Nonparametric Identification of Dynamic Models with Unobserved State Variables*

Yingyao Hu
Dept. of Economics, Johns Hopkins University

Matthew Shum
Division of Humanities and Social Sciences, Caltech

First version: April 2008
This version: November 2008
Incomplete mid-revision draft

Abstract

We consider the identification of a Markov process \(\{W_t, X_t^*\} \) when only \(\{W_t\} \), a subset of the variables, are observed. In structural dynamic models, \(W_t \) includes the sequences of choice variables and observed state variables of an optimizing agent, while \(X_t^* \) denotes the sequence of serially correlated unobserved state variables. In the non-stationary case, we show that the Markov law of motion \(f_{W_t, X_t^* \mid W_{t-1}, X_{t-1}^*} \) is identified from the observation of five periods of data \(W_{t+1}, W_t, W_{t-1}, W_{t-2}, W_{t-3} \) under reasonable assumptions. In the stationary case, only four observations \(W_{t+1}, W_t, W_{t-1}, W_{t-2} \) are required. Identification of \(f_{W_t, X_t^* \mid W_{t-1}, X_{t-1}^*} \) is a crucial input in methodologies for estimating Markovian dynamic models based on the “conditional-choice-probability (CCP)” approach pioneered by Hotz and Miller.

1 Introduction

In this paper, we consider the identification of a Markov process \(\{W_t, X_t^*\} \) when only \(\{W_t\} \), a subset of the variables, is observed. In structural dynamic models, \(W_t \) typically consists of the sequences of choice variables and observed state variables of an optimizing agent. \(X_t^* \) denotes the sequence of serially correlated unobserved state variables, which are observed by the agent, but not by the econometrician.

*The authors can be reached at yhu@jhu.edu and mshum@caltech.edu. We thank Xiaohong Chen, Jeremy Fox, Han Hong, Ariel Pakes, and Susanne Schennach for their suggestions. Seminar participants at Harvard, LSE, MIT, NYU, Penn, Penn State, Toulouse, UCL, USC, the Cowles 2008 Summer Conference at Yale, and the 2008 ERID Conference at Duke provided useful comments.
We demonstrate two main results. First, in the non-stationary case, where the Markov law of motion \(f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*} \), can vary across periods \(t \), we show that, for any period \(t \), \(f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*} \) is identified from the observation of five periods of data \(W_{t+1}, \ldots, W_{t-3} \) under reasonable assumptions. Second, in the stationary case, where \(f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*} \) is the same across all \(t \), only four observations \(W_{t+1}, \ldots, W_{t-2} \), for some \(t \), are required for identification.

In most applications, \(W_t \) consists of two components \(W_t = (Y_t, M_t) \), where \(Y_t \) denotes the agent’s action in period \(t \), and \(M_t \) denotes the period-\(t \) observed state variable(s). \(X_t^* \) are persistent unobserved state variables (USV for short), which are observed by agents and affect their choice of \(Y_t \), but are unobserved by the econometrician. We begin by giving several motivating examples of well-known Markovian dynamic discrete-choice models which have been estimated in the existing literature.

[1] Miller’s (1984) job matching model was one of the first empirical dynamic discrete choice models with unobserved state variables. \(Y_t \) is an indicator for the occupation chosen by a worker in period \(t \), and the unobserved state variables \(X_t^* \) are the posterior means of workers’ beliefs regarding their occupation-specific match values. The observed state variables \(M_t \) include job tenure and education level.

[2] In Rust’s (1987) bus engine replacement model, \(Y_t \) is an indicator for whether Harold Zurcher (the bus depot manager) decides to replace the bus engine in week \(t \). \(M_t \) is the accumulated mileage of the bus since the last engine replacement, in week \(t \). Although Rust’s original paper had no persistent unobserved state variable \(X_t^* \), one could extend the model to allow for them. For example, \(X_t^* \) could be Harold Zurcher’s health, or weather or road conditions during week \(t \).

[3] Pakes (1986) estimates an optimal stopping model of the year-by-year renewal decision on European patents. In his model, the decision variable \(Y_t \) is an indicator for whether a patent is renewed in year \(t \), and the unobserved state variable \(X_t^* \) is the profitability from the patent in year \(t \), which is not observed by the econometrician. The observed state variable \(M_t \) could be other time-varying factors, such as the stock price or total sales of the firm holding the patent, which affect the renewal decision.

The main result in this paper concerns the identification of the Markov law of motion \(f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*} \). Once this is known, it can be factorized into conditional and marginal distributions of economic interest. For Markovian dynamic optimization models (such as the examples given above), \(f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*} \) can be factored into

1See Norets (2006), who likewise considers an example of the Rust (1987) model extended to accommodate persistent unobserved state variables.
\[
\begin{align*}
f_{W_t,X_t^*|W_{t-1},X_{t-1}^*} &= f_{Y_t,M_t,X_t^*|Y_{t-1},M_{t-1},X_{t-1}^*} \\
&= \underbrace{f_{Y_t|X_t^*,M_t} \cdot f_{M_t,X_t^*|Y_{t-1},M_{t-1},X_{t-1}^*}}_{\text{CCP}} \cdot \underbrace{f_{X_{t-1}^*|Y_{t-1},M_{t-1}}}_{\text{state law of motion}}.
\end{align*}
\]

The first term denotes the conditional choice probability for the agent’s optimal choice in period \(t\). The second term is the Markovian law of motion for the state variables \((M_t, X_t^*)\).

Once the CCP’s and the law of motion for the state variables are recovered, it is straightforward to use them as inputs in a CCP-based approach for estimating dynamic discrete-choice models. This approach was pioneered in Hotz and Miller (1993) and Hotz, Miller, Sanders, and Smith (1994). Subsequent methodological developments in this vein include Aguirregabiria and Mira (2002), (2007), Pesendorfer and Schmidt-Dengler (2007), Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry (2007), and Hong and Shum (2007).\(^2\) Alternatively, it is possible to use our identification results for the CCP’s and laws of motions for the state variables as a “first-step” in an argument for identification of the per-period utility functions, in the spirit of Magnac and Thesmar (2002) and Bajari, Chernozhukov, Hong, and Nekipelov (2007), who considered the case of dynamic discrete-choice models without serially correlated unobserved state variables.

A general criticism of these CCP-based methods is that they cannot accommodate unobservables which are persistent over time. However, there are some recent papers focusing on the CCP-based estimation of dynamic discrete-choice models, in the presence of a latent state variable \(X_t^*\). Buchinsky, Hahn, and Hotz (2004) and Houde and Imai (2006) consider the case where \(X_t^*\) is discrete and time-invariant, corresponding to the case of unobserved heterogeneity. Arcidiacono and Miller (2006) develop a CCP-based approach to estimate dynamic discrete models where \(X_t^*\) can vary over time according to an exogenous and discrete first-order Markov process.\(^3\)

While these papers have focused on estimation, our focus is on identification. Kasahara and Shimotsu (2007, hereafter KS) consider the nonparametric identification of dynamic

\(^2\)Applications applying the CCP insights to dynamic settings have grown quickly in recent years, and include Collard-Wexler (2006), Ryan (2006), and Dunne, Klimer, Roberts, and Xu (2006). See the discussion in Pakes (2008, section 3) and Ackerberg, Benkard, Berry, and Pakes (2007). All of these papers apply the CCP insight to dynamic games, which are more complex multi-agent generalizations of the single-agent dynamic setting consider in this paper.

\(^3\)Several recent papers have focused on the estimation of parametric dynamic models with unobserved state variables, using non-CCP-based approaches. Imai, Jain, and Ching (2005) and Norets (2006) consider Bayesian MCMC estimation. Fernandez-Villaverde and Rubio-Ramirez (2007) develop an efficient simulation procedure (based on particle filtering) for estimating these models via simulation.
models in the presence of discrete unobserved heterogeneity, corresponding to the case where the latent variable X^*_t is time-invariant and discrete. KS prove the nonparametric identification of the Markov kernel $W_{t+1}|W_t, X^*$ in this setting, using six periods of data. KS’s results rely on a matrix diagonalization argument, similar to the spectral decomposition arguments used in our identification proofs. However, our framework is more general than in KS, in that we allow X^*_t to vary over periods, and also to be drawn from a continuous distribution.

Henry, Kitamura, and Salanie (2008, hereafter HKS) exploit exclusion restrictions to identify Markov regime-switching models with a discrete and latent state variable. While our identification arguments, which rely on recent econometric results for nonclassical measurement error models, are quite distinct from those in HKS, our results share some of the intuition of HKS’s findings, because we also exploit the feature of first-order Markovian models that, conditional on W_{t-1}, W_{t-2} is an “excluded variable” which affects W_t only via the unobserved state X^*_t.

Cunha, Heckman, and Schennach (2006) apply the result of Hand Schennach (2008) to show nonparametric identification of a nonlinear factor model consisting of (W_t, W''_t, X^*_t), where the observed processes $\{W_t\}_{t=1}^T$, $\{W''_t\}_{t=1}^T$, and $\{W''_t\}_{t=1}^T$ constitute noisy measurements of the latent process $\{X^*_t\}_{t=1}^T$, contaminated with random disturbances. In contrast, we consider a setting where (W_t, X^*_t) jointly evolves as a dynamic Markov process. We use observations of W_t in different periods t to identify the conditional density of $(W_t, X^*_t|W_{t-1}, X^*_{t-1})$. Thus, our model and identification strategy differ from theirs.

The paper is organized as follows. In Section 2, we introduce and discuss the main assumptions we make for identification. In Section 3, we present, in a sequence of lemmas, the proof of our main identification result. Subsequently, we also present several useful corollaries which follow from the main identification result. In Section 4, we discuss several examples, including a discrete case, to make our assumptions more transparent. We conclude in Section 5. While the proof of our main identification result is presented in the main text, the appendix contains the proofs for several lemmas and corollaries.

2 Overview of assumptions

Consider a dynamic process $\{(W_T, X^*_T), \ldots, (W_t, X^*_t), \ldots, (W_1, X^*_1)\}_i$ for agent i. We assume that for each agent i, $\{(W_T, X^*_T), \ldots, (W_t, X^*_t), \ldots, (W_1, X^*_1)\}_i$ is an independent random draw from the distribution $f(W_T, X^*_T), \ldots, (W_t, X^*_t), \ldots, (W_1, X^*_1)$. The researcher observes an i.i.d. random sample of $\{W_T, W_{T-1}, \ldots, W_1\}_i$, with $T \geq 5$, for many agents i.

We first consider identification in the nonstationary case, where the Markov law of motion \(f_{W_t,X_t^*|W_{t-1},X_{t-1}^*} \) varies across periods. Unless otherwise stated, all the assumptions are taken to hold for all periods \(t \). Note that this model subsumes the case of unobserved heterogeneity, in which \(X_t^* \) is fixed across all periods.

Below, we introduce our four assumptions. The first assumption below restricts attention to certain classes of models, where Assumptions 2-4 establish identification for the restricted class of models.

2.1 Model restrictions

Assumption 1 Model restrictions:

(i) **First-order Markov:**

\[
 f_{W_t,X_t^*|W_{t-1},X_{t-1}^*,\Omega_{<t-1}} = f_{W_t,X_t^*|W_{t-1},X_{t-1}^*};
\]

where \(\Omega_{<t-1} \equiv \{W_{t-2},...,W_1,X_{t-2}^*,...,X_1^*\} \), the history of the process up to (but not including) period \(t-1 \).

(ii) **Limited feedback:**

\[
 f_{W_t|W_{t-1},X_t^*,X_{t-1}^*} = f_{W_t|W_{t-1},X_t^*}.
\]

Assumption 1(i) is just a first-order Markov assumption, which is satisfied for Markovian dynamic decision models (cf. Rust (1994)).

Assumption 1(ii) is a “limited feedback” assumption, because it rules out direct feedback from the last period’s USV, \(X_{t-1}^* \), on the current value of the observed component \(W_t \). When \(W_t = (Y_t,M_t) \), where \(Y_t \) denotes the agent’s action in period \(t \), and \(M_t \) denotes the period-\(t \) observed state variable, Assumption 1 implies that:

\[
 f_{W_t|W_{t-1},X_t^*,X_{t-1}^*} = f_{Y_t,M_t|Y_{t-1},M_{t-1},X_t^*,X_{t-1}^*} = f_{Y_t|M_{t-1},X_{t-1}^*} \cdot f_{M_t|Y_{t-1},M_{t-1},X_t^*,X_{t-1}^*} = f_{Y_t|M_{t-1},X_t^*,Y_{t-1}} \cdot f_{M_t|Y_{t-1},M_{t-1},X_t^*}.
\]

In the bottom line of the above display, the limited feedback assumption eliminates \(X_{t-1}^* \) as a conditioning variable in both terms. In Markovian dynamic optimization models, the first term (corresponding to the CCP) can be further simplified to \(f_{Y_t|M_t,X_t^*} \), because the Markovian laws of motion for the state variables \((M_t,X_t^*) \) imply that the optimal policy function depends just on the current state variables, but not past values. Hence, Assump-
tion 1 imposes weaker restrictions on the first term than Markovian dynamic optimization models.\footnote{Moreover, if we move outside the class of these models, the above display also shows that Assumption 1 does not rule out the dependence of \(Y_t \) on \(Y_{t-1} \) or \(M_{t-1} \), which corresponds to some models of state dependence. These may include linear or nonlinear panel data models with lagged dependent variables, and serially correlated errors, cf. Arellano and Honore (2000). Arellano (2003, chs. 7–8) considers linear panel models with lagged dependent variables and persistent unobservables, which is also related to our framework. Indeed, both the Markov and limited feedback assumptions are examples of “dynamic completeness” assumptions made in dynamic panel data models, which limit the dependence of the current dependent variables on lagged dependent and explanatory variables.}

In the second term of the above display, the limited feedback condition rules out direct feedback from last period’s unobserved state variable \(X^*_{t-1} \) to the current observed state variable \(M_t \). However, it allows indirect effects via \(X^*_{t-1} \)’s influence on \(Y_{t-1} \) or \(M_{t-1} \). Indeed, most empirical applications of dynamic optimization models with unobserved state variables satisfy the Markov and limited feedback conditions above. Examples of models in the industrial organization setting satisfying these conditions include Erdem, Imai, and Keane (2003), Crawford and Shum (2005), Das, Roberts, and Tybout (2007), Xu (2007), and Hendel and Nevo (2007). Finally, note that when \(X^*_t \) stands for unobserved heterogeneity and is time invariant, so that \(X^*_t = X^*_t = X^*_t = X^*_t \), the limited feedback assumption is trivial.

Although Assumption 1(i) implies a first order Markov process, our identification results can be extended to a general \(k \)-th order Markov process \((k < \infty)\). In that case, the limited feedback assumption 1(ii) may be relaxed to

\[
\mathbb{P}(W_t | W_{t-1}, \ldots, W_{t-k}, X^*_t, \ldots, X^*_{t-k+1}, X^*_t, \ldots, X^*_t) = \mathbb{P}(W_t | W_{t-1}, \ldots, W_{t-k}, X^*_t, \ldots, X^*_t).
\]

For example, in a second-order Markov model, the analogous limited feedback condition allows \(W_t \) to depend on \(X^*_{t-2} \), i.e., \(\mathbb{P}(W_t | W_{t-1}, W_{t-2}, X^*_t, X^*_t) \). The identification of the \(k \)-th order Markov law of motion \(\mathbb{P}(W_t, X^*_t | W_{t-1}, \ldots, W_{t-k}, X^*_{t-1}, \ldots, X^*_{t-k}) \) from the \(3k + 2 \) observations \(W_{t+k}, \ldots, W_{t-2k-1} \) can be shown under straightforward extensions of the assumptions presented in this section, and we do not explore this extension here.

2.2 Notation

We assume that the unobserved state variable \(X^*_t \) is scalar-valued, and is drawn from a continuous distribution.\footnote{A discrete distribution for \(X^*_t \), which is assumed in many applied settings (e.g. Arcidiacono and Miller (2006)) is a special case, which we will consider as an example in Section 4 below.} Hence, our identification results rely on linear operator-theoretic arguments, for which we must introduce some notation. Let \(R_1, R_2 \) denote two random
variables, with support \mathcal{R}_1 and \mathcal{R}_2, distributed according to the joint density $f_{R_1,R_2}(r_1,r_2)$.\(^6\)

Let $L^p(\mathcal{X})$, $1 \leq p < \infty$ denote the space of function $h(\cdot)$ with $\int_{\mathcal{X}} |h(x)|^p dx < \infty$. For any $1 \leq p \leq \infty$, we define an integral operator $L_{R_1,R_2} : L^p(\mathcal{R}_2) \to L^p(\mathcal{R}_1)$ for any $h \in L^p(\mathcal{R}_2)$,

$$(L_{R_1,R_2}h)(v) = \int f_{R_1,R_2}(v,z) h(z) dz.$$

Similarly, for a random variable R_3 with support \mathcal{R}_3 and density $f_{R_3}(r_3)$, we define the diagonal operator $D_{R_3} : L^p(\mathcal{R}_3) \to L^p(\mathcal{R}_3)$ for any $h \in L^p(\mathcal{R}_3)$,

$$(D_{R_3}h)(v) = f_{R_3}(v) h(v).$$

Scalarization of W_t Since W_{t+1} is usually a vector and X_t^* is a scalar, we first scalarize W_{t+1} by defining $V_{t+1} = g_{t+1}(W_{t+1})$ where the function $g_{t+1} : \mathbb{R}^d \to \mathbb{R}$ is known and d is the dimension of W_t. (When W_{t+1} is a scalar, we just define $g_{t+1}(w) = w$.) The restrictions imposed later on the function g_{t+1} guarantee that the scalar random variable V_{t+1} still contains enough information to identify X_t^*.

Similarly, we scalarize W_{t-2} by defining $Z_{t-2} = q_{t-2}(W_{t-2})$, with a known function $q_{t-2} : \mathbb{R}^d \to \mathbb{R}$. As we discuss later, the scalarization of W_{t-2} is done mainly for mathematical convenience. In addition, the functions g_{t+1} and q_{t-2} do not need to depend on t.

In dynamic discrete choice models, where $W_t = (Y_t, M_t)$, the choice variable Y_t is discrete-valued, but the observed state variable M_t is typically continuous. In this case, a natural scalarization is to set $V_{t+1} = M_{t+1}$ and $Z_{t-2} = M_{t-2}$. We elaborate on this in Section 4, example 2.

2.3 Identification via spectral decomposition of observed densities

As will be clear from the next section, the crucial step in our identification argument is a spectral decomposition of a linear operator generated from $L_{V_{t+1},W_t|W_{t-1},Z_{t-2}}$, which corresponds to the observed density of $V_{t+1},W_t|W_{t-1},Z_{t-2}$. (A spectral decomposition is the operator analog of the eigenvalue-eigenvector decomposition for matrices, in the finite-dimensional case.)\(^7\) The next two assumptions guarantee the validity and uniqueness of this spectral decomposition.

\(^6\)In this notation, capital letters denote random variables, while lower-case letters denote realizations of the random variables.

\(^7\)Specifically, when W_t, X_t^* are both scalar and discrete with $J < \infty$ points of support, the operator $L_{W_{t+1},X_{t+1}|w_{t-1},w_{t-2}}$ is a $J \times J$ matrix, and spectral decomposition reduces to diagonalization of this matrix. This discrete case is discussed in detail in Section 4, example 1.
Assumption 2 Invertibility: for any \(w_t \in W_t \) and \(w_{t-1} \in W_{t-1} \),
(i) \(L_{V_{t+1},w_t|w_{t-1},Z_{t-2}} \) is one-to-one.
(ii) \(L_{V_{t+1}|w_t,X_t^*} \) is one-to-one.
(iii) \(L_{V_t|w_{t-1},Z_{t-2}} \) is one-to-one.

Assumption 3 Uniqueness of spectral decomposition:
(i) Bounded eigenvalues: For any \(w_t \in W_t \) and \(w_{t-1} \in W_{t-1} \), there exist functions \(C_1(w_t, w_{t-1}) \) and \(C_2(w_t, w_{t-1}) \) such that the density \(f_{W_t|W_{t-1},X_t^*} \) satisfies
\[
0 < C_1(w_t, w_{t-1}) \leq f_{W_t|W_{t-1},X_t^*}(w_t|w_{t-1}, x_t^*) \leq C_2(w_t, w_{t-1}) < \infty, \quad \forall x_t^* \in \mathcal{X}_t^*.
\] (2)
(ii) Distinct eigenvalues: For any \(w_t \in W_t \), there exists \(w_{t-1} \in W_{t-1} \) such that the density \(f_{W_t|W_{t-1},X_t^*} \) satisfies for any \(x_t^* \in \mathcal{X}_t^* \)
\[
\frac{\partial^3}{\partial m_t \partial m_{t-1} \partial x_t^*} \ln f_{W_t|W_{t-1},X_t^*}(w_t|w_{t-1}, x_t^*) \neq 0,
\] (3)
where \(m_t \) (resp. \(m_{t-1} \)) is a continuous component of \(w_t \) (resp. \(w_{t-1} \)).

Assumption 2 restricts three operators to be one-to-one, which implies that they are invertible. The operators in (i) and (iii) correspond to densities which are observed in the data, so that the one-to-one assumptions on those operators could be tested. On the other hand, the density \(f_{V_{t+1}|w_t,X_t^*} \), corresponding to the operator in (ii), is not directly observed, and so should be checked on a model-by-model basis.

Broadly speaking, Assumption 2(ii) rules out cases where \(X_t^* \) has a continuous support, but \(W_{t+1} \) has only discrete components. Hence, dynamic discrete-choice models with a continuous unobserved state variable \(X_t^* \), but only discrete observed state variables \(M_t \), fail this assumption, and may be nonparametrically underidentified without further assumptions. Moreover, models where the \(W_t \) and \(X_t^* \) processes evolve independently will also fail the one-to-one assumption. In Section 4, we consider this assumption in several example models.

Assumption 3 contains technical conditions which ensure the existence and uniqueness of the spectral decomposition of the operator \(L_{V_{t+1},w_t|w_{t-1},Z_{t-2}} \). We will elaborate upon the specific role that this assumption plays in the next section. Since the density \(f_{W_t|W_{t-1},X_t^*} \) is not observed in the data, this assumption should be verified on a model-by-model basis.

8 A detailed discussion on one-to-one, or injective, operators can be found in Carrasco, Florens, and Renault (2005) and Hu and Schennach (2008).

9 It turns out that Assumptions 2 and 3, as stated here, are stronger than necessary. An earlier version of the paper (Hu and Shum (2008)) contained less restrictive versions of these assumptions. However, they
Normalization Since our arguments are nonparametric, and X_t^* is an unobserved variable, a normalization is needed to pin down the the values of X_t^* relative to the values of the observables. For this purpose, we make a monotonicity assumption (similar to Matzkin (2003)):

Assumption 4 Monotonicity: for any given $w_t \in \mathcal{W}_t$, there exists a known functional G such that $G \left[f_{V_{t+1}|W_t,X_t^*}(\cdot|w_t,x_t^*) \right]$ is monotonic in x_t^*. Without loss of generality, we normalize x_t^* as $x_t^* = G \left[f_{V_{t+1}|W_t,X_t^*}(\cdot|w_t,x_t^*) \right]$.

The functional G, which may depend on the value of w_t, can include the mean, mode, median, or another quantile of $f_{V_{t+1}|W_t,X_t^*}$. Having introduced our four main identification assumptions, we proceed in the next section to present our main identification result.

3 Main nonparametric identification results

In this section, we present our main result, concerning the nonparametric identification of the Markov law of motion $f_{W_t,X_t^*|W_{t-1},X_{t-1}^*}$. We present our identification argument by way of several intermediate lemmas. The first two lemmata present convenient representations of the operators corresponding to the observed density $f_{V_{t+1},w|w_{t-1},Z_{t-2}}$ and the Markov law of motion $f_{w_t,X_t^*|w_{t-1},X_{t-1}^*}$, for given values of $(w_t, w_{t-1}) \in \mathcal{W}_t \times \mathcal{W}_{t-1}$:

Lemma 1 (Representation of the observed density $f_{V_{t+1},w|w_{t-1},Z_{t-2}}$):
For any $t \in \{3, \ldots, T-1\}$, Assumption 1 implies that for any $(w_t, w_{t-1}) \in \mathcal{W}_t \times \mathcal{W}_{t-1}$,

$$LV_{t+1,w|w_{t-1},Z_{t-2}} = LV_{t+1,w|w_{t-1},X_{t-1}^*} D_{w_t|w_{t-1},X_{t-1}^*} LX_{t-1}^*|w_{t-1},Z_{t-2}. \tag{4}$$

Lemma 2 (Representation of Markov law of motion):
For any period $t \in \{3, \ldots, T-1\}$, Assumptions 1 and 2 imply that, for any given $(w_t, w_{t-1}) \in \mathcal{W}_t \times \mathcal{W}_{t-1}$,

$$LV_{t+1,w|w_{t-1},X_{t-1}^*} = LV_{t+1,w|w_{t-1},Z_{t-2}}^{-1} LV_{t+1,w|w_{t-1},Z_{t-2}} LV_{t+1,w|w_{t-1},X_{t-1}^*}. \tag{5}$$

Proofs: in Appendix.

Since $LV_{t+1,w|w_{t-1},Z_{t-2}}$ and $LV_{t+1,w|w_{t-1},Z_{t-2}}$ are observed, Lemma 2 implies that identification of the operators $LV_{t+1,w|w_{t-1},X_{t-1}^*}$ and $LV_{t+1,w|w_{t-1},X_{t-1}^*}$ imply the identification of $LV_{t+1,w|w_{t-1},X_{t-1}^*}$, are not as intuitive as the stronger versions presented here.
the operator corresponding to the Markov law of motion. The next lemma postulates that \(L_{V_{t+1}|w_t, X_t^*} \) is identified just from observed data.

Lemma 3 (Identification of \(f_{V_{t+1}|w_t, X_t^*} \)):

For any period \(t \in \{3, \ldots , T - 1\} \), Assumptions 1, 2, 3, 4 imply that the density \(f_{V_{t+1}, W_t|W_{t-1}, Z_{t-2}} \) uniquely identifies the density \(f_{V_{t+1}|W_t, X_t^*} \).

This lemma encapsulates the crucial step in the identification argument, which is the identification of \(f_{V_{t+1}|W_t, X_t^*} \) via a spectral decomposition of an operator generated from the observed density \(f_{V_{t+1}, W_t|W_{t-1}, Z_{t-2}} \). Once this is established, Lemma 3 can be reapplied to the operator corresponding to the observed density \(f_{V_{t+1}, W_t|W_{t-1}, Z_{t-2}} \) to yield the identification of \(f_{V_{t+1}, W_t|W_{t-1}, X_{t-1}^*} \). Once \(f_{V_{t+1}|W_t, X_t^*} \) and \(f_{V_{t+1}, W_t|W_{t-1}, X_{t-1}^*} \) are identified, then so is the Markov law of motion \(f_{w_t, X_t^*|w_{t-1}, X_{t-1}^*} \), from Lemma 2.

Proof. (Lemma 3) Lemma 1 shows that the observed operator \(L_{V_{t+1}, w_t|w_{t-1}, Z_{t-2}} \) can be factored as in Eq. (4). In this representation, the first term on the RHS, \(L_{V_{t+1}|w_t, X_t^*} \), does not depend on \(w_{t-1} \), and the last term \(L_{X_t^*|w_{t-1}, Z_{t-2}} \) does not depend on \(w_t \). This important feature suggests that, for any \(w_t \in W_t \), by evaluating Eq. (4) at the four pairs of points \((w_t, w_{t-1})\), \((\bar{w}_t, w_{t-1})\), \((w_t, \bar{w}_{t-1})\), \((\bar{w}_t, \bar{w}_{t-1})\), such that \(w_t \neq \bar{w}_t \) and \(w_{t-1} \neq \bar{w}_{t-1} \), each pair of equations will share one operator in common. Specifically:

\[
\begin{align*}
\text{for } (w_t, w_{t-1}) & : \quad L_{V_{t+1}, w_t|w_{t-1}, Z_{t-2}} = L_{V_{t+1}|w_t, X_t^*} D_{w_t|w_{t-1}, X_t^*} L_{X_t^*|w_{t-1}, Z_{t-2}}, \quad (6) \\
\text{for } (\bar{w}_t, w_{t-1}) & : \quad L_{V_{t+1}, \bar{w}_t|w_{t-1}, Z_{t-2}} = L_{V_{t+1}|\bar{w}_t, X_t^*} D_{\bar{w}_t|w_{t-1}, X_t^*} L_{X_t^*|w_{t-1}, Z_{t-2}}, \quad (7) \\
\text{for } (w_t, \bar{w}_{t-1}) & : \quad L_{V_{t+1}, w_t|\bar{w}_{t-1}, Z_{t-2}} = L_{V_{t+1}|w_t, X_t^*} D_{w_t|\bar{w}_{t-1}, X_t^*} L_{X_t^*|\bar{w}_{t-1}, Z_{t-2}}, \quad (8) \\
\text{for } (\bar{w}_t, \bar{w}_{t-1}) & : \quad L_{V_{t+1}, \bar{w}_t|\bar{w}_{t-1}, Z_{t-2}} = L_{V_{t+1}|\bar{w}_t, X_t^*} D_{\bar{w}_t|\bar{w}_{t-1}, X_t^*} L_{X_t^*|\bar{w}_{t-1}, Z_{t-2}}, \quad (9)
\end{align*}
\]

Assumption 2(i) guarantees that the left-hand side operators can be inverted. Postmultiplying Eq. (6) by the inverse of Eq. (7) leads to

\[
A = L_{V_{t+1}|w_t|w_{t-1}, Z_{t-2}} L_{V_{t+1}|\bar{w}_t|w_{t-1}, Z_{t-2}}^{-1} = L_{V_{t+1}|w_t, X_t^*} D_{w_t|w_{t-1}, X_t^*} L_{X_t^*|w_{t-1}, Z_{t-2}} \left(L_{V_{t+1}|\bar{w}_t, X_t^*} D_{\bar{w}_t|w_{t-1}, X_t^*} L_{X_t^*|w_{t-1}, Z_{t-2}} \right)^{-1} = L_{V_{t+1}|w_t, X_t^*} D_{w_t|w_{t-1}, X_t^*} D_{\bar{w}_t|w_{t-1}, X_t^*} L_{V_{t+1}|\bar{w}_t, X_t^*}^{-1}, \quad (10)
\]
eliminating \(L_{X_t^+} \). Similarly, postmultiplying Eq. (8) by the inverse of Eq. (9):

\[
\begin{align*}
\mathbf{B} & \equiv L_{V_{t+1}, w_t \mid |w_{t-1}, Z_{t-2}} L_{V_{t+1}, \overline{w}_{t-1}, Z_{t-2}}^{-1} \\
& = L_{V_{t+1}, w_t \mid w_{t-1}, X_t^+} D_{w_t \mid \overline{w}_{t-1}, X_t^+} D_{\overline{w}_{t-1}, X_t^+} L_{V_{t+1}, \overline{w}_{t-1}, X_t^+}^{-1}
\end{align*}
\]

(11)

Finally, we postmultiply Eq. (10) by the inverse of Eq. (11) to obtain

\[
\begin{align*}
\mathbf{AB}^{-1} & \equiv L_{V_{t+1}, w_t \mid w_{t-1}, Z_{t-2}} L_{V_{t+1}, \overline{w}_{t-1}, Z_{t-2}}^{-1} \left(L_{V_{t+1}, w_t \mid w_{t-1}, Z_{t-2}} L_{V_{t+1}, \overline{w}_{t-1}, Z_{t-2}}^{-1} \right)^{-1} \\
& = L_{V_{t+1}, w_t \mid w_{t-1}, X_t^+} D_{w_t \mid w_{t-1}, X_t^+} D_{\overline{w}_{t-1}, X_t^+} L_{V_{t+1}, \overline{w}_{t-1}, X_t^+}^{-1} \\
& \hspace{1cm} \times \left(L_{V_{t+1}, w_t \mid w_{t-1}, X_t^+} D_{w_t \mid w_{t-1}, X_t^+} D_{\overline{w}_{t-1}, X_t^+} L_{V_{t+1}, \overline{w}_{t-1}, X_t^+}^{-1} \right)^{-1} \\
& = L_{V_{t+1}, w_t \mid w_{t-1}, X_t^+} \left(D_{w_t \mid w_{t-1}, X_t^+} D_{\overline{w}_{t-1}, X_t^+} L_{V_{t+1}, \overline{w}_{t-1}, X_t^+}^{-1} \right) L_{V_{t+1}, w_t \mid w_{t-1}, X_t^+}^{-1} \\
& \equiv L_{V_{t+1}, w_t \mid w_{t-1}, X_t^+} D_{w_t \mid w_{t-1}, \overline{w}_{t-1}, X_t^+} L_{V_{t+1}, w_t \mid w_{t-1}, X_t^+}^{-1} \\
& \hspace{1cm} \text{where}
\end{align*}
\]

(12)

\[
\begin{align*}
(D_{w_t \mid w_{t-1}, \overline{w}_{t-1}, X_t^+} h) (x_t^+) & = \left(D_{w_t \mid w_{t-1}, X_t^+} D_{\overline{w}_{t-1}, X_t^+} \right) \left(D_{w_t \mid \overline{w}_{t-1}, X_t^+} D_{\overline{w}_{t-1}, X_t^+} \right) h (x_t^+) \\
& = f_{W_t \mid w_{t-1}, X_t^+} (w_t \mid w_{t-1}, x_t^+) f_{W_t \mid w_{t-1}, \overline{w}_{t-1}, X_t^+} (\overline{w}_{t-1}, x_t^+) \left(h (x_t^+) \right) \\
& \equiv k (w_t, \overline{w}_{t-1}, w_{t-1}, \overline{w}_{t-1}, x_t^+) \left(h (x_t^+) \right).
\end{align*}
\]

This equation implies that the observed operator \(\mathbf{AB}^{-1} \) on the left hand side of Eq. (12) has an inherent eigenvalue-eigenfunction decomposition, with the eigenvalues corresponding to the function \(k (w_t, \overline{w}_{t-1}, w_{t-1}, \overline{w}_{t-1}, x_t^+) \) and the eigenfunctions corresponding to the density \(f_{V_{t+1} \mid w_t, X_t^+} (\cdot \mid w_t, x_t^+) \). The decomposition in Eq. (12) is similar to the decomposition in Hu and Schennach (2008) or Carroll, Chen, and Hu (2008).

10 If we do not scalarize \(W_{t-2} \) using the function \(q_{t-2} \), the operator \(L_{V_{t+1}, w_t \mid w_{t-1}, W_{t-2}} \) may be surjective, in which case Assumption 2(i) should be replaced by the condition that \(L_{V_{t+1}, w_t \mid w_{t-1}, W_{t-2}} L_{V_{t+1}, \overline{w}_{t-1}, W_{t-2}} \) is one-to-one, where \(L^* \) denotes an adjoint operator. In that case, we consider

\[
\begin{align*}
\mathbf{A} & \equiv L_{V_{t+1}, w_t \mid w_{t-1}, X_t^+} D_{w_t \mid \overline{w}_{t-1}, X_t^+} D_{\overline{w}_{t-1}, X_t^+} L_{V_{t+1}, \overline{w}_{t-1}, X_t^+}^{-1} \\
& = L_{V_{t+1}, w_t \mid w_{t-1}, X_t^+} D_{w_t \mid \overline{w}_{t-1}, X_t^+} L_{V_{t+1}, \overline{w}_{t-1}, X_t^+}^{-1} \\
& \hspace{1cm} \times L_{V_{t+1}, \overline{w}_{t-1}, X_t^+} D_{w_t \mid \overline{w}_{t-1}, X_t^+} L_{V_{t+1}, \overline{w}_{t-1}, X_t^+}^{-1} \\
& = L_{V_{t+1}, w_t \mid w_{t-1}, X_t^+} D_{w_t \mid w_{t-1}, X_t^+} D_{\overline{w}_{t-1}, X_t^+} L_{V_{t+1}, \overline{w}_{t-1}, X_t^+}^{-1}.
\end{align*}
\]

The last expression is the same as using \(L_{V_{t+1}, \overline{w}_{t-1}, X_t^+} \).
Assumption 3 ensures that this decomposition is unique, by bounding the eigenvalues (part (i)) and ensuring their distinctiveness (part (ii)). Even given the unique decomposition, the eigenfunctions are only identified up to a normalization, and an arbitrary ordering. Since each eigenfunction $f_{V_{t+1}|W_t,X_t^*}(\cdot|w_t,x_t^*)$ is a density function, it is appropriate to normalize each function so that it integrates to one:

$$\int f_{V_{t+1}|W_t,X_t^*}(x|w_t,x_t^*) dx = 1.$$ Moreover, Assumption 4 requires a functional G to exist such that G applied to the family of densities $f_{V_{t+1}|W_t,X_t^*}(\cdot|w_t,x_t^*)$ is monotonic in X_t^*, given w_t. Given this monotonicity, we can pin down the scale of X_t^* by setting, $x_t^* = G[f_{V_{t+1}|W_t,X_t^*}(\cdot|w_t,x_t^*)]$ without loss of generality.

Therefore, altogether the density $f_{V_{t+1}|W_t,X_t^*}$ is nonparametrically identified for any given $w_t \in W_t$ via the spectral decomposition in Eq. (12).

By re-applying Lemma 3 to the observed density $f_{V_t|W_{t-1},W_{t-2},Z_{t-3}}$, it follows that the density $f_{V_t|W_{t-1},X_{t-1}^*}$ is identified. Hence, by Lemma 2, we have shown the following result:

Theorem 1 (Identification of Markov law of motion, non-stationary case): Under the Assumptions 1, 2, 3, and 4, the density $f_{W_{t+1},W_t,W_{t-1},W_{t-2},W_{t-3}}$ for any $t \in \{4, \ldots, T-1\}$ uniquely determines the density $f_{W_t,X_t^*|W_{t-1},X_{t-1}^*}$.

Next we present some important corollaries of our main identification result.

3.1 Initial conditions

Some CCP-based estimation methodologies for dynamic optimization models (eg. Hotz, Miller, Sanders, and Smith (1994), Bajari, Benkard, and Levin (2007)) require simulation of the Markov process $(W_t, X_t^*, W_{t+1}, X_{t+1}^*, W_{t+2}, X_{t+2}^*, \ldots)$ starting from some initial values W_{t-1}, X_{t-1}^*. When there are unobserved state variables, this raises difficulties because X_{t-1}^* is not observed.

However, it turns out that, as a by-product of the main identification results, we are also able to identify the marginal densities f_{W_{t-1},X_{t-1}^*}. For any given initial value of the observed variables w_{t-1}, knowledge of f_{W_{t-1},X_{t-1}^*} allows us to draw an initial value of X_{t-1}^* consistent with w_{t-1}.

Corollary 1 (Identification of initial conditions, non-stationary case): Under the Assumptions 1, 2, 3, and 4, the density $f_{W_{t+1},W_t,W_{t-1},W_{t-2},W_{t-3}}$ for any $t \in \{4, \ldots, T-1\}$ uniquely determines the density f_{W_{t-1},X_{t-1}^*}.

Proof: in Appendix.
3.2 Stationarity

In the proof of Theorem 1 from the previous section, we only use the fifth period of the data W_{t-3} for the identification of $L_{V_{t+1}|w_{t-1},X_{t-1}^*}$. Given that we identify $L_{V_{t+1}|w_{t-1},X_{t-1}^*}$ using four periods of data, i.e., $\{W_{t+1}, W_{t}, W_{t-1}, W_{t-2}\}$, the fifth period W_{t-3} is not needed when $L_{V_{t}|w_{t-1},X_{t-1}^*} = L_{V_{t+1}|w_{t},X_{t}^*}$. This is true when the Markov kernel density $f_{W_{t},X_{t}^*|W_{t-1},X_{t-1}^*}$ is time-invariant. Thus, in the stationary case, only four periods of data, $\{W_{t+1}, W_{t}, W_{t-1}, W_{t-2}\}$, are required to identify $f_{W_{t},X_{t}^*|W_{t-1},X_{t-1}^*}$. Formally, we make the additional assumption:

Assumption 5 Stationarity: of the Markov law of motion of (W_t, X_t^*) is time-invariant:

$$f_{W_t,X_t^*|W_{t-1},X_{t-1}^*} = f_{W_2,X_2^*|W_1,X_1^*}, \forall 2 \leq t \leq T.$$

In dynamic optimization settings, this assumption is usually maintained in infinite-horizon models. Given the foregoing discussion, we present the next corollary without proof.

Corollary 2 (Identification of Markov law of motion, stationary case):

Under assumptions 1, 2, 3, 4, and 5, the observed density $f_{W_{t+1},W_t,W_{t-1},W_{t-2}}$ for any $t \in \{3, \ldots, T-1\}$ uniquely determines the density $f_{W_2,X_2^*|W_1,X_1^*}$.

In the stationary case, initial conditions are still a concern. The following corollary, analogous to Corollary 1 for the non-stationary case, postulates the identification of the marginal density f_{W_t,X_t^*}, for periods $t \in \{1, \ldots, T-3\}$. For any of these periods, f_{W_t,X_t^*} can be used as a sampling density for the initial conditions.\footnote{Note that even in the stationary case, where $f_{W_t,X_t^*|W_{t-1},X_{t-1}^*}$ is invariant over time, the marginal density of f_{W_t-1,X_{t-1}^*} may still vary over time (unless the Markov process (W_t, X_t^*) starts from the steady-state). For this reason, it is useful to identify f_{W_t,X_t^*} across a range of periods.}

Corollary 3 (Identification of initial conditions, stationary case):

Under assumptions 1, 2, 3, 4, and 5, the observed density $f_{W_{t+1},W_t,W_{t-1},W_{t-2}}$ for any $t \in \{3, \ldots, T-1\}$ uniquely determines the density f_{W_{t-2},X_{t-2}^*}.

Proof: in Appendix.

4 Comments on Assumptions in Specific Examples

Even though we focus on nonparametric identification, our results can be useful for applied researchers working in a parametric setting. Our results provide a guide for specifying parametric models such that they are nonparametrically identified. As part of a pre-estimation
check, our identification assumptions could be verified for a prospective model via either direct calculation, or Monte Carlo simulation. If the prospective model satisfies the assumptions, then the researcher could proceed to estimation, with the confidence that underlying variation in the data, rather than the particular functional forms chosen, is identifying the model parameters, and not just the particular functional forms chosen. If some assumptions are violated, then our results suggest ways that the model could be adjusted in order to be nonparametric identified.

To this end, we present in this section two examples of dynamic models, both of which satisfy the first-order Markov and limited feedback assumptions in Assumption 1. Because some of the assumptions that we made for our identification argument are quite abstract, in this section we discuss these assumptions in the context of these two example models.

4.1 Example 1: A discrete model

As a first example, let \((W_t, X^*_t)\) denote a bivariate discrete first-order Markov process where \(W_t\) and \(X^*_t\) are both scalars, and binary:

\[
\forall t, \text{ supp} X^*_t = \text{ supp} W_t \equiv \{0,1\}.
\]

This is the simplest example of the models considered in our framework. In this example, no scalarization of \(W_t\) is required. We assume that the laws of motion for both \(W_t\) and \(X^*_t\) exhibit state dependence:

\[
\begin{align*}
Pr(W_t = 1|w_{t-1}, x^*_t) &= p(w_{t-1}, x^*_t); & Pr(W_t = 0|w_{t-1}, x^*_t) &= 1 - p(W_{t-1}, X^*_t) \\
Pr(X^*_t = 1|x^*_{t-1}, w_{t-1}) &= q(x^*_{t-1}, w_{t-1}); & Pr(X^*_t = 0|x^*_{t-1}, w_{t-1}) &= 1 - q(x^*_{t-1}, w_{t-1}).
\end{align*}
\]

These laws of motion satisfy Assumption 1.

This model is a binary version of Abbring, Chiappori, and Zavadil’s (2008) “dynamic moral hazard” model of auto insurance. In that model, \(W_t\) is a binary indicator of claims occurrence, and \(X^*_t\) is a binary effort indicator, with \(X^*_t = 1\) denoting higher effort. The mutual dependence of effort and claims in the laws of motion (13) arise from moral hazard, and experience rating in insurance pricing.

The main difference between this discrete case and the previous continuous case is that the linear integral operators are replaced by matrices. The \(L\) operators in the main proof correspond to \(2 \times 2\) square matrices, and the \(D\) operators are \(2 \times 2\) diagonal matrices. Assumptions 2 and 3 are quite transparent to interpret in the matrix setting. Assumption
2 implies the invertibility of certain matrices. From Lemma 1, the following matrix equality holds, for all values of \((w_t, w_{t-1})\):

\[
L_{W_{t+1}, w_t | w_{t-1}, W_{t-2}} = L_{W_{t+1} | w_t, X^*_t} D_{w_t | w_{t-1}, X^*_t} L_{X^*_t | w_{t-1}, W_{t-2}}.
\] (14)

Given this equation, the invertibility of \(L_{W_{t+1}, w_t | w_{t-1}, W_{t-2}}\) implies that \(L_{W_{t+1} | w_t, X^*_t}\) and \(L_{X^*_t | w_{t-1}, W_{t-2}}\) are both invertible, and that all the elements in the diagonal matrix \(D_{w_t | w_{t-1}, X^*_t}\) are nonzero. Furthermore, by the matrix equality in Eq. (30) of the appendix, the invertibility of \(L_{X^*_t | w_{t-1}, W_{t-2}}\) also implies that of \(L_{V_t | w_{t-1}, Z_{t-2}}\). Hence, in this discrete model, Assumptions 2(ii) and 2(iii) are redundant, because they are implied by 2(i), which is testable from the observed data.

Assumption 3 puts restrictions on the eigenvalues in the spectral decomposition of the \(AB^{-1}\) operator. In the discrete case, \(AB^{-1}\) is an observed \(2\times2\) matrix, and the spectral decomposition reduces to the usual matrix diagonalization. Assumption 3(i) implies that the eigenvalues are nonzero and finite, and 3(ii) implies that the eigenvalues are distinctive. For all values of \((w_t, w_{t-1})\), these assumptions can be verified, by directly diagonalizing the \(AB^{-1}\) matrix.

In this discrete case, Assumption 4 can be interpreted as an “ordering” assumption, which imposes an ordering on the columns of the \(L_{W_{t+1} | w_t, X^*_t}\) matrix, corresponding to the eigenvectors of \(AB^{-1}\). If the goal is only to identify \(f_{W_t, X^*_t | W_{t-1}, X^*_t}^{*}\) for a single period \(t\), then we could dispense with Assumption 4 altogether, and pick two arbitrary in recovering \(L_{W_{t+1} | w_t, X^*_t}\) and \(L_{W_t | w_{t-1}, X^*_t}^{*}\). If we do this, we will not be able to pin down the exact value of \(X^*_t\) or \(X^*_t\), but the recovered density of \(W_t, X^*_t | W_{t-1}, X^*_t\) will still be consistent with the two arbitrary orderings for \(X^*_t\) and \(X^*_t\) (in the sense that the implied transition matrix \(X^*_t | X^*_t, w_{t-1}\) for every \(w_{t-1} \in W_{t-1}\) will be consistent with the true, but unknown ordering of \(X^*_t\) and \(X^*_t\)).

But this will not suffice if we wish to recover the transition density \(f_{W_t, X^*_t | W_{t-1}, X^*_t}^{*}\) in two periods \(t = t_1, t_2\), with \(t_1 \neq t_2\). If we want to compare values of \(X^*_t\) across these two periods, then we must invoke Assumption 4 to pin down values of \(X^*_t\) which are consistent across the two periods. Hu (2008) suggests a number of ways to satisfy Assumption 4 in the discrete case. For example, a reasonable restriction, which satisfies Assumption 4, is that

\[
\text{for } w_t = \{0, 1\}: \quad f_{W_{t+1} | W_t, X^*_t}(0 | w_t, 1) > f_{W_{t+1} | W_t, X^*_t}(1 | w_t, 1),
\]

which implies that claims occur less frequently with higher effort. This restriction can be

12 We thank Thierry Magnac for this insight.
ensured by appropriate restrictions on the values of the \(p(\cdots) \) and \(q(\cdots) \) functions in (13).

4.2 Example 2: Rust’s (1987) bus engine replacement model

The second example model is a version of Rust’s (1987) bus-engine replacement model, augmented to allow for persistent unobserved state variables. As we remarked before, in this model, \(W_t = (Y_t, M_t) \), where \(Y_t \) is the indicator that the bus engine was replaced in week \(t \), and \(M_t \) is the mileage since the last engine replacement.

We introduce two specifications of the model, which differ in how the unobserved state variable \(X_t^* \) enters. In both specifications, we assume that \(X_t^* \) evolves as a first-order Markov process, which can depend on past realizations of \(Y_t \) and \(M_t \). For technical reasons (as will be clear below), we will restrict \(X_t^* \) to have a bounded support: for \([L,U] \) such that \(-\infty < L < U < +\infty\),

\[
X_t^* = \begin{cases}
0.5X_{t-1}^* + 0.3\psi(M_{t-1}) + 0.2\nu_t & \text{if } Y_{t-1} = 0 \\
0.8X_{t-1}^* + 0.2\nu_t & \text{if } Y_{t-1} = 1
\end{cases} \tag{15}
\]

where

\[
\psi(M_{t-1}) = L + (U - L) \frac{\exp(M_{t-1}) - 1}{\exp(M_{t-1}) + 1}.
\]

\(\nu_t \) is a truncated standard normal shock over the interval \([L,U]\), distributed independently over weeks \(t \), and the \(\psi(\cdot) \) function maps mileage \(M_{t-1} \in [0, +\infty) \) into \([L,U]\). We also assume that the support of the initial value \(X_0^* \) is \([L,U]\), which guarantees that the support of \(X_t^* \) is \([L,U]\) for all \(t \). Hence, \(X_t^* | X_{t-1}^*, Y_{t-1}, M_{t-1} \) is distributed with density determined by \(f_{\nu_t}(\cdot) \).

Let \(S_t \equiv (M_t, X_t^*) \) denote the persistent state variables in this model. Following Rust (1987), we assume that the single-period utility from each choice is additive in a function of the state variables \(S_t \), and a choice-specific non-persistent preference shock:

\[
u_t \]

\[
\begin{cases}
u_t(S_t) + \epsilon_0 & \text{if } Y_t = 0 \\
u_t(S_t) + \epsilon_1 & \text{if } Y_t = 1
\end{cases}
\]

where \(\epsilon_0 \) and \(\epsilon_1 \) are i.i.d. Type I Extreme Value shocks, which are independent over time, and also independent of the state variables \(S_t \).

In **Specification A**, the choice-specific utility functions are:

\[
u_0(S_t) = -c(M_t) + X_t^*; \quad \nu_1(S_t) = -RC. \tag{16}
\]

16
In the above, $c(M_t)$ denotes the maintenance cost function, which is increasing in mileage M_t, and $0 < RC < +\infty$ denotes the cost of replacing the engine. We also assume that the maintenance cost function $c(\cdot)$ is bounded below and above: $c(0) = 0; \lim_{M \to +\infty} c(M) = \bar{c} < +\infty$. Mileage evolves as:

$$M_{t+1} = \begin{cases} M_t + \eta_{t+1} & \text{if } Y_t = 0 \\ \eta_{t+1} & \text{if } Y_t = 1 \end{cases}$$

(17)

where the incremental mileage $\eta_{t+1} > 0$ is a standard normal random variable, truncated to $[0, 1]$, with density $\bar{\phi}(\eta) \equiv \frac{\phi(\eta)}{\Phi(1) - \Phi(0)}$, where ϕ and Φ denote, respectively, the standard normal density and CDF.\(^{13}\)

In Specification B, the agent’s per-period utility functions are given by:

$$u_0(S_t) = -c(M_t); \quad u_1(S_t) = -RC.$$

(18)

with the same assumptions on RC and $c(\cdot)$ as in Specification A. Mileage evolves as:

$$M_{t+1} = \begin{cases} M_t + \eta_{t+1} \cdot \exp(X^*_{t+1}) & \text{if } Y_t = 0 \\ \eta_{t+1} \cdot \exp(X^*_{t+1}) & \text{if } Y_t = 1. \end{cases}$$

(19)

Here, the incremental mileage $\eta_{t+1} \cdot \exp(X^*_{t+1})$ is distributed as a mixture of a truncated normal and truncated lognormal distribution.\(^{13}\)

Finally, for the dimension-reducing mappings $g_{t+1}(\cdot)$ and $q_{t-2}(\cdot)$ introduced at the beginning of Section 2, we use: $V_{t+1} = M_{t+1}$, $Z_{t-2} = M_{t-2}$. That is, we scalarize W_t by just using the continuous component, which is the mileage M_t.

The main difference between the two specifications is that in Specification A, the unobserved state variable X^*_t affects utilities directly, but not the mileage process. In Specification B, X^*_t directly affects the evolution of mileage, but not the agent’s utilities. We will see that these two specifications differ in how well they satisfy the assumptions of the identification proof.

Given the assumptions so far, the conditional choice probabilities take the multinomial logit form (for $Y_t = 0, 1$): $P(Y_t|S_t) = \exp(V_{Y_t}(S_t)) / \left[\sum_{y=0}^{1} \exp(V_y(S_t)) \right]$ where $V_y(S_t)$ is

\(^{13}\)For this to be reasonable, assume that mileage is measured in units of 10,000 miles.
the choice-specific value function in period t, defined recursively by

$$V_y(S_t) = u_y(S_t) + \beta E \left[\log \left(\sum_{y'=0}^{1} \exp \left(V_{y'}(S_{t+1}) \right) \right) | Y_t = y, S_t \right].$$

Assumption 1 The first-order Markov and limited feedback assumptions are satisfied in both specifications. Implicitly, the limited feedback assumption 1(ii) imposes a timing restriction, that X^*_{t+1} is realized before M_{t+1}, so that M_{t+1} depends on X^*_{t+1}. On the one hand, this is less restrictive than the assumption that M_{t+1} evolves independently of both X^*_t and X^*_t, which has been made in many applied settings, to enable the estimation of the alternative timing assumption that X^*_{t+1} is realized after M_{t+1}.\(^{14}\)

Assumption 2 contains three invertibility assumptions. Assumption 2(i) requires that: for all $w_t \in W_t$, there exists w_{t-1} such that $L_{M_{t+1}, w_t | w_{t-1}, M_{t-2}}$ is one-to-one. (Note that we have substituted M_{t+1} for $g_{t+1}(W_{t+1})$, and M_{t-2} for $q_{t-2}(W_{t-2})$.)

Consider Specification A, and consider w_t such that $Y_t = 1$ (so that the engine is replaced in period t). In this case, $M_{t+1} | Y_t = 1$ follows a normal distribution truncated to $[0, 1]$, and does not depend stochastically on either w_{t-1} or M_{t-2}. Hence, the one-to-one assumption fails.

Now consider Specification B, using the same w_t such that $Y_t = 1$. Because X^*_t directly enters the mileage process, the distribution of M_{t+1} depends on X^*_{t+1}. Similarly, M_{t-2} is a mixture of a truncated lognormal with a truncated normal random variable, and this distribution depends on X^*_{t-2}. Since (X^*_{t+1}, X^*_{t-2}) are correlated, conditional on w_{t-1} (which does not include X^*_{t-1}), the one-to-one assumption is satisfied. The discussion of Assumption 2(iii) is very similar to that of 2(ii), and we omit it for convenience here.

Assumption 2(ii) requires that, for all w_t, the mapping $L_{M_{t+1} | w_t, X^*_t}$ is one-to-one. As before, consider a value w_t such that $Y_t = 1$. In Specification A, $M_{t+1} | w_t, X^*_t$ is distributed according to a standard normal distribution truncated to $[0, 1]$, regardless of the value of X^*_t. Hence, the one-to-one requirement fails. For Specification B, however, M_{t+1} is distributed according to a mixture distribution which depends on X^*_{t+1}. Given the serial correlation between X^*_{t+1} and X^*_t, the one-to-one assumption should be satisfied.

\(^{14}\)However, as we noted in the Section 2, our results could be suitably extended to a second-order Markov models, which would allow for $M_{t+1} = g(M_t, M_{t-1}, X^*_{t+1}, X^*_t) + \eta_{t+1}$, under stronger identification assumptions.
Assumption 3 guarantees the finiteness and distinctiveness of the eigenvalues in the decomposition of Eq. (12). Assumption 3(i), which ensures the finiteness of the eigenvalues, requires that, for given \((w_t, w_{t-1})\), the density \(f_{W_t|W_{t-1}, X_t^*}\) must be bounded strictly between 0 and +\(\infty\). This density can be factored as \(f_{W_t|W_{t-1}, X_t^*} = f_{Y_t|M_t, X_t^*} \cdot f_{M_t|Y_{t-1}, M_{t-1}, X_t^*}\). The mileage law of motion \(f_{M_t|Y_{t-1}, M_{t-1}, X_t^*}\) is a truncated normal distribution, so it is bounded away from zero and +\(\infty\). Moreover, as noted above, the CCP \(f_{Y_t|X_t^*}\) is a logit probability. Because the per-period utilities (under both specification A and B), net of the \(\epsilon\)'s, are bounded away from \(-\infty\) and +\(\infty\), the logit choice probabilities are also bounded away from zero.

The bounded support assumption on the observed state variable \(M_t\) is crucial here. However, in practice, these assumptions on \(M_t\) imply very little loss in generality, because typically in estimating these models, one can take the upper and lower bounds on \(M_t\) from the observed data.

Assumption 3(ii) ensures that the eigenvalues in the decomposition (12) are distinctive. Because of the factorization above, and the fact that the choice probabilities are bounded away from zero, a sufficient condition for Eq. (3) is that

\[
\frac{\partial^3}{\partial m_t \partial m_{t-1} \partial x_t^*} \ln f_{M_t|Y_{t-1}, M_{t-1}, X_t^*}(m_t|y_{t-1}, m_{t-1}, x_t^*) \neq 0 \tag{20}
\]

for all \(m_t, x_t^*,\) and some \(w_{t-1} = (y_{t-1}, m_{t-1})\).

For any value of \(m_t\), pick any \(m_{t-1}\) such that \(y_{t-1} = 0\) (ie., the bus engine was not replaced in period \(t - 1\)). Under Specification B, the density of \(M_t|Y_{t-1}, M_{t-1}, X_t^*\) for this pair of \((m_t, m_{t-1})\), is distributed with density

\[
\frac{1}{\exp(x_t^*)} \cdot \phi \left(\frac{m_t - m_{t-1}}{\exp(x_t^*)} \right) \tag{21}
\]

on the range \(m_t \in [m_{t-1}, m_{t-1} + \exp(x_t^*)]\). Eq. (20) is satisfied for this density, thus ensuring the distinctiveness of the eigenvalues for Specification B.

On the other hand, for Specification A, the sufficient condition cannot be satisfied, because the conditional distribution \(M_t|Y_{t-1}, M_{t-1}, X_t^*\) is never a function of \(x_t^*\). Hence, the distinctiveness of the eigenvalues is not assured for this specification.

Assumption 4 presumes a known functional \(G\) such that \(G[f_{M_{t+1}|Y_t, M_t, X_t^*}(\cdot|y_t, m_t, x_t^*)]\) is monotonic in \(x_t^*\). Consider the median, i.e., \(\text{med}[f] = \inf \left\{ \bar{x}^* : \int_{-\infty}^{\bar{x}^*} f(x)dx \geq 0.5 \right\}\). Eqs.
(15) and (19) imply that
\[
M_{t+1} = \begin{cases}
 M_t + \eta_{t+1} \cdot \exp(0.2\nu_{t+1}) \cdot \exp(0.3\psi(M_t)) \cdot \exp(0.5X^*_t) & \text{if } Y_t = 0 \\
 \eta_{t+1} \cdot \exp(0.2\nu_{t+1}) \cdot \exp(0.8X^*_t) & \text{if } Y_t = 1.
\end{cases}
\]
(22)

Let the constant C_{med} stand for the median of the random variable $\eta_{t+1} \cdot \exp(0.2\nu_{t+1})$, which is a product of a truncated normal and a truncated lognormal random variable. Given the distribution of η_{t+1} and ν_{t+1} and the value of (y_t, m_t), we have
\[
\text{med}\left[f_{M_{t+1}Y_t,M_t,X^*_t}(\cdot|y_t,m_t,x^*_t)\right] = \left\{ \begin{array}{ll}
 m_t + C_{med} \cdot \exp(0.3\psi(m_t)) \cdot \exp(0.5x^*_t) & \text{if } y_t = 0 \\
 C_{med} \cdot \exp(0.8x^*_t) & \text{if } y_t = 1,
\end{array} \right.
\]
which is monotonic in x^*_t. Hence, we can pin down $x^*_t = \text{med}\left[f_{M_{t+1}Y_t,M_t,X^*_t}(\cdot|y_t,m_t,x^*_t)\right]$.

4.3 Example 3: generalized investment model

For the third example, we consider a dynamic model of firm R&D and product quality in the “generalized dynamic investment” framework described in Doraszelski and Pakes (2007). In this model, Y_t measures a firm’s R&D, and X^*_t measures the firm’s product quality, which evolves according to
\[
X^*_{t+1} = X^*_t + h(Y_t) + \nu_{t+1}.
\]
The observed state variables M_t is installed base, which evolves as
\[
M_{t+1} = (1 - \delta) \ast M_t + k(X^*_{t+1}) + \exp(X^*_t)\xi_{t+1}.
\]

Each period, a firm chooses its R&D to maximize the discounted future profits:
\[
Y_t = Y^*(M_t, X^*_t, \gamma_t)
= \arg\max_{y_t} \left[\Pi(M_t, X^*_t) - \gamma_t \cdot c(Y_t, M_t, X^*_t) + \beta EV(M_{t+1}, X^*_t+1, \gamma_{t+1}) \right]
\]

In the above, the errors (ξ_t, ν_t, γ_t) are assumed to be mutually independent, each distributed $N(0, 1)$ i.i.d. across periods. These errors are introduced just to induce randomness in (Y_t, M_t, X^*_t) conditional on $(Y_{t-1}, M_{t-1}, X^*_{t-1})$.

As in the Rust example above, we scalarize $V_t = M_t$ for this model because, as noted in
Levinsohn and Petrin (2000) and Ackerberg, Benkard, Berry, and Pakes (2007), \(Y_t \) may be equal to zero for many values of \((M_t, X_t^*)\), and hence may not provide enough information on \(X_t^* \).

Obviously, Assumption 1 is satisfied with the above assumptions. To verify that \(L_{M_{t+1}, w_t | w_{t-1}, M_{t-2}} \) is one-to-one, for assumption 2(ii), note that \(M_{t+1} \) depends on \(X_{t+1}^* \), which is correlated with \(M_t \). Similarly, \(M_t \) depends on \(X_t^* \), which is correlated with \(M_{t-2} \), so that \(L_{M_t | w_{t-1}, M_{t-2}} \) is one-to-one, and satisfies Assumption 2(iii). For Assumption 2(ii), that \(L_{M_{t+1} | w_t, X_t^*} \) is one-to-one, note that the conditional distribution of \(M_{t+1} | w_t, X_t^* \) depends on \(X_t^* \).

Next we consider Assumption 3. The bounded eigenvalues restriction in Assumption 3(i) can be ensured by truncating supports of \((\gamma_t, \xi_t, \nu_t)\), and the range of the \(k(\cdot), h(\cdot) \), and \(c(\cdot) \) functions, similarly to what was done for the Rust example above. For part (ii) of this assumption, which guarantees the distinct eigenvalues, we derive that for any \((x_t^*, w_t)\), \(\exists w_{t-1} \) such that

\[
\frac{\partial^3}{\partial m_t \partial m_{t-1} \partial x_t^*} \ln f_{W_t | W_{t-1}, x_t^*} (w_t | w_{t-1}, x_t^*) = \frac{\partial^3}{\partial m_t \partial m_{t-1} \partial x_t^*} \left[\ln f(y_t | m_t, x_t^*) + \ln f(m_t | w_{t-1}, x_t^*) \right] \neq 0.
\]

For this model, this is satisfied because \(m_t | m_{t-1}, x_t^* \sim \frac{1}{\exp(x_t^*)} \cdot \tilde{\phi} \left(\frac{m_t - (1-\delta)m_{t-1} - k(x_t^*)}{\exp(x_t^*)} \right) \), where \(\tilde{\phi}(\cdot) \) denotes a truncated standard normal density function.

Finally, for the monotonicity assumption 4, we note that

\[
E[M_{t+1} | m_t, y_t, x_t^*] = (1 - \delta)m_t + E[k(X_{t+1}^*) | x_t^*, y_t]
\]

so if \(E[k(X_{t+1}^*) | x_t^*, y_t] \) is monotonic in \(x_t^* \), we can use the mean as the \(G \) functional, and pin down \(x_t^* = E \left[f_{M_{t+1} | M_t, Y_t, X_t^*(\cdot) | m_t, y_t, x_t^*} \right] \).

5 Concluding remarks

We have considered the identification of a first-order Markov process \(\{W_t, X_t^*\}_t \) when only \(\{W_t\}_t \) is observed. Under non-stationarity, the Markov law of motion \(f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*} \) is identified from the distribution of the five observations \(W_{t+1}, \ldots, W_{t-3} \) under reasonable assumptions. When stationarity is imposed, identification of \(f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*} \) obtains with only four observations \(W_{t+1}, \ldots, W_{t-2} \). Identification of \(f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*} \) is a crucial input in methodologies for estimating dynamic models based on the “conditional-choice-
probability (CCP)” approach pioneered by Hotz and Miller. Once \(W_t, X_t^i | W_{t-1}, X_{t-1}^i \) is identified, nonparametric identification of the remaining parts of the models – particularly, the per-period utility functions – can proceed by straightforward application of the identification results in Magnac and Thesmar (2002) and Bajari, Chernozhukov, Hong, and Nekipelov (2007), which considered dynamic models without persistent latent variables \(X_t^* \).

We have only considered the case where the unobserved state variable \(X_t^* \) is scalar-valued. An interesting extension is the case where \(X_t^* \) is a multivariate process, which may apply to dynamic game settings, where \(M_t \) and \(X_t^* \) may contain the set of, respectively, observed and unobserved state variables for all agents in the game.

Finally, this paper has focused on identification, but not estimation. In ongoing work, we are using our identification results to guide the specification and estimation of dynamic models with unobserved state variables.

A Proofs

Proof. (Lemma 1) By Assumption 1(i), the observed density \(f_{W_{t+1}, W_t, W_{t-1}, W_{t-2}} \) equals

\[
\int \int f_{W_{t+1}, W_t, W_{t-1}, W_{t-2}, X_t^*, X_{t-1}^*} \, dx_t^* \, dx_{t-1}^*
\]

\[
= \int \int f_{W_{t+1}, W_t, W_{t-1}, W_{t-2}, X_t^*, X_{t-1}^*} f_{W_t, X_t^i} \, dx_t^* \, dx_{t-1}^*
\]

\[
= \int \int f_{W_{t+1}, W_t, X_t^*, W_{t-1}, X_{t-1}^*, X_{t-1}^*} f_{W_t, X_t^i} \, dx_t^* \, dx_{t-1}^*
\]

\[
= \int \int f_{W_{t+1}, W_t, X_t^*, W_{t-1}, X_{t-1}^*, X_{t-1}^*} f_{X_t^*, X_{t-1}^*, X_{t-1}^*} \, dx_t^* \, dx_{t-1}^*
\]

\[
= \int \int f_{W_{t+1}, W_t, X_t^*, W_{t-1}, X_{t-1}^*, X_{t-1}^*} f_{X_t^*, X_{t-1}^*, X_{t-1}^*} \, dx_t^* \, dx_{t-1}^*
\]

(For simplicity, we omit all the arguments in the density functions.) Assumption 1(ii) then implies that

\[
f_{W_{t+1}, W_t, W_{t-1}, W_{t-2}} = \int f_{W_{t+1}, W_t, X_t^*, W_{t-1}, X_t^*} \left(\int f_{X_t^*, X_{t-1}^*, W_{t-1}, W_{t-2}} \, dx_{t-1}^* \right) \, dx_t^*
\]

\[
= \int f_{W_{t+1}, W_t, X_t^*, W_{t-1}, X_t^*} f_{X_t^*, W_{t-1}, W_{t-2}} \, dx_t^*.
\]
Hence, by combining the above two displays, we obtain

\[f_{W_{t+1}, W_{t+2}|W_{t-1}, W_{t-2}} = \int f_{W_{t+1}|W_{t}, X_{t}^*} f_{W_{t}|W_{t-1}, X_{t}^*} f_{X_{t}^*|W_{t-1}, W_{t-2}} dx_{t}^*. \] \tag{23} \]

In operator notation, given values of \((w_t, w_{t-1}) \in \mathcal{W}_t \times \mathcal{W}_{t-1}\), this is

\[L_{W_{t+1}, w_{t}|w_{t-1}, w_{t-2}} = L_{W_{t+1}|w_{t}, X_{t}^*} D_{w_{t}|w_{t-1}, X_{t}^*} L_{X_{t}^*|w_{t-1}, W_{t-2}}, \] \tag{24} \]
given values of \((w_t, w_{t-1}) \in \mathcal{W}_t \times \mathcal{W}_{t-1}\). To see this, note that, for any function \(h \in \mathcal{L}^p(\mathcal{W}_{t-2})\)

\[
\begin{align*}
&\left(L_{W_{t+1}, w_{t}|w_{t-1}, w_{t-2}} h \right)(x) \\
&= \int f_{W_{t+1}, W_{t}|W_{t-1}, W_{t-2}}(x, w_{t}|w_{t-1}, z) h(z) dz \\
&= \int f_{W_{t+1}|W_{t}, X_{t}^*}(x|w_{t}, x_{t}^*) f_{W_{t}|W_{t-1}, X_{t}^*}(w_{t}|w_{t-1}, x_{t}^*) \left(\int f_{X_{t}^*|W_{t-1}, W_{t-2}}(x_{t}^*|w_{t-1}, z) h(z) dz \right) dx_{t}^* \\
&= \int f_{W_{t+1}|W_{t}, X_{t}^*}(x|w_{t}, x_{t}^*) f_{W_{t}|W_{t-1}, X_{t}^*}(w_{t}|w_{t-1}, x_{t}^*) \left(L_{X_{t}^*|w_{t-1}, W_{t-2}} h \right)(x_{t}^*) dx_{t}^* \\
&= \int f_{W_{t+1}|W_{t}, X_{t}^*}(x|w_{t}, x_{t}^*) \left(D_{w_{t}|w_{t-1}, X_{t}^*} L_{X_{t}^*|w_{t-1}, W_{t-2}} h \right)(x_{t}^*) dx_{t}^* \\
&= \left(L_{W_{t+1}|w_{t}, X_{t}^*} D_{w_{t}|w_{t-1}, X_{t}^*} L_{X_{t}^*|w_{t-1}, W_{t-2}} h \right)(x).
\end{align*}
\]

Therefore, Eq. (23) is equivalent to Eq. (24).

Recall the scalarizing functions \(g_{t+1}, q_{t-2} : \mathbb{R}^d \to \mathbb{R}\), and

\[V_{t+1} = g_{t+1}(W_{t+1}), \quad Z_{t-2} = q_{t-2}(W_{t-2}). \]

Hence, using Eq. (24), the joint density of \(\{V_{t+1}, W_{t}, W_{t-1}, Z_{t-2}\}\) can be expressed in operator notation, for any \((x, w_{t}, w_{t-1}, z) \in g_{t+1}(\mathcal{W}_{t+1}) \times \mathcal{W}_t \times \mathcal{W}_{t-1} \times q_{t-2}(\mathcal{W}_{t-2})\), as

\[L_{V_{t+1}, w_{t}|w_{t-1}, Z_{t-2}} = L_{V_{t+1}|w_{t}, X_{t}^*} D_{w_{t}|w_{t-1}, X_{t}^*} L_{X_{t}^*|w_{t-1}, Z_{t-2}}, \] \tag{25} \]
as postulated by the lemma. \(\blacksquare\)
\textbf{Proof.} (Lemma 2) Assumption 1 implies
\begin{equation}
fw_t|x^*_t|w_{t-1},z_{t-2} = \int fw_t|x^*_t|x^*_{t-1}|w_{t-1},z_{t-2}dx^*_{t-1}
= \int fw_t|x^*_t|x^*_{t-1}|w_{t-1},z_{t-2}dx^*_{t-1}.
\tag{26}
\end{equation}

To proceed, we derive an operator equality corresponding to Eq. (26). For the left-hand side of this equation, we have
\begin{align}
fw_t|x^*_t|w_{t-1},z_{t-2} &= \int fw_t|x^*_t|x^*_{t-1}|w_{t-1},z_{t-2}dx^*_{t-1} \\
&= \int fw_t|x^*_t|x^*_{t-1}fX^*_{t-1}|w_{t-1},z_{t-2}dx^*_{t-1} \\
&= \int fw_t|x^*_t|x^*_{t-1}fX^*_{t-1}|w_{t-1},z_{t-2}dx^*_{t-1} \\
&= \int fw_t|w_{t-1},x^*_t,x^*_{t-1}|w_{t-1},z_{t-2}dx^*_{t-1} \\
&= fw_t|w_{t-1},x^*_t|x^*_{t-1}|w_{t-1},z_{t-2}.
\tag{27}
\end{align}

The operator corresponding to \(fw_t|w_{t-1},x^*_t|x^*_{t-1}|w_{t-1},z_{t-2}\) is \(D_{w_{t-1}}x^*_tLX^*_{t}|w_{t-1},z_{t-2}\), for given \(w_t, w_{t-1}\). Hence, combining Eq. (26) and Eq. (27) leads to
\begin{equation}
fw_t|w_{t-1},x^*_t|x^*_{t-1}|w_{t-1},z_{t-2} = \int fw_t|x^*_t|x^*_{t-1}fX_{t-1}^*|w_{t-1},z_{t-2}dx^*_{t-1},
\end{equation}

which, in operator notation, is equivalent to
\begin{equation}
D_{w_{t-1}}x^*_tLX^*_{t}|w_{t-1},z_{t-2} = L_{w_{t-1},x^*_t}|w_{t-1},x^*_{t-1}LX^*_{t-1}|w_{t-1},z_{t-2}.
\tag{28}
\end{equation}

where the second line follows from Eq. (25).

By integrating out \(X^*_t\) in Eq. (26) and then scalarizing \(W_t\) to \(V_t \equiv g_t(W_t)\), we obtain
\begin{equation}
fV_t|w_{t-1},z_{t-2} = fV_t|w_{t-1},x^*_t|x^*_{t-1}|w_{t-1},z_{t-2}dx^*_{t-1}.
\tag{29}
\end{equation}
In operator notation, this is

\[
L_{V_t|w_{t-1},z_{t-2}} = L_{V_t|w_{t-1},X^*_{t-1}} L_{X^*_{t-1}|w_{t-1},Z_{t-2}}
\]

\[
\Leftrightarrow L_{X^*_{t-1}|w_{t-1},z_{t-2}} = L_{V_t|w_{t-1},X^*_{t-1}}^{-1} L_{V_t|w_{t-1},Z_{t-2}}
\]

\[
\Rightarrow L_{X^*_{t-1}|w_{t-1},z_{t-2}} = L_{V_t|w_{t-1},Z_{t-2}}^{-1} L_{V_t|w_{t-1},X^*_{t-1}}^{-1}
\]

where the second line applies Assumption 2(ii), and the third line applies 2(ii) and 2(iii).

Hence, for all \(w_t \in W_t \) and \(w_{t-1} \in W_{t-1} \), the desired Markov law of motion operator

\[
L_{w_t,X^*_t|w_{t-1},X^*_{t-1}}
\]

in Eq. (28) can be written as

\[
L_{w_t,X^*_t|w_{t-1},X^*_{t-1}} = \left(L_{V_{t+1}|w_{t+1},w_t,w_t|w_{t-1},z_{t-2}}^{-1} \right) L_{X^*_{t-1}|w_{t-1},Z_{t-2}}^{-1} L_{V_t|w_{t-1},X^*_{t-1}}^{-1}
\]

\[
= L_{V_{t+1}|w_{t+1},w_t,w_t|w_{t-1},z_{t-2}}^{-1} L_{V_t|w_{t-1},X^*_{t-1}}^{-1} L_{V_t|w_{t-1},Z_{t-2}}^{-1} L_{V_t|w_{t-1},X^*_{t-1}}^{-1}.
\]

Proof. (Corollary 1)

From Lemma 3, we know that \(f_{V_t|W_{t-1},X^*_t-1} \) is identified from the observed density \(\int f_{V_t|W_{t-1}|W_{t-2},Z_{t-2},t} \), where \(V_t \) is the “scalarized” version of \(W_t \). The following equation

\[
f_{V_t|W_{t-1}} = \int f_{V_t|W_{t-1},X^*_t-1} f_{W_{t-1},X^*_t-1} dx^*_t-1
\]

implies that for any given \(w_{t-1} \in W_t \),

\[
f_{V_t|W_{t-1}=w_{t-1}} = L_{V_t|w_{t-1},X^*_t-1} f_{W_{t-1}=w_{t-1}} = L_{V_t|w_{t-1},X^*_t-1} f_{V_t|W_{t-1}=w_{t-1}}
\]

\[
\Leftrightarrow f_{W_{t-1}=w_{t-1},X^*_t-1} = L_{V_t|w_{t-1},X^*_t-1}^{-1} f_{V_t|W_{t-1}=w_{t-1}}
\]

where the second line applies Assumption 2(ii). Hence, the density \(f_{W_{t-1},X^*_t-1} \) is identified.

Proof. (Corollary 3)

Under stationarity, the operator \(L_{V_{t-1}|w_{t-2},X^*_t-2} \) is the same as \(L_{V_{t+1}|w_{t-1},X^*_t} \), which is identified from the observed density \(f_{V_{t+1}|W_{t}|W_{t-1},Z_{t-2}} \) (by Lemma 3). Note that

\[
f_{V_{t-1}|W_{t-2}} = \int f_{V_{t-1}|W_{t-2},X^*_t-2} f_{W_{t-2},X^*_t-2} dx^*_t-2.
\]

The same argument as in the proof of Corollary 1 then implies that we may identify \(f_{W_{t-2},X^*_t-2} \) from the observed density \(f_{V_{t-1}|W_{t-2}} \).
References

