our wain findings can



be summarized as follows: (1) the forecast breakdown test is robust to the presence of unstable
resressors, whereas most structural break tests cannot distinguish between instability in model’s
parameters and instability in the distribution of the regressors (an exception is the generalized
predictive tests proposed by Dufour, Ghysels and Hall, 1994; see also Hansen, 2000); (2) the
magnitude of the parameter instabilities that cause forecast breakdowns depend on whether the
loss functions used for estimation and evaluation are equal or different. Wheu the losses are equal.
only parameter instabilities of greater magnitude than those considered by the structural break
testing literature cause a forecast breakdown; (3) structural break tests have greater power when
instabilities are permanent, whereas the forecast breakdown test can have greater power when there
are recurring instabilities that are not captured by the forecast model. A further difference with
structural break tests is that they only focus on past breaks and provide no information on the
likelihood of future breaks (an exception is Pesaran, Pettenuzzo and Timmermann, 2004). Instead,
an innovation of our approach with useful practical implications is the possibility of predicting the
likelihood that a forecast model will break down at a future date.

To illustrate the methods proposed in this paper, we investigate whether there is evidence of
a forecast breakdown in the Phillips curve model of inflation in the United States. Using both
real-time and revised data, we find some empirical evidence in favor of a forecast breakdown in
the Phillips curve. We further investigate whether monetary policy parameters would have been
useful predictors of forecast breakdowns and find that inflation volatility as well as changes in the

monetary policy behavior of the Fed played a key role.

2 Detecting forecast breakdowns

2.1 Description of the environment

Let W={W:Q — Rt seNt=1,..., T} be a stochastic process defined on a complete
probability space (Q, F, P) and partition the observed vector W} as W; = (Y, X{)', where Y : Q —
R is the variable of interest and X : Q — B* i5 a vector of predictors.

We generate a sequence of 7—step-ahead forecasts of Y, using an out-of-sample procedure,
which involves dividing the sample of size T into an in-sample window of size m and an out-of-sample
window of sive n = T —m — 7+ 1. Which data constitute the in-sample window depends on the
forecasting scheme. We allow for three forecasting schemes: (1) a fixed forecasting scheme, where
the in-sample window includes observations indexed 1,....m; (2) a rolling forecasting scheme,
where the in-sample window at time ¢ contains observations indexed ¢ —m + 1...., t: and (3) a
recursive forecasting scheme, where the in-sample window includes observations indexed 1, ... . f.

We let f, (B,) be the time-t forecast produced by estimating a model over the in-sample window

at time t. with 3, indicating the k x 1 parameter estimate. We assmne that multi-step forecasts



are produced by the “direct method™ (that is, the model specifies the relationship between Y, and
X,_+). Bach time—t forecast correspouds to a sequence of in-sample fitted values g}j(ﬁﬁ_}. with j
varying over the in-sample window.

The forecasts are evaluated by aloss L (+), with each out-of-sample loss Ly ,_(.B,) = L(Yy s, f,(;;‘r.))
corresponding to in-sample losses L_,-(B,.) = LY}, & (ﬁf_)}. For example. for the linear model Y; =
X| B + & estimated by OLS, the parameter estimate is 3, = (Do XX3) l Yo X¥ers
for the fixed scheme; 3, = ( i;_mH Xb-X‘:)_l T AYay, for the rolling scheme and
Be= (T X0

to the forecast at time ¢t is Ly -(5;) = L(Yiy 7. X/8,) and the corresponding in-sample losses are

¢ . . ] .
Yo XYy s for the recursive scheme. The out-of-sample loss corresponding

L_,-(ﬁ,_) = L(Yj i+ XJE,). where j = 1,....,m — 7 for the fixed scheme; j =t —m+1,.... 1 —7 for

the rolling scheme and j = 1,....¢ — 7 for the recursive scheme.

2.2 Assumptions

Al. {W,;} is mixing with o of size —r/(r—2), r > 2; A2. (a) L;(3) is measurable and twice continu-
ously differentiable with respect to 3; (b) Under Hp in (3) below. in a neighborhood N of 3%, there
exists a constant D < oo such that for all t, supzen |02Lff,.-'_ff)/0,.-'ii);i’| < 1. for a measurable my
such that E (m,) < D. A3. Under Hy, B, —3* = B H +0,(1), where 3, is kx 1, B is a (nonstochas-
tic) k x ¢ matrix of rank k, such that supys1B; < oo; Hf =m 13" hy(3*) (fixed scheme), H} =
(T Zi_:f it ls(87) (rolling scheme), Hy = ¢ 1'2_::1 hs(3") (recursive scheme) for a gx 1 orthog-
onality condition hi,(3%) such that E (hy(8%)) = 0; Ad. supy>1 E||[Li(8%), 0L (8%) /8, hi(8*)]'||*" <
o, where AL;(8%)/03 is 1 x k; A5. T—1 Zle E(OLi(3*)/08) < oc for all T

A6, var (T 1/2 Z;r_l Li {_ﬁ*}) > 0 for all T sufficiently large: A7. m,n — o0, £ — 7. 0 <7 < .

Comments: 1. Assumption Al restricts the memory in the data (ruling out. e.g., unit root
processes) but allows the data to he heterogeneous, for example peritting the marginal distribution
of the regressors to change over time. This is a nmore general assumption than the assmmption of
stationarity made in the majority of the structural break testing literature.

2. Assumption A2 is the same as Assumption Al of West (1996), allowing for a munber of loss
functions typically used in the forecast evaluation literature. The assumption of differentiability is
adopted for convenience and can be relaxed along the lines of McCracken (2000).

3. Assumption A3 is related to Assumption A2 of West (1996). permitting a mumber of esti-

mation procedurey for the model’s parameters, including OLS. (quasi-) maximmn likelihood and

GMML. For example, for OLS estimation of the parameters in the linear model Y, = X3 + &,
, 1
s=1,...,1, we have B} = (E (ﬁ I Zi:} -_\',a-x,ﬂ)) and hg(9%) = Xye,. For maxinmm likelihood

estimation, B} is the expectation of the inverse of the Hessian evaluated at 3 and H{ is the score.
The assumption also states that under the null hypothesis of no forecast breakdown the psendo-

true values of the parameters are constant (note that we do not assume correct specification of the



model nder the nnll hypothesis).

4. Assmuption A5 is a regularity condition restricting the heterogeneity of the means of the
loss derivatives. The condition is trivially satisfied when the loss used for estimation is the same
as the loss used for evaluation, in which case E (OLy(37)/03) = 0 for all t.

5. Assumption AT shows that our asvmptotics assume that the in-sample and out-of-sample
sizes go to infinity at the same rate. This assumption is necessary in order to obtain a non-

degenerate asymptotic distribution.

2.3 Forecast breakdown test

As motivated in the introduction, we define a forecast breakdown as a deterioration in the out-of-
sample performance of the forecast model relative to its in-sample performance. We formalize this
idea by defining a “surprise loss™ at time ¢ + 7 as the difference between the out-of-sample loss at
time f + 7 and the average in-sample loss:

SLitr(B;) = Lis-(8;) — Ly(By) for t =m, ..., T — 7, (1)
where L;(/3,) is the average in-sample loss computed over the in-sample window implied by the

forecasting scheme. We then consider the out-of-sample mean of the surprise losses

T=r
Em..n = '“‘"1 Z SL 1 T(a"ljlr ): (2)

t=m

and propose a test based on the idea that, if a forecast is reliable, this mean should be close to

zero. Specifically, we test

T—r
Hy:E(n? Z SLi (%) ] =0 for all m,n. (3)

t=m

The forecast breakdown test statistic is

binnr = V 7""5’L'm.,rr/(}'m.n- (l)

2

e

is given in Section 2.5.

where the expression for the asymptotic variance estimator @

A level o test rejects the null hypothesis whenever ¢, ., > z,. where z, 15 the (1 — a) — th
quantile of a standard normal distribution. In the remainder of the paper, we foeus on a one-sided
test to reflect the assumption that a lower-than-expected loss may he desirable and thus does not
constitute a forecast breakdown. In certain applications. however. it might be of interest to consider
deviations of the out-of-sample loss from its expected value in either direction, in which case a two-
sided test is appropriate. For example. for an investor forming a portfolio based on forecasts of

stock returns, the precision of the forecast is a key determinant of how much risk exposure to accept.



Hence, if the out-of-sample forecast error variance is smaller than anticipated, this results in an
opportunity cost: had the forecaster known about the lower forecast error variance, he could have

1

chosen a different portfolio allocation.” The asvinptotic justification for the forecast breakdown

test is provided by Theorem 2 in Section 2.5.

2.4 Relationship with the literature

To see how the forecast breakdown test relates to forecast optimality tests. note that letting L(e) = ¢
in (1), where ¢ is the forecast error, yields a test comparing the mean of out-of-sample forecast
errors to the mean of in-sample model residuals. When the parameters are estimated by OLS,
f,;,(;;',) = 0 by construction, so that the numerator of the test statistic (4) coincides with that of a
forecast unbiasedness test.”

To see how the forecast breakdown test relates to existing tests for structural change. first note
that Hy can be rewritten as Hy : E'[L; (8%)] = constant for all ¢, and thus one could in principle
use structural brealk tests to test Hy. In particular, for a loss depending on the forecast errors, Hy
postulates stability of some aspect of the distribution of the model’s residuals (e.g., their second
moment for a quadratic loss), which relates the forecast breakdown test to residual-based tests, such
as the CUSUM test (Brown et al., 1975) (related to the forecast breakdown test with a recursive
scheme) or the MOSUM test (Chu et al.. 1995b) (related to the forecast breakdown test with a
rolling scheme). The main differences are that we allow for general transformations of the residuals
(through L; (-)) and compare their in-sample and out-of-sample average properties, rather than
comparing the fluctuations of the empirical process based on the cumulative (or moving) sum of
residuals to the fluctnations of their limiting process.

Regarding the relationship with structural break tests based on the approach of Chow’s (1960),
Andrews (1993) and Andrews and Ploberger (1994). note that onr fixed test could be related to
a Chow's type of test, whereas our recursive test could be related to an Andrews’ (1993) fype
of test. The approaches are similar sinee both split the sample in two subsamples and compare
the properties of regression residuals and/or forecast errors in the two samples. The difference is
that the forecast breakdown test compares regression residuals from the first subsample to forecast
errors from the second subsample, which are functions of the same parameter estimate based
on the first subsample. Chow’s (1960) test. instead. compares regression residuals from the first
subsample to regression residuals from either the second subsample (Chow’s test) or the full sample
(Chow's predictive test). obtained by re-estimating the model on the corresponding sample. Since

it. compares residuals that are functions of different parameter estimates, Chow’s test will capture

"We thank Allan Timmermann for point out the desirability of two-sided tests in such applications.
2Onr null ypothesis however slightly differs from that of a forecast nnbiaseduess test (e.g., West, 1996): we test

E (n_] EL'{: (Ley-(87) - f,f(,"-i‘}}) = () rather than £ (n = Z:z,; Ly ,.(p"}) =1

=1



not only changes in the model’s parameters, but also changes in the marginal distribution of the
regressors. This is a drawback of most existing structural break tests. as pointed out by Hansen
(2000). The forecast breakdown test, instead, does not suffer from this problem, because it does

not involve re-estimating the parameters over different subsamples.

2.5 Asymptotic variance estimators

This section shows how to construet a valid asymptotic variance estimator for the forecast break-
down test statistic (4) and provides the asymptotic justification for the forecast breakdown test.
We provide three estimators: an estimator valid under general assumptions (Theorem 2) and
two estimators that are easier to compute under more restrictive conditions (Corollaries 3 and 1).
The following algorithim shows the steps involved in constructing the general asymptotic vari-
ance estimator. The basic intuition is to acknowledge that the average surprise loss (2) is a weighted
average of in-sample and out-of-sample losses, with weights depending on m, n and on the forecast-
ing scheme. When estimation uncertainty is asymptotically irrelevant, r}',“}”._.” is simply a (rescaled)
heteroskedasticity- and autocorrelation-robust (HAC) estimator of the variance of the weighted
average of the full-sample losses. When estimation uncertainty matters, &2 contains additional

terms that depend on the estimator used.

Algorithm 1 (General variance estimator) Construct the following: (1) the 1 x T vector of

in-sample and out-of-sample losses. with element Ly :

L= (L1(Br)s-- -+ Lo Bun)y Eonid Bunsr)s -+ Lini s 1B r1)s Lin rBin)s o+ L (Br_.)]
" 7—1 rT

and the corresponding vector L of demeaned losses. where Ly = Ly — T _ 3 2) theqx T
/! g i L 1

matriz of orthogonality conditions. with element Ty

h_[h1 e han(B,). B 1(3 Boit)sershr =By 2),0,...,0].1

s
L o -~

m n1 !

Let Dy = 0L+ /0 8 —06Ly( /()7’ $=iiss T — 7 indicate the sequence of 1 x k derivatives

T

of the surprise Iu.‘-‘.t-'f',w. and let B; be a consistent estimate of Bf from assumption A5 that substitutes

PThe first e terms of Loare in-sample losses from the first estimation window and the last n terms are out-ol-

sample losses. For the fixed scheme L = [!.—1(,3,“) ..... L 7’,,,) 0, Liiviy —{rim siny L-r(_.:f,“ )i For the rolling and
\-_v.—f

~r
i T-1

recursive schemes, cach of the middle 7 — 1 terms s an in-sample loss from t!w estitmation sample ending at the
corresponding date.
"The first m torms of i are orthogonality conditions from the first estimation window. For the fixed scheme
h = [h(8,,) «hm(/ fm} v 0] For the rolling and recursive schemes, cach of the middle n — 1 terms is the
‘—v—’

m T,

orthogonality condition from the estimation sample ending at the corresponding date.




8, for 3.0 Construct the following weights. depending on the forecasting scheme:

] =T T
. n n B, . Dy B S5 0 Dy
Fized: w® =[-—,...,——,0,...,0,1,1,...,1]; w" =[— 2ui=m Diir i = e sy S N
IxT m T S—— lxyl T m .
el H ~ T—an
m T
. 1 n i " n— 1 n—r7+1 n—r _ 1
Rolling (n < m): wk = [F— ey — ey ——y ———— .. -, - .1 = aval— =
1xT m T 1 m,o T T L m it
Tt mvu T—1 HVT
Lisiean 5 1
T
; =T g g :
'tt-'h : [DI'H- { TBI’H EI.—m D; f TB*’ Z?:m DI f J'Bf- Z!-—m D, 'Tb)i
1t N . ™ , ™ T i
" T T
i
ZL—HH 1 Dy 1By DyByp_r
0,....0
. m m
n—1 f
) ) 1 mom moo m—1 1
Rolling (n = m): wh = [F—yerey——y——eeey—— 0,...,0 ,1 = ——; ] —— 1,..., 1
Fse T IHJ @ Il T S — 1 (i
= ~e n—m—7+1 add T
m =1 m—1
2m.—1 2 r e :
wh [Dm i+ B Zr—_m Dyy+B, 2t=m i1 Dy +B; ZP-_H Dy - By
1xqd" mo " e m m y
m —irk
T
Zt:n F1 I-)I--pr.Bf DTI},{' T
..... ,0,...,0
(Es T
b - T
-1
featnaue: .ff":‘ = [_”’?n.ﬂ- cees a0y Tl e e T 1 L= [EETTIE TR 1= LGTTRTIS | Do eisca 1
:;rr ‘T:r]. uvr T
/ ,
4 =Tl B Berlis Dot ey D=1 Dhwre- <o 0. WRETR
I
m n—1 T
= + - o 4 ! (5)
(7 : - = o 3 3]
" m+7 m+i+1 T—71
DmIT' 3 ] D, T+3i B | DrBy -
9 - -7 4+3Pm) mATHiHLIEPmAt 41 T2T 5
b = it + J Ay st W,

m+ j m+j+1 T-7

TFor example. for OLS estimation of Yo = X[3° 42, s = L. B = (1 ESYOXLXD) T For maxinmum

Lag=1 4

likelihood estimation. 3y is the inverse of the Hessinn evaluated at the parameter estimate.



Let

I,{{,L V:{Jt
Vi = ¢ ! , where (6)
V.{Ja ly,:ﬂh

pr
¥l = lZ(w’u{,r 42T ‘Zauzw Ty De g (7)
t=1 i'—_,a
pr
Vit = IZu'hhfmwm-l-T ZJ'IJZ(HJ?M:’L’; ! +u' -h,_.jh;_;-u-';"’): (8)
=1 J=1 t=i

T
7 T"'Zm, Lkl + T IZU;JZ(EI;LM, 'F” + wf L;_,h,_ "_”). (9)

i=1 J= t=j

with {pr} a sequence of integers such that pr — oc as T — oc. pr = o(T) and {vp; : T =

1,2,...;:5 = 1,....pr} a triangular array such that

vl ey T'=1;2 6 = Ly ppoand
vrj—1asT — oo for each j=1,...,pr (¢f. Andrews. 1991 or Newey and West. 1987).

Theorem 2 (Asymptotic justification of forecast breakdown test) (a) If E(OL(B7)/05)
is constant for all t, Gimn = \/(T/n)VEE, VEE given in (7). Then. ty.p.- 4N (0,1) under Hy in
(3). § (b) If Vi in (6) is p.d.. Gon = \/(? n) (V.r‘f“[' + ‘Lffff” + 21{{%): IV.Z‘,{—-LT 1,;1{;1; nrid 1,.;1;‘,;, given in
(7)-(9). Then, toywr 4 N(0,1) under Hy in (5).

Comments: 1. Theorem 2-(a) shows that if OL,(3")/d3 has constant mean under the null
hypothesis, then estimation uncertainty is asymptotically irrelevant and the asymptotic variance
estimator is easier to compute. Theorem 2-(b) gives the correction to the estimator needed when
estimation nncertainty does not vanish asymptotically. Whether the condition for asymptotic irrel-
evance is satisfied depends in general on the model, the loss function and the estimation procedure,
and its plausibility must thus be verified on a case-by-case basis. Corollary 3 below shows that an
important case in which this condition is satisfied is when the loss function used for estimation is
the same as that nsed for evaluation. This is a comnon situation in forecasting applications, where
parameters are typically estimated by OLS and forecasts are evaluated using a quadratic loss.

2. The use of & HAC estimator for the asymptotic variance is wotivated by the possible presence
of serial correlation in the sequence of forecast losses. This is easy to see for a quadratic loss, in

which case serial correlation in the losses is indunced by the presence of GARCH in the data.

Corollary 3 (Variance estimator under equal loss) If F!,. = argming L (3), then 6pm, =

J (T/n) VEE, Vi given in (7).

I . A = . . i . . -
"A Alatlab code computing @, in the case of asymptotically irrelevant estimation nneertainty can he downloaded

from hittp:\\www.cconucla.edulginconin.

10



Corollary 4 (Variance estimator under equal loss and covariance-stationarity) Given the
assumptions of Theorem 2-(a). further assume that I'; = cov (L(5%), Ly (7)) depends on j but

not on t under Hy." Then., 6,,, = VASHL, where

Forecasting scheme A

Fizved 142

Rolling, n < m 1—-3 (%]3 (10)
Rolling, n > m %%

Recursive 1

and SEF = n lZ;’_”’; E?Jr_f + 271 Zfil Ve, Zr{:?ﬁ“ B i j» where

EH =1y f-r'ﬁr) —n ! ZJZF: Lj, T(:}J) and with {p,} a sequence of integers such that p, — o< as
n— 00, py =o(n) and {v,j:n=12,..:5=1,....py} a triangular array such that |v, ;| < oo,
1 = L 2eent J = Lyaney pn and vy; — 1 asn — oo for each j = 1,..., P (cf Andrews. 1991 or
Newey and West, 1987).

Comment: As we discussed in Section 2.3, when L(e) = e, with e the forecast error, the
forecast breakdown test is analogous to a forecast unbiasedness test. Corollary 4 gives the correct
standard error for the test, provided that the condition for asymptotic irrelevance of estimation
uncertainty is satisfied (i.e., if E(OL(5*)/d53) is constant, which for example is satisfied in a linear
regression model with constant-mean regressors). The corollary shows that for a recursive scheme
the asymptotic variance estimator does not necessitate a correction and it is simply a ITAC estimator
of the variance of the average ont-of-sample forecast error. For the fixed and rolling schemes,
instead, the estimator must be corrected.® In Section 5 below, we further provide the correct

asymptotic variance estimator for forecast rationality tests, which was not previously available.

3 Causes of forecast breakdowns

To gain some insight into the causes of forecast breakdowns, we analyze the expectation of the
" it { -y + wii " . .

numerator of the forecast breakdown test statistic (4)7. For simplicity. in this section we assune

that parameters are estimated by maximumn likelihood and let L(-) indicate the loss nsed for

estimation. We further define 37 as E (0L (37) /98) = 0, t = 1.2..... T, and let X; denote the

¥ . 5 = t . ;.
relevant sample average depending on the forecasting scheme: ¥; =t 1Y ;—1 for the recursive

"ln the case of quadratic loss. this rules ont time-variation in the tail fatness of the forecast errors.

¥For cases in which our nnll hypothesis coineides with the forecast nnbiasedness null hypothesis. one can casily
see that our estimator for the forecast nublagedness test coincides with the estimator proposed by MeCracken (2000)
for the various forecasting schemes.

"We implicitly make the asswmption that such expectation exists.
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scheme, ¥; = m 12;:t my1 for the rolling scheme, and m~' 377", for the fixed scheme. Also,
let Eﬂ, 3: Bi. - denote intermediate points between (3, d}“) (J;‘ ,"5;;) . (87,87 +) respectively. We
following proposition decomposes the expectation of the munerator of our test statistic into various
components. grouped under the three categories of parameter instabilities, other instabilities and

estimation nncertainty.

Proposition 5 (Causes of forecast breakdowns)

T
E(n 23" SLi-(B)
f=m
T T—+ ’ o
o -1/2 v % 12 s ‘)Lf-+r(ir+r) A i
= Eln Z -SLI { T{_J-j’f ) sl Z E T (.."f, - df_ | "r)
" \ t=m PR t=m ,
“other m..‘-.:'ubr.(itn'.-s ' “pavaineter ':;Hfrrh.r'h'hr-,-s ¥ o
T—=r : %
= [8L; (B
o — 12 1 RS % %
—n E| ———) (4 =57 11
55 (%) - ) wy
“parameler ;;.wmhf!im-.s I
I Lo, (i
1 1/2 # % ! “T('”T ey %
+§'ﬂ'}. / z (."J,! - ."J'.f : 'r) E W (_D’If — .'d.r } 1.)
t=m !
“paramneter .'?J:m,bh’..ffif'.ﬁ I
_ 9°L; (3_) i z
/ J / = L}Lf b {j‘.’)’r ) -~
=N (=B B | —2al | (B = B | 42y B | e (r; - 5)
2., Bi=03) oy | Vi~ )| Z o e

e ¥ ] "
sparameter instabilities 1 “estimation wncertamiy T

T i SR T PR
I ([ e 1 82L,(3,) 0L, (8Y) L, (8] /4
n VS B |(B-8r) St — o | (B, -8
o %; Bi-51) o~ o5t g | P Hi)
“eslimuation r::rr'f"r!r”'m_u I~
T-1 i a2 = AT A
1y (* _ ‘=)’ D Liy+(8)) 0Ll 5y) (-': .. *)
=11 - Y 2y — | = g3, —-5
3" :; ol L 305" apog ) \"t T

“estimation uneertamty [T

The component “other instabilities”™ captures any changes in the data-generating process -
beyond parameter instabilities - that result in a non-constant expected loss. The “parameter
instabilities I component captures instabilities of the type 57 — 3% = O, ('H.l’(?) (which are the
same instabilities considered by the structural break testing literature), whereas the “parameter
instabilities IT” component captures instabilities of the type 37 — 4° = 0, ('u.“") . Note that when
the loss functions used for estimation and for evaluation are equal the compouent “parameter

instabilities I” disappears due to E (DL 7 (Bt,+) /03) = 0. implying that forecast breakdowns are
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in this case caused by instabilities of greater magnitude than those considered by the structural
break testing literature.

Regarding the remaining components, note that when the estimation and evaluation losses are
equal, the “estimation uncertainty II" component is a quadratic form, and is thus always positive.
Intuitively, this is because in this case the average in-sample loss computed at the parameter
estimates is minimized by construction, and is thus smaller than the expected out-of-sample loss
in finite samples. We therefore interpret this component as a measure of “overfitting”.

The following proposition characterizes the causes of forecast breakdowns in the special case of

a linear regression model, a fixed forecasting scheme and a quadratic loss.

Proposition 6 (Special case: linear model and quadratic loss) Consider a quadratic loss :
L(e) = L(e) = ¢%. a fized forecasting scheme. and a linear and correctly specified model Yy =
XiB, + &, ep ~ didd. (U,Uf). where the k x 1 vector X, is i.i.d. Let E (X, X]) = J. Suppose there
are two breaks: a permanent break in the parameters and a permanent break in the variance of the

disturbances, so that 3, = 3 4+n 1/ 91-1(t > m) and o‘f =24+ n Vgl (t = m). We have:

: 1, S

E (\;"?’i-;“)f.-m_”_) = \i}\i{ e nd ggngl +2?;—(T—’\‘- 3 (12)
“other instalilities™ b ) . e
“parameter imstabilities 17 “prerfitting"

From Proposition 6, we see that a forecast breakdown for a quadratic loss can be caused by
a “small” positive break in the variance of the disturbances and/or a “large” break (positive or
negative) in the conditional mean parameters. Overfitting is present only in finite samples and is
proportional to the number of parameters, the variance of the disturbances and the relative sizes

of in-sample and out-of-sample windows (through the factor /n/m).

4 An overfitting-corrected forecast breakdown test

We propose a simple correction to the forecast breakdown test statistic (4) that eliminates the
systematic difference between in-sample and out-of-sample loss that is present in finite samples when
a quadratic loss is used for both estimation and evaluation. Specifically, we propose subtracting
from the munerator of our test statistic an estimate of the “estimation uncertainty II" component
in (11), which can be interpreted as a measure of overfitting. Using similar reasonings to those
in the proof of Proposition 6, we obtain an estimate of this component in the context of a linear

model with & covariance-stationary regressors, Y; = X/ + ;. The test statistic is modified as:
ot 10 (\-" '”"SLHL'H - (") /r‘rm.?r; (lei)

f_i’
XX =,
e = 2-'}-:‘.?‘( T 'lf)

13




where: 4 = /7i/m for the fixed and rolling schemes and v = n /2In(1 + n/m) for the recursive
scheme; X = [X{;..., X}]; '}f is a consistent estimator of the asymptotic variance of the full-sample
parameter estimate 171’:' = asyvar( \/—T:BF) G on is as in Theorem 2-(b) or Corollary 3.

It is interesting to note that, if the asymptotic variance of the parameter estimates can be

] . i3 z - = + - . A
consistently estimated by V. = a(T 1X'X) "1, the overfitting correction simply becomes

e =20k, (11)

] - - + - . . .
where 2 = var(g;). Direct calculations further show that in this case tf, , - may be equivalently

obtained by re-defining the surprise losses as the difference between the out-of-sample loss and the

average in-sample loss penalized using Akaike’s information criterion (Al oy

5 Predicting future forecast breakdowns

In Section 2.3, we proposed a test for detecting whether a forecast method broke down in the past.
A question that may be of further interest to forecasters is whether the forecast method will break
down in the future. This is of course related to finding past breakdowns: if the surprise losses had
positive mean in the past, we expect them to continue being positive in the future. However, it is
possible that one could find additional information that predicts whether there will be a forecast
breakdown. For example, the surprise losses may be persistent (in the case of a quadratic loss, for
example, the presence of GARCH in the data will induce serial correlation in the surprise losses)
or they may be correlated with indicators of the state of the economy.

The idea is to find variables that predict the difference between in-sample and out-of-sample
performance by regressing the surprise losses on a set of explanatory variables. including, e.g., a
constant, lagped surprise losses, economically meaningful variables such as business cycle leading
indicators, measures of stock market volatility, interest rates ete.

Denote by Z; the rx 1 vector collecting such variables and let 5, be the OLS parameter estimate

obtained by estimating the predictive regression
" g ’

over the out-of-sample period ¢t =m, ..., T — 7. where the regression always includes a constant.

A Wald test of Hy : E (?L 1 Z:L;:: Z;S‘L“T(b‘*)) = 0 can be performed by counsidering the test
e " g = . R s - . - R

statistic W, .+ = -u,ouﬂm_?”é,,. with €, given in Proposition 7 below and rejecting Hy whenever

Winmr > X214 where x2, , is the (1 —a) —th quantile of a x7 distribution. Proposition 7 below

provides the asymptotic justification for the test.

o see this. note that (for the fxed scheme) the ATC penalizes the in-sample log-likelihiood as lngz.,,, + 25 /1,
which corresponds 1o penalizing the in-sample loss as L1 + exp(2k/m)) =~ L (1 4+ 2k/m). The elaim then follows

from redefining SLy - as Liys — L (1 +2k/m).
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To analyze the behavior of the surprise losses over time. one may further consider the plot of
the fitted values {Z;0 ”},_m from the Leglesslon (15) together with a one-sided (1 — )% confidence
interval: (A,_h”_ - (7r ( - ,,/'n) [;) ,+0oc |, where z,, is the (1—a)—th quantile of a standard

normal distribution.

Proposition 7 (Asymptotic justification of the Wald test) Let Z; = [1,2]] and 3 = 2 —=

el
(1

37 Z,‘;,; z. Under assumptions A1-A3 and A7. further suppose that the same loss function is

used for estimation and evaluation and that, under Hy: Bl. {:;};F-__”T, and {L(} }f_l are fourth
order stationary; B2.  — E(z): B3. Sz =n ! Zf_m 0 —+ Iz = E 57 mm-s-ffngu.iru': BY.
'H
For some d > 1. supy>1 E ||z}, Li||* < oc.1! Let
!
- 1 =38 Gon  AS; 1
- = P Lk (16)
0 5= ASr Bgar S\

where 52, ,, is defined in Corollary 4. Szs=n ST 5H34n ! > F U Y i (L}Z; ;5 J-E:';) ;
< (| 2 -1 pu_._ﬂ’f'r = -~ N I 1 =3 T
*55';, L- Z: i ‘~*L +n Z Un.j Lﬁ:m.+_j (*fo-Lf- j JLF JLF-) : *55;,,5 =n Zr—m 25 L +
’ 1 I\u ey ,m _ﬂ sy 15| Z2SV— T n r 4 Fy g - ) ;
I ® Y Z{,_mu (‘,;L; L;_!,_, itz Ly jL;_zt). where Ly is as in Algorithm | and p, and
vnj are as in Proposition 4: A = [?r"l In(1+ ?T}] for the recursive scheme. A = 1 — 7 /2 for the
rolling scheme when n < m. A = (27) ! for the rolling scheme when n > m. and A = 1 for the

. = g .
. T ’ LA R S 1 412
fized scheme. Then Wy nr — Xr under Hy : (n Zt_m ZiSLi++ (3 )) = 0.

Corollary 8 (Asymptotic justification of the Wald test under conditional homoskedasticity)
Under the assumptions of Proposition 7. further suppose that. under Hy. E (Lr (77) L &8 {Ht}r_m) =
”‘ Then:

2 =f 1o
Tinn + 2 zz Vs L

—85 Ssi i

ot

(17)

mon

Comments: 1. Under the assumption of conditional homoskedasticity, the asvinptotic variance
of the parameter estimates other than the intercept does not require any correction depending on
the forecasting scheme.

2. Note that equation (15) can be interpreted as a forecast rationality regression, by letting
L{e) = e in (1), where ¢ is the forecast error. and when parameters are estimated by OLS, so

that L;(3;) = 0. Proposition 7 thus provides the appropriate asymptotic variance estimator for

HThe latter assmmption ensures that thivd and fourth order cunmlants are finite. This assmuption is trivially
satisfied if the variables are Normal. and it is a standard assnmption — see Brillinger (1981, p. 26, Assumption 2.6.1).
Also. note that fourth order stationarity implies covarianee stationarity.

Ealatlab code to implement the Wald test under the assumptions of Proposition 7 is available at
Littp:\ \www.ccon.duke.cdul “brossi. Matlab code to implement the Wald test under the more general assumption of

heterogeneity ol the losses is further available at http:\\www.ccon.nclaedu\glacomin,
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the forecast rationality test, and shows that a correction is only required for the standard error of
the intercept (which is the same correction that applies to the forecast unbiasedness test; see the
comment after Corollary 4). The same remarks hold for a Mincer and Zarnowitz (1969) regression,
where the regressor is the forecast, provided a two-step estimator is used for the standard errors to

account for the generated-regressor problem.

6 Implications of forecast breakdowns

A natural question that arises if a forecast breakdown is detected or predicted is whether the forecast
model should be changed or not. In general, the answer to this question depends on the type of
forecast (point, interval, density) and on the type of loss function (symmetric or asynunetric).
For example, when the forecast is a point forecast and the loss function is symmetric, finding a
forecast breakdown does not necessarily imply that the model should be changed. The reason is
that the forecast breakdown could be caused by instabilities - such as inereases in the variance of
the disturbances - that do not affect the optimal forecast (for a symmetric loss, the optimal point
forecast does not depend on the variance, unlike for an asymmetric loss, as shown by Christoffersen
and Diebold, 1997). Since the forecast breakdown test cannot distinguish among the different types
of instabilities. the finding of a forecast breakdown does not in this case suggest a course of action.
However, when the loss is asymmetric or when the forecaster is interested in accompanying the
point forecast with some measure of its uncertainty (e.g.. an interval or a density forecast), then

the finding of a forecast breakdown indicates unreliability of the forecast, regardless of its cause.

7 Monte Carlo evidence

We analyze the size and power properties of our forecast breakdown test in finite samples, relative to
the properties of in-sample structural break tests (Elliott and Muller, 2003).1% We further compare
the size properties of commonly used forecast rationality tests and those of our corrected forecast

rationality test (see commnent 2 after Corollary 8).

7.1 Size properties of forecast breakdown tests

We investigate the size of the forecast breakdown test, in particular with regards to its robustness

to the presence of instability in the marginal distribution of the regressors and to the presence of

B Andrews' (1991) and Andrews and Ploberger’s (1995) test results were qualitatively similar to those obtained by

using the Elliott and Muller’s (2003) test in the case of a single break. and are therefore not reported.
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conditionally heteroskedastic disturbances. We let the data-generating process (DGP) be:

Y, = 2.73—=04ddu 1+ o5y, (15)
(I?' = 14+« *.—:? 1+ &t ~ttd . N(0, 1),

and consider two experiment designs. The first (MC1) has i.id. regressors and conditionally
homoskedastic errors: w; ~ i.i.d.N(0, 1) and v = 0. The second (MC2), inspired by our empirical
application to the Phillips curve model of U.S. inflation, lets w; be monthly U.S. unemployment
and o = 5.1 The DGP specification and parameters are from Staiger, Stock and Watson (1997).
We nse an actual time series for unemployment in order to generate data that exhibit realistic
heterogeneous behavior. Throughout, we restrict attention to the one-step-ahead forecast horizon
and use a quadratic loss for both estimation and evaluation.

For each pair of in-sample and out-of-sample sizes (m,n) and for each of 5000 Monte Carlo
replications, we generate T = m +n data as in (18). In MC2. we use the last T" data in the
time series, up to 2005:8. We estimate the model Y; = 3| 4+ Bow—1 + ¢ by OLS using either a
fixed, a rolling or a recursive forecasting scheme. We consider the test proposed by Elliott and
Muller (2003) (denoted EM) and our forecast breakdown test for the three forecasting schemes,
using either the general asymptotic variance estimator of Corollary 3 (t,,,.-) or the estimator of
Corollary 4 (#5'™ ) (the truncation lags for the HAC estimators are py = p, = 0 in MCL and
pr = pn = n'/* in MC2). Table 1(a) contains the rejection frequencies of the tests for various

(tn,n) pairs.
[TABLES 1(a) AND 1(b) HERE]

The forecast breakdown test has good size properties for large in-sample and out-of-sample sizes
(m,n > 100). The 7,  test is well-sized, if conservative. Both tests (in particular toon.r) tend
to over-reject when the in-sample size is small (m = 50). partly due to the effects of overfitting.
To verify this claim, Table 1(b) reports the rejection frequencies of the overfitting-corrected test
of Section 4, using the simple correction (14) in both MC1 and MC2. As expected, the use of
the overfitting correction substantially improves the size properties of the test. The overfitting-
corrected test is well-sized in all cases except for the fixed scheme when the in-sample size is small
(rm = 50).

Comparing the results from MC1 and MC2, we see that the forecast breakdown test is robust
to the presence of heterogeneous regressors and of ARCH disturbances. In MC2, our test correctly

concludes that the forecasting model is reliable. The EAL test, instead, has correct size when the

U he unemployviment series is the seasonally adjusted eivilian unemiployment rate from FRED 1L The results are

robmst to higher values of @, even close to one.
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regressor is i.i.d., but erroneously detects instability in model’s parameters when the regressor is

the actual time series of U.S. unemployment (in this case, the EM rejects 100% of the time).

7.2 Size properties of forecast rationality tests

Finally, we document size distortions of conventional forecast rationality tests and the good size
properties of a test based on the “corrected” variance estimator of Proposition 7. The DGP is:
4= Bo + 51X + &1, where 8y = 3y =0, & ~ ©.i.d. N(0,1), X} ~ i.i.d.N(0,1) and forecasts are
based on a model with a constant and X, estimated using the various forecasting schemes. The
forecast rationality test is performed by estimating the regression: e;1 = o + 012 + g, where
€141 is the estimated out-of-sample forecast error and Z; ~ i.4.d.N (0. 1) independent of X;. Table
2 reports rejection frequencies of forecast rationality tests using conventional OLS standard errors
and of the corresponding test using the variance estimator (17) with L(e) = e. The nominal size
is 5%. As the columns labeled “uncorrected” in Table 2 show, both a standard t-test on g (t5,)
and a Wald test on both §p and 6; (W) have considerable size distortions except for the recursive
scheme, whereas a t-test on 6y (ts,) has no size distortions for any scheme. The cohunns labeled

“corrected” show instead that our correction performs very well in all cases.

[TABLE 2 HERE]

7.3 Power properties

In this section we consider various sonrces of forecast breakdowns and analyze the power of the
tests considered in Section 7.1 and of a forecast unbiasedness test for the recursive scheme forecasts
(UNB). In all designs, we estimate the model ¥; = a + ¢; by OLS aud cousider a guadratic
and a linex loss for evaluation. The total sample size T and the in-sample size m for the forecast
breakdown and the unbiasedness tests are specified in each design. In all cases, mn is set at the time
of the first break, which represents the “worst-case scenario” from the perspective of a forecaster.

Design 1: Changes in mean. We consider either one-time or recurring changes in mean. The

first corresponds to a single structural break in mean

Y, = Ba-1(t> T/2) +&, & ~ iid-N(0,1). (19)

We let (T,m) = (300, 150). In the recurring change DGP, we let Y, = p; + &, where p, switches
between —/3 4 and 34 every 50 periods and let (T%.m) = (600, 50).
Design 2: Changes in variance. Again, we consider both one-time and recurring changes. The
one-time change DGP is
Y, =&, &~ iid.N(0,07) (20)
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where 07 = L+ 3,-1(t > T/2). and. We choose (T,m) = (300, 150). In the recurring changes case,
we let 07 switch between 1 and (1 + 3 4) every 50 periods, and let (T, m) = (600, 50).

Design 3: Other DGP changes. Here we assume that the conditional mean undergoes a one-
time change but the two specifications are not nested, so that structural break tests are not optimal

in this context. We let

Y, = Ba-1(t<T/4)—-38,-1(T/A<t<T/2)+X;-1(t>T/2) +&, (21)
Xy = 6Xy 1+, cn ~ididN(0,1) independent.

We consider (T,m) = (400, 100).
[FIGURE 1 HERE]

For all designs, we obtain power curves by letting 8,4 vary between 0 and 2 and considering
5000 Monte Carlo replications. Figure 1(a) shows that the forecast breakdown test has power
against changes in mean. In the case of a permanent break in mean (upper left panel). the forecast
breakdown test has lower power than both the EM and the UNB tests, but its power improves when
the losses used for estimation and evaluation differ (upper right panel). In the case of recurring
changes in mean (lower panels), the forecast breakdown test with a rolling scheme has the highest
power. When the permanent change in DGP is as in Design 3 (Figure 1(¢), right panel), the power
loss of the forecast breakdown relative to the EM and UNB tests is substantially lower. Figure 1(h)
shows that the forecast breakdown test is the only test that has power against changes in variance.
The one-sided nature of the test implies that only increases in variance (Figure 1(b), upper panels)
or, to a lesser extent, recurring changes in variance (Figure 1(b), lower panels) can cause forecast
breakdowns. Decreases in variance, obtained by substituting 34 with —/J 4 in design 2, instead do

not canse forecast breakdowns. as can be seen from the left panel of Figure 1(c).

8 The Phillips curve and inflation forecast breakdowns

The Phillips curve as a forecasting model of inflation has traditionally been a useful guide for
monetary policy in the United States, and its forecasting ability is thus of practical relevance. The
model relates changes in inflation to past values of the unemployment gap (the difference between
the unemployment rate and the NAIRU) and past values of inflation. The forecasting ability of
the Phillips curve as well as its stability have been investigated in a number of works, including
Staiger, Stock and Watson (1997), Stock and Watson (1999) and Fisher. Lin and Zhon (2002). The
latter, in particular, conclude that the forecasting ability of the Phillips curve depends upon the

period: the Phillips enrve appears to forecast well one year ahead during the 1977-1984 period but
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not during the 1993-2000 period. Thus, as an empirical application of the methods proposed in
this paper, we investigate the robustness of the Phillips curve to forecast breakdowns.

Following Stock and Watson (1999), let n7 = (1200/7) In(F,/ P, ;) denote the m-period inflation
in the price level B reported at an annual rate, 7 denote monthly inflation at an annual rate at
time t (mp = 7 = (1200) In (P/ P 1)), and u; denote the unemployment rate. Then the Phillips

curve can be expressed as:
Tl'}r' = 9[_] + 91 (L}'H-g -+ !92 (L) ('JT; it ﬁ,{_l_}l + Sty (2_")

where )y implicitly embodies a time-invariant NAIRU, and 0y (L) and 2 (L) are lag polynomials
with g, and ¢, lags, respectively.

When analyzing whether nnemployment was a useful predictor for inflation, it is important to
assess its predictive ability using data that were available to the policymakers at that time. For
example, Ghysels, Swanson and Callan (2002) analyze the performance of monetary policy rules in
the presence of real-time data, and note their relationship with changes in the Fed Chairmen. For
this reason, we use real-time data from the Federal Reserve Bank of Philadelphia database. The
data are discussed in Croushore and Stark (2001). Since the real-time series of consumer prices from
the same data set is available only from the 1994 vintage. for this series we use the Swanson, van
Dijk, and Callan dataset (available at http://econweb.rutgers.edu/nswanson/realtime.htm). We
focus on seasonally adjusted inflation, as in Stock and Watson (1999). The data are from 1961:1
(with a first vintage in 1978:2) until 2001:12. Due to the data limitations, we restrict estimation
from 1978:2 until 2001:12, using quarterly vintages.'?

The first colmnn of Table 3 reports the p-values of the forecast breakdown test of Section 2.3
for a quadratic loss and a rolling scheme with m = 60 (so that the one-step ahead forecasts begin
in 1993:1. corresponding to the change in monetary policy identified in Fisher et al., 2002). We
consider forecast horizons 7 = 3 and 7 = 12 months and several choices of ¢, and ¢r. The row
labeled “BIC™ reports results for the case in which the lag length is determined by the Bavesian
Information Criterion (BIC) (assuming that all regressors have the same number of lags). The
table shows strong evidence of a forecast breakdown at the one year horizon when using real-time
data, whereas there is little evidence of forecast breakdowns at shorter horizons. Because of small
sample concerns associated with real-time data. we repeat the above exercise using revised monthly

data. We consider the most recent observations collected by the Philadelphia Fed (2004:8) for both

Ferhe sample used in Fisher et al. (2002) begins in January 1977 and that nsed in Stock and Watson (1999) begins
in Jannary 1959, Note that while in the real-time database unemployment is revised at a quarterly frequency, data
are still available at a monthly frequency. However. there will he missing data if one tried to extend the quarterly
data 1o o monthly frequeney. For this reason. we ealeulated the annualized inflation rate at a monthly frequency.
then nsed observations only for February, Mayv. Angust and November. which correspond to the available vintage

(uarters.
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seasonally unadjusted CPI and unemployment. The largest available sample for both variables is
from 1948:1 until 2004:6. The second colunn in Table 3 shows that the forecast breakdown test

finds some evidence of a forecast breakdown at the one month horizon, but not at longer horizons.
[TABLE 3 HERE]

Given the evidence in favor of forecast breakdowns in the Phillips curve, we next investigate
its possible economic causes. Fisher et al. (2002) argue that periods of low inflation volatility
and periods after regime shifts in monetary policy appear to be associated with changes in the
forecasting ability of the Phillips curve. Thus, we construct a forecasting model that relates the
surprise losses to inflation volatility and to a measure of changes in the monetary policy behavior of
the Fed. We estimate inflation volatility (ﬁil_,_} as the sample variance of the change in the annual
inflation over a rolling window of size 241.'% To measure changes in the monetary policy behavior
of the Fed, we consider rolling two-step efficient GMM estimates (with 2SLS in the first step) of
the coefficients of the Federal Fund Rate (FFR) reaction function to the output gap and to the

deviation of inflation from its target proposed by Clarida, Gali and Gertler (2000). given by
E(re— (1= p) [ — (B = 1) 7" + Brops + 0] + p (L) 1i1]30) = 0, (23)

with r, the nominal FFR; 7 the annualized percentage change in the price level between t and
t+ k; 14 the average output gap between ¢ and ¢+ ¢, defined as minus the percentage deviation of
actual unemployment from its target (a fitted quadratic function of time); and 3, the information
set at time £. As in Clarida et al. (2000), we let p(L) = p; + po L. r7™ be the average FFR over
the estimation window, and we choose as instruments a constant and four lags of the following
variables: inflation, output gap, FFR, commodity price inflation, M2 growth rate, spread between
the long-term bond rate and the three-month Treasury Bill rate.!'” k and g are set at 1 quarter. Our
measures of changes in monetary policy behavior are sequences of estimates of 4. v and p = p(1) in
(23) over a rolling window of size 241. Even though our database is different from that of Clarida
et al. (2000), our parameter estimates - which we do not report to conserve space - are similar.
We next investigate whether the estimates of the FFR reaction function coefficients and inflation

volatility are useful predictors of inflation forecast breakdowns. Table 4 shows estimates of the

e we use lagged values of the sample variance of (77, - — m¢) as a potential predictor.

¥ Unlike in Clarida et al. (2000). the long-term bond rate used here is not FYGL becanse that series has been
discontinned. Our proxy for the long-term bond rate is instead the ten-year monthly rate of interest on government
socuritios provided by the Fed (we checked that in the overlapping portion with FYGL the data look similar), Shwilar
probloms lead us to choose the 3-month U.S. Treasury Bills quoted on the sceondary market as a proxy for the
J3-month Treasury Bill rate. Finallv, for commodity prices we used nsa. CPL for all tems all urban consumers
(U.S. city average) and we collected data for M2 from the Federal Reserve Board database. The abuse of notation in

denoting the degree of inflation aversion by 3 is to make our notation consistent with that of Clarida ot al. (2000).
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coefficients in the following equation:
; ; y ;
SLiyr =00+ 201 +ctyr (24)

f . 5 e~ = s . b i ] i
where z is either 3,, 3,. p; (the rolling estimates of the parameters in (23)), or o, and 7 = 1, 3, 12
months. The table reports estimates of §; and (in parentheses) the p-values associated with testing
whether 0; equals zero.!® It is clear that the degree of inflation targeting smoothing operated by

2

the central bank (p,) aud the degree of inflation volatility (o5

) explain the behavior of the surprise
losses at the 12 month horizon, whereas inflation volatility and the degree of the Fed'’s risk aversion
to the unemployment gap (5,) are significant at the one month horizon. We also estimate (24)
with z = (Ef, 3., 7y) and find strong evidence of joint significance at horizons of one and twelve
months (last column of Table 4). To conclude, Figure 2 plots the sequence of surprise losses SE, (12
along with its one-sided 95% confidence band, and shows empirical evidence of forecast breakdowns

during the Volker era (1979:3-1987:7) but not during the Greenspan era (1987:7 ouwards).

[TABLE 4 AND FIGURE 2 HERE]

9 Conclusion

This paper proposed a method for detecting and predicting forecast breakdowns, defined as a
situation in which the out-of-sample performance of a forecast model is significantly worse than its
in-sample performance. Unlike the literature evaluating a forecasting model from the perspective
of whether it produces optimal forecasts, we focus on whether the model’s forecast performance -
measured by a general loss function - is consistent with expectations based on the model’s earlier
fit. The analysis of the possible causes of forecast breakdowns reveals the prime role played by
instabilities in the data-generating process in causing forecast breakdowns, thus establishing a link
between this paper and the structural break testing literature. Among the differences, we note that
our forecast breakdown test is valid under more general assumptions, for example permitting the
model to be misspecified and the regressors to be unstable, arguably a closer representation of the
enviromuent faced by actual forecasters. Further, our testing framework allows the forecaster to
predict the likelihood that the forecast model will break down at a future date. a question that is
not typically addressed by the structural break testing literature.

While our method is a first step towards assessing how well a forecasting model adapts to
changes in the economy, an important question that we touched upon but that deserves further
investigation is what to do in case a forecast breakdown is detected or predicted. We leave this

avenne of research for future work.

B e test statistic is implemented with a Newey and West (1987) HAC estimator with a handwidth equal to 'l

and the p-values are caleulated from (8).
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Appendix. Proofs

Notation 9 Let L} = Li(3*), hf = h(8"%), OL; = OLy(97), t = 1,.... T, with Ly and hy defined in
Algorithm 1; D}, = 0SLyy - (87) /08, t =m, ..., T—7; L} = I} —E(EL) DY, = DY —B(Dl)s

OL, = 0L} — E(OL}) . For a matriz A, |A| = max; j |a;;|. Limits are for m,n — oc.

Lemma 10 (a) Ry =n /2 ZL?; m}f;,.B}_"H,’" =0y(1):
(b) Ry = .bn /2 Zf-,; (3, = ;3") (BES'LHT(E)/U;&C?,U’) (Sr - ;3*) = 0p(1), where A7 is an inter-

mediate point between 3, and 3%.

Proof of Lemma 10. (a) We focus for simplicity on the recursive scheme. The proofs for
the fixed and rolling schemes are similar and are available upon request. Direct calculations show

that Ry =n /2 ELI @]'h}, where

"3 ﬁ* B

*

-h - ) T g =1 =1

W= @y Cir D5 Cr Ly » < 5 Chiiurs 1.[).,..‘()[._ Crrij = E — 2
[‘ T im0y G o -1 g e '.fn.+j +i—1

~
m n—1

T

We will show that (i) |E (7?._”2 Zf;, -rE{"h}f‘) 20 and (i) E (n 1/2 Z;r:l u‘_r;"h.;‘)“ L0 from

which the resnlt follows by Chebyshev’s inequality.

S _ . . - T R
i) First note that ! can be written as a weighted average of the scores: @) =T 'Y _, L. P ;.
t & & t J=198500

o R . - -
For example, -.'?=‘{" =epo=T" ijl (’)L?-P;__j with (nonstochastic) weights

P = 1 I J 1 B;r d B::r bri—r=—1 |
I == ["-rmlh ceea b 0y G 1y e s s Gy — 15 — e, — = — Oy 1,
~ — AN - s m m+n—7—1 J
m T—1 =
n—r7m
B:Hri--T . ; T
s ], where
m-+n—T T—71
= ~
n—j o
‘!3r:!.+j fr—1

dmj = Z

. ; 9
7 (- =1
Similar expressions can be derived for ¢, ;. j = 1,....n — 1. Each component of P 1s bounded

sitice |Tdpo| < sup, |Bf| S1_T(T/i%) < sup, | Bf|(Tn/m*) < oc by assumptions A3 and A7. We can

=1



similarly show that P; has bounded components for all £, which allows us to define " = sup, ;.

i
E ('u. I’QZLE‘?;’?.:)‘ =
=1

We thus have

I
QZ 'ZdL Py;| B
.
Z IZ()L PP\ by
iy

<
i
— |E v M2 hy (25)
J:]- t=1
T T .
< V2> IB(OLk ;)
J=1 t=l1

where we redefined (;ﬁ;l}_’?“p as cﬁ,j in (25) without loss of generality. By Corollary 6.17 of White
(2001), T 'n=1/2 Zle ZL“E(OZ:JPTU)I < T~ 320 > 2o ga(i)! 1728 where € is some
positive and finite constant and «(j) are the mixing coefficients. By Davidson (1994), p. 210,
> ja(j)t Y2 is positive and finite, which implies that |E (n 1/? T whht)| — 0.
=0 I I =1 W iy

2

. 2 ) "
(i1) From (i), F¥ (”_1/3 ZLI 'rﬁ*f"h.’[) =F (?1_”“ Z;‘r:l [T 12;_1 0L, )Dg“;'} ;'.',;f) . We have
3 2
E ('u, 1/2 Z {T k Z (')Lj PU] h;‘) = Air + Aop + Ay, where

Ay = (nT?) 1iiii}f(h}”h:)E(iﬁ:ﬂ?jﬁj_iaxﬁf)?
by = 1) S [ () B () + B (05 ) 8 ()

T T T
A = (7% YN S S kbt — st it - j),

where r(t.t — s, t —i,t — j) is the fourth cumulant
Kbt —at=it—g) = L“(h 'WtOL; PP 0L, ) E(h'h)E (éi’fp,_.,-P’. .("TLT'T’)
_E (h.j"!*’,’_r-c")L,- ) E (h:’f{i_ jamj’) _E (h;"’P’ OL; ) E (1 “p oL )
Note that |Ayp| < (nT?) 6 TS Sl 1ZJ L |E (h'h?) |‘E(()L I’H“pph’""’dL )‘ Redefin-
ing DEL.:-(P:"" as r}i: we thus have [A;p| < (nT‘) Zr:l ZH_____I |E (hi'h) |Z§:1 ZJ-: i ‘E (JL:JL:’)‘

2
< (nTz) s (Z?‘in ja(HtV -") . where % is some positive and finite constant and «(j) are the

mixing coefficients. As shown in point (i), Z?G:a ja(j) 12" < oo, which implies that Ay — 0. A
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similar argument can be used to show that Asp — 0. For Agp, we have

[o o o Q= o}

|Asy| < (nT?) lzZZmp|n —s,t—it—73) —0,

s=11= lj'-l
since 3 o0y ¥ ooy ZT‘_I suppsq [K(tt — s, —i,t — j)| < oo, by assumptions Al and Ad, as shown
by Andrews (1991).
(b) For some a, 0 < a < .5, C' a positive constant, m; defined in assumption A2(b) and denoting
by 77y the mean of the mjs over the relevant in-sample window at time ¢, we have

s e (23 6

Ry =

t=m

F— A% o ey
5 [ = 1/ 1 |@°SLe+(57)
< (; st t") il (5 _ "j*) 2, ; 1}‘2 t” 1 . {
- m.ibt‘;}'} ’ri EN i " ;{ ()J(fd{jf

s 2Ly (B 2L, (5F)
< C s p-5-.Ba (3 a2, —1/2 o1 : -._| TALY bz t
S W G ,_Z 55|+ | g0
: T
< C sup |tOO (3, - ﬁ*) |*n=1/2 Z 4 (g + ) = 0p(1)
m<t<T 7 t—m

by Lemmas Al(a) and A3(b) of West (1996), Assumption A2(b) and Markov’s inequality. =
Lemma 11 %L'}{‘L‘* = var ('n‘”g ELI u{z}") > 0 for all T sufficiently large.

Proof of Lemma 11. We prove Lemma 11 for the recursive scheme. The proofs for the fixed
and rolling schemes are similar and are available upon request. Write %V%‘r‘* = var(Ay+ Ao+ Az +
Ay), where Ay = —n Ugam‘n(i’{ + .+ L:‘“} Ag = —p V% (u.m‘lf,.‘:”“ + ...t 1E;‘” o l) :
Ay = n1/2 [(1—a..n...r)i,,,,, i (1~um.”_1)if;‘ |5 Ag = 0 (Zrrtr 4 oot Lr) . We
first show thz;t. lcov(A;, A;)| — 0 for i # j. Since amJ- < .0 [cov(Ay, Ag)] < n lu.?”__n
|‘"“'*-’(Z:”—.1 Dl er+11 L)l < nlad, o 20 = 1IE(LL tl<n I”Er,ncz_ﬁ-n Jef)F ¥ by
Corollary 6.17 of White (2001), where C' is some positive and finite constant and a(j) are the
mixing coefficients. By Davidson (1994), p. 210, Zj‘i_n_m(j)] L/2r is positive and finite. Fur-
ther, a2, — In?(1 + ), which is finite (cf. West, 1996, pg. 1082). As a result, cov(Aq, Az) —
0. Using analogous reasonings and the fact that 1 — a;p < 1 for all £, one can show that
lcov(A;, Aj)] — 0 for the remaining (i,j) pairs. We thus have that var (n L2 Z, Wy L*)
can be approximated by Z:-l_l var(A;) and the desired result follows from the fact that, e.g.,
var(Ay) = (m/n)a?, yoar(m Y2y, L) > 0sincem/n — 7 ' >0, a2, 5 — n*(L+7) > 0, and

m

var(m /2 L"} > 0 by assumption AG. =

Proof of Theorem 2. (b) A second order mean value expansion of SL; T(d )= Byyr (H,) -



i (B,) around 7 gives

T—r T—7
nt? {u. 'N " SLi-(8) — E (n ¥y SLH,.(;%*))} (26)

L= t=m

= L 85 Ta45(8%)
= n 2" [SLy, (8) — E(SLiy- (8% ]+n—”92—*.‘—_’-"—(ﬁ,—;f*)

t=m. t=m d'd
T+
I 3 % aqﬂrtr(ﬂ}
+3n ; (,d,_—;j) — (ﬁ —.s)
'.f‘ T T—7
= n 2 " [SLyyr (8") — E(SLeyr (B*))] +n /2 > E(D;..)BiH; +
t=m {=m
T—r1
Sy & : - O2S Ly, (57 ;
1/92[)”TB,_ H +5n 12y (Iﬁf -5 ) e dgg)d( ) (;j, -8 )
t=m B t=m
T—7
= “*”Z[%W — B (SLyy- (87) +n Y2 Y E(Dj,,) BfHf +0y(1)
f=m t=m

where 3] is some intermediate point between 3, and 37 and where we have used assnmption A3

and Lemia 10. We show that, under Hp,

T 1/2 T—7 T-7
- — ] -+ *
(Ew) nY !} SLir (_;3),§:E( ¥ ) Bl

f=m t=m

!

4, N(0, 1),

with Vi defined in (6), from which the theorem follows. Direct calculations show that

(Lvg) V2po12 [Z'{' T ST (T B B*H*T = V5 -1 [z';’_’ kL ST -w{'*h.;_‘y,
where m * equals w " defined in Algorithm 1 with d, B, Dy 1(‘1)1(1.(_,{_‘(_}. respectively by 5%, Bf and
E(D;f, ). Under Hy, we have T 1”2&:1 Wity =112 Ei:l wELY, since T1/2 Zr cWEE (L) =

nT 12E (n IZJ o SLi i+ ( f‘)) = 0. We show that

V* 1/_ —1/2

T T f
Z LZwi‘*hr] L N0, I2),
=1 t=1

sy !
where Vi = var (I 1js [Z: 4 1y L* Z! 1 w,""hr] ) . The result follows from the fact that Vp —

Vi — 2,0, due to consistency of ;,'1’, for 4% under Hy. We verify that the zero-mean vector sequence
{[V* Y2y fﬁf ‘i"f;"u?wi'*h.;‘ f} satisfies the conditions of Wooldridge and White's (1988) CLT for
mixing processes. Since 2, = [‘/’7; Uzwﬁr‘ﬁ}*, Vi uzw}"“h}‘_‘} is a function of only a finite number of
leads and lags of W, it follows from Lemma 2.1 of White and Domowitz (1984) that it is mixing of
the same size as W;. For the first component of Z;, we have E|L".‘,‘f_1‘f2wf'z}"[2" < ¢ by assumption

A4 anud by the fact that Vi is p.d. and |wf| < oo for all ¢ (for the fixed and rolling schemes, this

28



follows from assumption AT; for the recursive scheme, it follows from the fact that a,,; < a;,0
lu(l + ) < oc, as shown in the proof of Lenmma 11. For the second compouent of Z;. writing
w* =71 Z B (dL ) - using similar reasonings as those in the 1;ruoi of Lemma 10-(a) - we
e 1 /2 2 _ 1 17201 o R 5 b2 —
have E|V; "/ “wi™h}| E\V,. '°T Zj:lE OL} ) P kil = E

for all ¢, i, by assumption A5, by Py j having bounded components (as shown in the proof of Lemma

. Note that [A ;] < oc

10-(a)) and by V} p.d. Further, by Minkowski’s inequality,

By uih] E|f\hi’*’=E|th|3’<[Zm (Blhy )T < 00

=l =1

by assumption A4. This implies that Vi 2p-1/2 [Z:{_‘_l-u:;"i;‘.zl;r:lurf*h;‘}’ S N(0,12). The
desired result then follows from consistency of Vi for Vi due to E, -3 2, 0 under Hy.

(a) E'( tr) = E(0SLyy-(8)/08) = E (OLi4+(B8%)/08) — (E}E,(;i*)/é);j) = 0, and thus ex-
pression (26) reduces ton 1/2 E, —r [SLiyr (B*) = E(SLyyr (8%))] 40, (1) . The result then follows
from reasonings analogous to those in part (b) above and from Lenuna 11. m

Proof of Corollary 3. Tollows from the fact that, nnder fiy, E (UE;(_H*) J03) = 0 for all ¢,

which implies that the condition of Theorem 2-(a) is satisfied. m

Lemma 12 Fora,, ; as defined in (J) we have: (i) ay, j = Wn(m4+n—1/(m+ j)); (i) n IZ umj
o L—n (4 a): (i) n Y ek =2 [l -7 tin(l4+7)] = tn(l + 7).

Proof of Lemma 12. (4 wimg = Z:’:Jl (m+i) ! ~ _[;."_l(m + 2) ldx = In(m+ n —
1/ (m+3)); (i) n! Z;’z,l Gz 2= J: "mn+n—1/(m+ ) de =

Im=1—7—(m-1)In(m+n—1/(m+7))] =1-7 "In(1 +=);
(m) Y s : ',"’”J pr k[ "m2(m+n—1/(m+z))de =
n [B(H, —7) =2hm+7T)In(m+n—1/(m+7)) = (m+7)*(m+n—1/(m+ T))]
— 2 [1 —a tm(l+m)] -7 'In(l+x). =

Proof of Proposition 4. We show that lim var(n /2 Z;‘J‘:lw:f‘r‘ff) = A\ Z:” ;. where
A = 1+ 7 for the fixed scheme; \* =1 — (1/3) #? for the rolling (n < m) scheme; A* = (2/3) 7 !
for the rolling (n > m) scheme; A" = 1 for the recursive scheme. The desired result then follows
:f'z ~ I'j under Hy. For conciseness. we focus on the
recursive scheme. As shown in the proof of Lemma 11, var(n /2 Z;;I wf E;‘) = Zle var(A;). We
have var(Ay) = (m/n) a2, goar(m Y232 L) and thus Em var(4;) = 7 (1 + Y iy L
by Lemma 12-(i). TFurther, var(A4z) = n Loar (m.,,,_ui:,{l—l—... + 1;{;"”_1_1___[) — () since
7 is fixed. For Aj, it follows from West (1996), pg. 1082-1083. (with (1 — r;r.mJ) substitut-
ing a, ;) that var(Az) = n 'dg ZJ_'l ayalj + o(1), where dy = z '_l(l tm,j)*. By Lemma
12, nldg = (n—7) /n — 20~ IZ”__T i gt IZJ__ . Fiad In(1 + «), and thus lim

var(Asy) = [1 —a ¥n(l +7 )] L. Finally, var(Ay) = n 1-.'!(:.':'(3-;' U e ET) — 0

j=—o0

from ASE" being a consistent estimator of A*
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o)
j=—o0

since 7 is fixed. In sum, we have var(n=1/2 23;1 wirll) =3 I'; and thus A* = 1. The proofs

for the fixed and rolling schenies follow from similar reasonings. =

Proof of Proposition 5. A mean value expansion of n~1/2 oo B

: rrn
n1/2 Zr‘,::; [LH, (Ail.) —T (;‘3,)] around 7 gives:
1/2 « ¢ = 1/2 — 1/ z ()LHTG ACHAY
n ;—2 §Lew B = m §,9L;+.T( tn = (,d,_ _;j,) +
T—7 ; =
1 172 (’.‘ X! C')”Lv.n(f"jr) d* Lr(d) . =
s 2y (B- 1) - (3, -5 2
" ; =B ( BERk ogog |\t ’) 27}
where Ef is an intermediate point between 37 and Bf Note also that:
. OLt17 (BY1r) ;s .
Lip-(8)) = Lur (Bi4r) + —0(,—’—*—) (8 — Bir) + (28)
2 T
1, C’Lwr(s !+r) N
+3 (8 = B11+) —B0F (87 — B+
" JL; n‘*‘)
L;(8)) = L;(6;) +—dg (Br - 8;) + (29)

92L; (T
+= (81 - 8}) —J-L) (8 —B3)

1

where 37, is an intermediate point between 37 and 37, . and ] is an interinediate point between

B7 and 7. From (28) and (29) above, it follows that
SLi8Y) = Lyn(8.) - ZJLJ- (87) +
+()Lf+r( ;_i_') —()LJ(

* - ) * *
o5 i- Bivr) =2 g i =4

-8 ),0215, il (Z*_”)
Pt = Piir) —Fmmoar

2 ||¥ S a305" (8 = Biyr) (30)

2L; (5]
—Z B; - B {—"("—’)(;j;—;j;)
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Substituting (30) into (27) gives:

1[[32 = 0 e 1[/"2 = 1 ry —-l("'.!:r 4 (I)Lr'*f- (’d?} TJ * ‘
Y SLiy-(B) = nwYFY Sy, (B +nH2 ) — (B - Bir) (1)
t=in ' a

—i 4 —B‘f)’dzL (u’*) T
3 WETPi) Tappgr Pt Ty

. | _
4 ALer (BY) 8L (67 |
#nt Z( a3 a3 ( -8 ’)

=1
T—r 49 = A
1( _1/2 = sy O°Leyr(8y)  0°Li(By) = *
" frzzm(d‘_'d‘-) ( o808 9807 (5~ 1)

Note that, since 0 = 9L, (B,) [05 = Ly (B;) /o8 + (Dng g:)' /030!3’) (? - ;‘5”;), then
ALy~ (87) /08 — OLy (8}) /08 = 0Ly~ (87) /08 =8 (Li (87) — Le (7)) /98+
(Ba - .b'f)’ (0%(?,_)/0;56;3’). Therefore, by taking expectations of (31), we have (11). m

Proof of Proposition 6. Since E (9L (3,) /058 — 0L, (5,) /03) = 0 Vi, the “parameter in-
stabilities I" component is zero. The “parameter instabilities IT" component is
(1/2n V2T "E [(,H —(B+n 1;-191))’ J(B-(8+ n.‘“”"gl)]} = (1/2)g}Jg1 and the “other in-
stabilities™ component is go. Since dLyy+ (3;) /08 = —2X¢ 4+ (Y} vr — Xio 0 ) is uncorrelated with
(Hﬂ - B, ) the “estimation uncertainty I” component is zero. Since E (d L;(B) /0898 =
E(0°L; (8) /0p0o3") = 2.J ¥j, the “estimation uncertainty III" component in (11) is also zero. Fi-
nally, the “estimation uncertainty II" component equals \/_E( o *f})f (2m 13 X X)) (ﬁm
2(y/n/m)E (m Ll T -\’Ha) (m- = Bl o= l(?'rl.'1/2 Ry 5 'wq) 2(y/n/m)o? L( )=
2(y/n/m)c’k. m

Proof of Proposition 7. We focus on the recursive scheme and. for simplicity, asswne that z

1 -7'5 BT

~# —Z 0 = : :

is scalar. Let 6, = - LBl T . Given assumptions B2 and
S IIZ::,“ <t ‘5"’-—‘{{7 - Lm -

B3, var ( 'H.‘r’;:) =
v 0 e

=z

j; = 2t (SLi,- = E (SL7,.,))

+op, (1). As shown in Corollary 4, the upper diagonal element a2, of var (\/-_5”) can be con-

sistently estimated under Ho by 67, ,,, given in the same corollary. Letting Ly = Li—E (L), the re-
maining elements are as follows: (I) var (\Kl ,F 2 (8L, — E (GLH:‘))) =uyar (\/l” :'! m 2t
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+uvar ( Z, S (—_ Z} 1 L“))
2cov ( Zi_;: ZpLiy \/” Zt_m z ( ; i E!)) Each element of the second term goes to zero
by arguments similar to those in Lemma Ad(a) of West (1994) under Assumption Bl. The typical

element of the third term is £ Zf WL Zg_m E 1 gha (7.5, 7). where ky (4,5, 7) = E [3‘@1’}7}?;&4
Zf_m Z« i —1 uh'i(;"'l' ’}
f! —”1; Lyt Z 1 |Ra (4,5, 7)] € 5 Zq__w Zj’i o |Fa j,.‘»‘,T}l T 0 by Assumptlons AT and
T ~ YT % o0 = P TR e
B4. Hence, var (\/1 b 24 (SL, R U (5 Lt-w))) 7 Zj:_m E (:.,_L,_+TL,__+_‘___jz;__l‘;) .
(II) coy (\/_ Z:‘ 1 (SLH'T =Y (bL* )) \/_Zf m ”" (SLT-}-T —F (*"Lt }‘r))) = -4ln +:'-1l'3“ _A.'i':r -

Ay, whel e

1 ; TreTe \ A, = Lleoy ' E* T o1 ] = 7%). Aa =
Aln = r.OE Zf—m t+7s Lat=m =t i+r 2n = OV Zt = ‘ J=1 " Lat=m T =1 %Lj | Adn =
§ S =71 r' * e e ) — § = -1 t ] ~ T 1

n oY ( t=m i L t=m “th+1’ s A-i“ = _COU Zf—m b7 Ef‘ =m E j=1 r =1 ‘qL" . Con-

. o T- . il %
sider each term S(:I)':Lrett-cl}-': WA=+, 73 _TE ( s ”T) . Yol (L; s JL, - J)

w 2at=m Lis=m

(i1 Mzn| =lixr ;: LY ME (LR | < AT T T T 3B (B L)
< IEIT AT T 2 (L-:’L ) LT ) (R - (LaLi)|)
= 0 by Assumptions A7 and B4; (iii) Ag,, = Zr ) z;rl ZT " }F (L* ’L,F_) [] - (¥ n)]
Yoo (&:_l o JL”T J) from similar reasonings to those in Lemma A6 in West (1996); (iv)
Letting 73 (j.s) = E (L”, 1L ) we have [Agn| = ‘” e e l15(15;‘{, o )‘

H;;r\.Zf mZ_;]‘E(Hr“ )
Lmllma Al(a) of West (1996).

Therefore, cov (4 Y07 (SLi,, — B (SLiy)) o Ens (5% - £(sL,)))
? Z:G-—XE( rl‘r:i‘ _;L:iT J) [1 — 7 11]](1 + ?T)] _;— o0 E (L?lTE! JL?FT‘ J) =

7 'ln(1+7)] X2 F( A ,}"ﬁ . J) . We have therefore shown that

!
El U?}a.n AEL-‘;‘.:. 1 ‘—E(Z-‘.)f Eg}_'l
AEE?.E' S‘Ef," zL 0 E:‘:‘L

where A = [7: n ( l+7r}] , Eﬁ‘.iﬂ‘ = Zm ( I”E‘f 'ETPT _J-) , EE:'.'ZE' =

- E( L”TL“T J-HF ,) Counsistency of Q,, for Q,, and the asymptotic distribution

is the fourth 01‘(101' cumulant, and 7 is fixed. Therefore,

1 oG oa

g TR . B |3 (7. 9)] -—> 0 by Assumption B4 and

e

!
S!m..-u = var (\/J_}‘S:) — ( 1 E (*t)} X

0 b

J= 00
mnder Hy then follow from reasonings analogous to those in the proof of Corollary 4. =

Proof of Corollary 8. When the losses are conditionally homoskedastic. then Ay, — 0, and
!]



Az, — 0 in the proof of Proposition 7, which implies ¥.7. ;. = 0. Thus,

f

) 1 _E (:lf_)lr Ez_ll {}—ir.fr 0
s--m:.rr - S
= 0 B i

Confidence bands for SL; - can be easily obtained from

[1, 2] 8|z ~ N(IL, 28, 02, + 2 — E ()] 57 T 555 |
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Figure 1(b).

Design 2: One tlme Break in vaniance, Quadratic

Probability

: : - : L
0 0.5 1 1.5 2

1

0.8

o
™

Probability
o
L

o
(M)

Power functions

D93|gn 2 One~tlme Break in variance, Linex
1 i 00

0.8 —— Elliott-Muller |
roll
506 _e—tm.n,r
-% ’ g {rec
..8 04 m.n,t
= U, o fix
o tm.n,t
0.2 ——UNB
0 05 1 15 2
BA

2
o

Probability
o
[2}]

o
»

o
o
o
—
—
tn
o #

Figure 1lc. Power functions

Design 2: Decrease in variance
1 . : T

0.9 = . |
[ —— Elliott-Muller
0.8 o roll
tr'l"J nt
0.7 prec
é‘- 0.6 m,n,t
= 5 fix
E 0.5 tm n,t
24 —#—UNB
& 04

DESIQH 3 Other DGP changes Quadratic

o o 9
~N  © =

Probability

o o o o
w = o, @



Figure 2. Fitted surprise losses
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Table 1(a). Size of FB test and structural break tests. Nominal size .05

MC1
S o
mooomn Fixed Rol. Rec. Fixed Rol. Rec. EM
50 50 A3 144 097 061 096 058 057
50 100 152 297 121 077 244 071 057
50 150 68 492 128 080 440 075 055
100 50 072 071 .065 049 052 047 053
100 100 096 109 081 057 075 055 055
100 150 101 143 086 060 A17 0 .059 059
150 50 044 046 040 036 038 .035 .054
150 100 064 072 058 046 052 043 052
150 150 069 087 065 047 0 066 046 049
MC2
trgiicr Ui
m i Fixed Rol. Rec. Fixed Rol. Rec. EM
50 50 2720 1656 120 AR7 090 0564 1
50 100 AT8 0 .293 0 130 050 179 042 1
50 150 183 415 122 0360 268 .042 1
100 50 047 056 046 031 036 .030 1
100 100 087 098 079 0360 054 034 1
100 150 115 105 092 040 066 034 1
150 50 030 032 028 024 024 022 1
150 100 062 069 058 033 036 .031 1
150 150 077 079 069 033 041 032 1

Notes to Table 1(a). The table reports rejection frequencies over 5000 Monte Carlo replications of the
forecast breakdown (FB) test of Section 2.3, using either the asymptotic variance estimator of Corollary
3 (tynr) or the estimator of Corollary 4 (fj},‘,‘,_) . both tests implemented with eithier a fixed, rolling or
recursive scheme and of Elliott and Muller’s (2003) test (EM). The experiment designs MCL and MC2 are

deseribed in Seetion 7.1 and 1 and 70 denote in-sample and out-of-sample sizes, respectively.
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Table 1(b). Size of overfitting-corrected FB test. Nominal size .05

MC1
Eing bamiaisr
moon Fixed Rol. Rec. Fixed Rol. Rec.
50 50 064 .053  .053 .031 031 028
50 100 085 056 .066 031 042 .032
50 150 095 .068  .065 034 053 .029
100 50 043 040 .038 029 030 027
100 100 057 0 .057 052 030 036 .031
100 150 068 055 056 032 041 033
150 50 .031 030 027 024 024 .022
150 100 050 047 046 032 031 .030
150 150 058 053 .053 038 0 .035 034
MC2
b thry v
m 7 Fixed Rol. Rec. Fixed Rol. Rec.
50 50 256 080 .079 189 039 037
50 100 122 083 .069 042 050  .027
50 150 096 073 067 023 053  .023
100 50 044 045 .043 031 031 .030
100 100 071 059 057 035 033 .029
100 150 088 045 066 033 030 028
150 50 .031 029 028 028 029 028
150 100 067 0 049 047 035 027 028
150 150 062 043 .050 029 026 026

Notes to Table 1(b). The table reports rejection frequencies over 5000 Monte Carlo replications of
the overfitting-corrected forecast breakdown (FB) test of Section 4. using cither the asymptotic variance
estimator of Corollary 3 f_ﬁf,'“_,,_‘r) or the estimator of Corollary 4 (t;j:;_‘rll_'_l;—) . both tests implemented with
cither a fixed, rolling or recursive scheme. The experiment designs MC1 and MC2 are deseribed in Section

7.1 and m and 1 denote in-sample and ont-ot-sample sizes. respectively.



Forceast errors are obtained using either a fixed, rolling or recursive scheme and i each ease the tests
are implemented using either the usual OLS variance estimator (“uncorrected™) or the asymptotic variance
estimator of Corollary 8 (“corrected”). The experiment design is described in Section 7.1 and m and n

denote in-sample and out-ofsample sizes, respeetively.

Table 3. P-values of forecast breakdown test

Real-time data Revised data

Gu  Gr bz tonnr
el

1 1 v 0.004

1 3 - 0.021

3 1 == 0.009

3 B8 - - 0.039

BIC -- 0.021
T=3

1 1 0.000 0.256

1 3 0.562 0.326

3 1 0.450 0.434

3 3 0.572 0.524

BIC 0.874 0.475
T=12

1 1 0.001 0.111

1 3 0.000 0.312

3 1 0.002 0.756

3 3 0.001 0.948

BIC 0.001 0.591

Notes to Table 3. The table reports p-values for the foreeast breakdown test (£, ) of Theorem 2(a).
We used a rolling scheme with m = 60, n = 95 for real-time data. and m = 241 aud T = 546 for
revised data. The forecast horizous are 7 = 1, 3 and 12 months (since real-time data arc ouly available at
a quarterly frequency. in this case we only report results for 7 = 3 wonths and 7 = 12 months). ¢, and ¢,
are the mumber of lags nsed for nnemployment and for inflarion. respectively; the row labeled “BICT reports

results for the case i which the lag length is determined by the BIC with a maxinnun of three lags.



Table 4. Explaining forecast breakdowns by monetary policy

changes and inflation variance

&1 Wi

T Gy r :f:}a;f =7 a=pn 3?‘:33—_{ Erﬁ(ﬁfﬁ'g-?}g)’
1 1 1 -2.285 1.828  19.770 -1.019 9.533
(0.156) (0.018) (0.795)  (0.024) (0.023)
1 3 -2.348 1.612 G.184 -(.892 T.386
(0.159)  (0.037) (0.933)  (0.051) (0.061)
301 -2.306 1.712  13.957 -0.980 8.397
(0.148) (0.028) (0.856)  (0.031) (0.039)
33 -2.354 1.513 1.977 -0.866 6.623
(0.153)  (0.050) (0.980)  (0.059) (0.085)
BIC -2.187 1.654 6.272 -0.85H 7.286
(0.185) (0.046) (0.938) (0.071) (0.063)
3 1 1 -1.806  -0.404  -114.2 -1.713 1.985
(0.531) (0.785) (0.249)  (0.000) (0.576)
1 3 1837 -0.267  -1224 -1.716 2.077
(0.519) (0.858) (0.238)  (0.000) (0.557)
3 1 -1.651  -0.568  -128.8 -1.705 2.337
(0.575) (0.706) (0.201)  (0.010) (0.506)
303 -1.657  -0.415  -136.1 -1.702 2.386
(0.570) (0.782) (0.195)  (0.000) (0.496)
BIC -1.608  -0.642 -141.4 -1.613 2.602
(0.590) (0.669) (0.175)  (0.001) (0.457)
12 1 1 -1.304  -0.105  -199.5 -1.876 6.268
(0.578) (0.942) (0.040)  (0.000) (0.099)
1 3 -1.639  -0.417  -192.0 -1.641 6.778
(0.480) (0.776) (0.032)  (0.000) (0.079)
301 -0.679  -0.863  -256.5 -1.878 7.162
(0.797)  (0.592) (0.026)  (0.000) (0.067)
3 3 -0.960  -1.108  -250.9 -1.661 8,445
(0.708) (0.488) (0.017)  (0.000) (0.038)
BIC -0.903  -0.789  -246.5 -1.810 7.308
(0.729)  (0.620) (0.024)  (0.000) (0.063)
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Notes to Table 4. The table reports the cocfficient estimates of §y and §; in equatiou (24). for different
choices of z;. f; 1+ 3¢ and p; are rolling estimates of the structural parameters in the monetary policy reaction
function of the Fed deseribed in 23, and ai‘, is a rolling cstimate of volatility of inflation changes. The
numbers within parentheses are the p-value of the test of significance of the individual coefficient. The last
colmmu reports the Wald fest statistic Wi, .- iutroduced in Section 5 (with a HAC bandwidth equal to
nt/ 3} and its associated p-value (in parentheses). ¢, and gz are. respeetively. the munber of lags used for
unemployment and for iuflation: rows labeled “BIC™ report results for the case in which the lag length is

determined by the BIC with a maximum of three lags. 7 is the forecast horizon.
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