Expanding “Choice” in School Choice

ATILA ABDULKADIROĞLU, YEON-KOO CHE, AND YOSUKE YASUDA*

December 21, 2008

ABSTRACT: Truthful revelation of preferences has emerged as a desideratum in the design of school choice programs. Gale-Shapley’s deferred acceptance mechanism is strategy-proof for students but limits their ability to communicate their preference intensities. This results in ex-ante inefficiency when ties at school preferences are broken randomly. We propose a variant of deferred acceptance mechanism which allows students to influence how they are treated in ties. It maintains truthful revelation of ordinal preferences and supports a greater scope of efficiency.

KEYWORDS: Gale-Shapley’s deferred acceptance algorithm, choice-augmented deferred acceptance, tie breaking, ex ante Pareto efficiency.

*Abdulkadiroğlu: Department of Economics, Duke University, Durham, NC 27708 (email: atila.abdulkadiroglu@duke.edu); Che: Department of Economics, Columbia University, New York City, NY 10027 (email: yk.che@columbia.edu); Yasuda: National Graduate Institute for Policy Studies, Tokyo 106-8677, Japan (email: yyasuda@grips.ac.jp). We are grateful to Francis Bloch, Olivier Compte, Haluk Ergin, Matt Jackson, Navin Kartik, Fuhito Kojima, David Levine, Paul Milgrom, Andrew Postlewaite, Al Roth, Ilya Segal, Ron Siegel, and other seminar participants at Brown University, Caltech, Duke University, GREQAM, Harvard Market Design Workshop, Hong Kong University, Northwestern University, Paris School of Economics, Princeton University (IAS) Stanford University, Washington University, Yonsei University, and Universities of Pompeu Fabra, and Rochester.
Expanding “Choice” in School Choice

Abstract: Truthful revelation of preferences has emerged as a desideratum in the design of school choice programs. Gale-Shapley’s deferred acceptance mechanism is strategy-proof for students but limits their ability to communicate their preference intensities. This results in ex-ante inefficiency when ties in school priorities are broken randomly. We propose a variant of deferred acceptance mechanism which allows students to influence how they are treated in ties. It maintains truthful revelation of ordinal preferences and supports a greater scope of efficiency.

1 Introduction

Public school choice has been a subject of intense research and policy debate in recent years. The idea of expanding one’s choice of school beyond one’s residence area has broad public support, as exemplified by the number of districts that offer parental choice over public schools. Yet, how to operationalize school choice remains actively debated.

This debate, initiated by Abdulkadiroğlu and Sönmez (2003), is centered around a popular method, the “Boston” mechanism, which was used by Boston Public Schools (BPS) until the 2004-2005 school year to assign K-12 pupils to the city schools. Under the Boston mechanism, each school assigns its seats according to the order students rank that school during registration; each school accepts first those who rank it first, accepts those who rank it second only when seats are available, and so forth. Under this system, a student’s ranking of a school matters crucially for her chance of assignment to that school. This feature may induce strategic behavior in the families’ applications. For instance, a family may not list their most preferred school as their top choice if that school is very popular among others: ranking it first will not improve their chance with that school appreciably, but it may rather jeopardize their shot at their second, or

1Government policies promoting school choice take various forms, including interdistrict and intradistrict public school choice as well as open enrollment, tax credits and deductions, education savings accounts, publicly funded vouchers and scholarships, private voucher programs, contracting with private schools, home schooling, magnet schools, charter schools and dual enrollment. See an interactive map at http://www.heritage.org/research/Education/SchoolChoice/SchoolChoice.cfm for a comprehensive list of choice plans throughout the US.
even less, preferred school, which could have been available to them if they had top-ranked it. This incentive to “game the system” raises difficulties for families and administrators alike.\footnote{It also raises a fairness issue since not all families may be equally sophisticated at strategizing (Abdulkadiroğlu, Pathak, Roth, and Sönmez, 2006).}

In 2005, BPS replaced the Boston mechanism with the student-proposing deferred acceptance (henceforth DA) mechanism. Originally proposed by David E. Gale and Lloyd S. Shapley (1962), the DA has students apply to schools in the order they rank them, but schools select the students based solely on schools’ own priorities. Specifically, in the first round students apply to their top-ranked schools, and the schools select from them according to their rankings of students, up to their capacities, but only tentatively, and reject the others. In the second round, those rejected by their top choice apply to their second-ranked schools, and schools reselect from those held from the first round and from new applicants, up to their capacities (only based on the school’s ranking of them) again tentatively, and reject the others. This process continues until no students are rejected, at which point the tentative assignment becomes final. A crucial difference between DA and the Boston is that a student’s ranking of a school does not affect her chance of assignment at that school once she applies to that school in the process. This means that families have dominant strategies to report truthfully about their rankings, a property known as “strategyproofness” (Dubins and Freedman, 1981; Roth, 1982). For instance, top-ranking a very popular school will not sacrifice a student’s chance at less preferred schools in the event she fails to get into her top school.

Besides strategyproofness, the DA mechanism is well-justified in terms of student welfare, if student and school preferences do not involve indifferences. Given strict preferences on both sides, the DA algorithm produces the so-called student optimal stable matching — a matching that is most preferred by every student among all stable matchings (Gale and Shapley, 1962).\footnote{A matching is stable if no student or school can do strictly better by breaking off current matching either unilaterally or by rematching with some other partner without making it worse off.} By contrast, any stable matching may arise in a full-information Nash equilibrium of the Boston mechanism (Ergin and Sönmez, 2006).

In practice, however, schools do not have strict preferences over students. For instance, the Boston public schools prioritize applicants based on whether students have siblings attending a given school or whether they live within its walk zone. This leaves many students in the
same priority class. The resulting indifferences in school preferences present challenges in attaining the dual objectives of strategyproofness and welfare, for no strategy-proof mechanism implements a student-optimal stable matching for every preference profile (Erdil and Ergin, 2008; Abdulkadiroğlu, Pathak and Roth, forth.). These papers discuss selection of a random tie breaking procedure or suggest a method for the students to “trade” assignments ex post.

The existing literature on school choice is primarily concerned with the students’ ex post ordinal welfare—namely how well a procedure assigns students based on their preference orderings for a possible realization of tie-breaking. Such a perspective does not capture students’ ex ante cardinal welfare—how efficiently a procedure resolves students’ conflicting interests based on their relative preference intensities, on average across all realizations of tie breaking.

As we now illustrate, cardinal welfare could matter even when no interpersonal comparison of utilities is made, if the agents have similar ordinal preferences. Suppose there are three students, \{1, 2, 3\}, to be assigned to three schools, \{a, b, c\}, each with one seat. Schools have no intrinsic priorities over students, and students’ preferences are represented by the following von-Neumann Morgenstern (henceforth, vNM) utility values, where $v^i_j$ is student $i$’s vNM utility value for school $j$:

<table>
<thead>
<tr>
<th></th>
<th>$v^1_j$</th>
<th>$v^2_j$</th>
<th>$v^3_j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$j = a$</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>$j = b$</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$j = c$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Every feasible matching is stable due to schools’ indifferences. More importantly, any such assignment is ex post Pareto efficient since students have the same ordinal preferences. Therefore, there is no basis for comparing different procedures based on ex post welfare. In particular, the stable improvement cycles algorithm (Erdil and Ergin, 2008), which finds a student-optimal stable matching for every preference profile, has no bite in this example. Yet, how the students’ conflicting interests are resolved matters greatly for their ex ante welfare.

To see this, suppose first the DA algorithm is used with ties broken randomly. Then, all three students submit true (ordinal) preferences, and they will be assigned to the schools with equal probabilities. Hence, the students obtain expected utilities of $EU_1 = EU_2 = EU_3 = \frac{5}{3}$.

---

4Also see Ehlers (2006) on matching with indifferences.
This assignment is *ex ante* Pareto-dominated by the following assignment: *Assign student 3 to b, and students 1 and 2 randomly between a and c*, which yields expected utilities of $EU'_1 = EU'_2 = EU'_3 = 2 > \frac{5}{3}$. Intuitively, starting from the random assignment, this latter assignment executes a trading of probability shares of schools by transferring student 3’s share of schools a and c to students 1 and 2 in exchange of the latter students’ shares of school b. Such a trade is beneficial for all parties given their preference intensities.

Surprisingly, this latter, Pareto-dominating, assignment arises as the unique equilibrium of the Boston mechanism. Students 1 and 2 have a dominant strategy of ranking the schools truthfully, and student 3 has a best response of (strategically) ranking $s_2$ as her first choice.\(^6\)

Even though this example is special, the assumption that students have the same ordinal preferences is practically relevant. In reality, it is quite reasonable that parents have similar (ordinal) preferences for schools, and in that case, it is much more important to assign students based on their preference intensities. The reason that the Boston mechanism does better in this regard (at least in this example) is the ability it gives the students to influence their odds of assignment in the event of a tie (via strategic ranking). In fact, some parents regarded this ability as a merit of Boston mechanism, not as its shortcoming. At a public hearing by the BPS School Committee, a parent argued:

> I’m troubled that you’re considering a system that takes away the little power that parents have to prioritize... what you call this strategizing as if strategizing is a dirty word... (Recording from Public Hearing by the School Committee, 05-11-04).

This ability to influence one’s treatment in a competition is suppressed in the DA, for a school never discriminates its applicants based on where they rank that school in their choice lists. However, it is this latter property — nondiscrimination of applicants based on choice rankings — that delivers truthful revelation of preferences in DA. This suggests that there is a tradeoff between incentives and ex ante efficiency.

Clearly, the DA is extreme in resolving this tradeoff; it guarantees truthful revelation of preferences but denies students any “say” over how they should be treated by each school.

\(^5\)This does not contradict Ergin and Sönmez (2006)’s finding that the Boston mechanism is (weakly) Pareto dominated by the DA, which relies on strict preferences by the schools.

\(^6\)In equilibrium, student 2 will be assigned to b, and students 1 and 2 will be assigned between a and c with equal probabilities, for these students will have lower priority than student 3 at school b.
Some parents seem to have found this feature of DA troublesome. One parent put it as follows:

... if I understand the impact of Gale Shapley, and I’ve tried to study it and I’ve met with BPS staff... I understood that in fact the random number ... [has] preference over your choices... (Recording from the BPS Public Hearing, 6-8-05).

The current paper provides some welfare justifications to these sentiments expressed by the parents, and suggests that there is a potentially better way to balance the tradeoff than either DA or Boston mechanism. Appreciable welfare gain can be obtained by offering students *simple* and *practical* ways to signal their preference intensities with no sacrifice on (ordinal) strategy-proofness. We propose a procedure that accomplishes this goal and characterize its welfare performance. The next section illustrates the procedure.

## 2 Choice-Augmented DA Algorithm: Illustration

We already described how the DA algorithm works when the schools’ priorities involve strict preferences over students.\(^7\) Suppose now schools’ priorities are characterized by weak preferences. Then, ties must be broken to *generate* strict school preferences for the DA algorithm to be employed. There are two common methods of breaking ties. *Single tie-breaking* randomly assigns every student a single lottery number to break ties at every school, whereas *multiple tie-breaking* randomly assigns a distinct lottery number to each student at every school. Clearly, a DA algorithm is well defined with respect to the strict priority list generated by either method. We refer the DA algorithms using single and multiple tie-breaking by *DA-STB* and *DA-MTB*, respectively.

We propose an alternative way to break a tie, one that allows students to influence its outcome based on their communication. The associated DA algorithm, which we refer to as *Choice-Augmented Deferred Acceptance* (henceforth, CADA), proceeds as follows:

- **Step 1:** All students submit ordinal preferences, plus an “auxiliary message,” naming a “target” school. If a student names a school for a target, she is said to have “targeted” the school.

\(^7\)For a more detailed description, see Gale and Shapley (1962).
Step 2: The schools’ strict priorities over students are generated based on their *intrinsic priorities* and the students’ auxiliary messages as follows. First, each student is independently randomly assigned two lottery numbers. Call one *target lottery number* and the other *regular lottery number*. Each school’s *strict priority list* is then generated as follows: (i) First consider the students in the school’s highest priority group. Within that group, rank at the top those who name the school as their target. List them in the order of their target lottery numbers, and list below them the rest (who didn’t target that school) according to their regular lottery numbers. (ii) Move to the next highest priority group, list them below in the same fashion, and repeat this process until all students are ranked in a strict order.

Step 3: The students are then assigned to schools via the DA algorithm, using *each student’s ordinal preferences* from Step 1 and *each school’s strict priority list* compiled in Step 2.

To illustrate Step 2, suppose there are five students \( N = \{1, 2, 3, 4, 5\} \) and two schools \( S = \{a, b\} \), neither of which has intrinsic priority ordering over the students. Suppose students 1, 3 and 4 targeted \( a \) and 2 and 5 targeted \( b \), and that students are ordered according to their target and regular lottery numbers as follows:

\[
T(N) : 3 - 5 - 2 - 1 - 4; \quad R(N) : 3 - 4 - 1 - 2 - 5.
\]

Then the priority list for school \( A \) first reorders students \( \{1, 3, 4\} \), who targeted that school, based on \( T(N) \), to \( 3 - 1 - 4 \), and reorders the rest, \( \{2, 5\} \), based on \( R(N) \) to \( 2 - 5 \), which produces a complete list for \( a \):

\[
P_a(N) = 3 - 1 - 4 - 2 - 5.
\]

Similarly, the priority list for \( b \) is:

\[
P_b(N) = 5 - 2 - 3 - 4 - 1.
\]

The process of compiling the priority lists resembles the STB in that the same lottery is used by different schools, but only within each group. Unlike STB, though, different lotteries are used across different groups. This ensures that a student who has a bad draw at her target school gets a “new lease on life” with another independent draw for the other schools.\(^8\)

\(^8\)Although the primary reason for having two separate random lists is to ensure a certain welfare property
Clearly, the deferred acceptance feature preserves stability and the incentives to reveal ordinal preferences truthfully; the gaming aspect is limited to the tie-breaking part of the procedure. This limited introduction of “choice signaling” can however improve upon the DA rule in a significant way. In the above example, the CADA implements the Pareto superior matching: all students will submit the ordinal preferences truthfully, but 1 and 2 will target \( a \), and 3 will target \( b \). In this case, the CADA resembles the Boston mechanism.

In general, CADA is different from the Boston mechanism. In fact, if schools have many priorities (so their preferences are almost “strict”), then the auxiliary message would have little bite; thus the CADA will very much resemble the DA. Furthermore, CADA delivers a more efficient matching without sacrificing (ordinal) strategy-proofness. The rest of the paper makes this point precise. That is, we demonstrate the nature of welfare benefits that CADA will have relative to the DA algorithms, when there are sufficiently many students and many school seats. In addition, we also argue that DA-STB is more desirable than DA-MTB from an ex ante welfare perspective. The choice between single versus multiple tie breaking has proven to be an important policy choice in high school admissions in New York City.\(^9\) Our finding informs the choice between DA-STB and DA-MTB in favor of the former.

The idea of CADA appears similar to the proposal by Sönmez and Ünver (forth) to imbed the DA algorithm in “course bidding” employed by some business schools. These two proposals differ in the application, however, as well as in the nature of the inquiry: we are interested in studying the benefit of adding a “signalling” element to the DA algorithm. By contrast, their interest is in studying the effect of adding ordinal preferences and the DA feature to course bidding. In a broader sense, our paper is an exercise of mechanism design without monetary transfers, and in fact it is closer in nature to the recent ideas of “storable votes” (Casella, 2005) and “linking decisions” (Jackson and Sonnenschein, 2007).\(^10\) Just like them, CADA “links” how a student is treated in a tie at one school to how she is treated in a tie at another school, and this linking makes communication credible. Clearly, applying the idea in a centralized matching context is novel and differentiates the current paper. There is a further difference. Jackson and

---

\(^9\)See Abdulkadiroğlu, Pathak and Roth (forthcoming) for a detailed discussion.

\(^10\)See also Che and Gale (2000) for the effect of budgetary limits in mechanism design.
Sonnenschein (2007) demonstrated the efficiency of linking when (linkable) decisions tend to infinity, relying largely on the logic of the law of large numbers. To our knowledge, the current paper is the first to characterize the precise welfare benefit of linking a fixed (finite) number of decisions (albeit with continuum of agents).

The rest of the paper is organized as follows. We present the formal model and welfare criterion in Section 3, and provide welfare comparison across the three alternative procedures in Section 4. Section 5 presents simulation to quantify the welfare benefits of CADA. Section 6 then considers the implication of enriching the message used in the CADA and the robustness of our results to some students not behaving in a strategically sophisticated way. Section 7 concludes. All proofs that do not appear in this paper are available in the Supplementary Notes (“not for publication”).

3 Model and Basic Analysis

3.1 Primitives

There are \( n \geq 2 \) schools, \( S = \{s_1, s_2, ..., s_n\} \), each with a unit mass of seats to fill. There are mass \( n \) of students who are indexed by vNM values \( \mathbf{v} = (v_1, ..., v_n) \in \mathcal{V} := [0, 1]^n \) they attach to the \( n \) schools. The set of student types, \( \mathcal{V} \), is equipped with a measure \( \mu \). We assume that \( \mu \) admits strictly positive density in the interior of \( \mathcal{V} \). The assumptions that the aggregate measure of students equal aggregate capacities of schools and that all students find every school acceptable are made for convenience and will not affect our main results (see Subsection 6.5).

The students’ vNM values induce their ordinal preferences. Let \( \pi := (\pi_1, ..., \pi_n) : \mathcal{V} \rightarrow S^n \) be such that \( \pi_i(\mathbf{v}) \neq \pi_j(\mathbf{v}) \) if \( i \neq j \) and that \( v_{\pi_i(\mathbf{v})} > v_{\pi_j(\mathbf{v})} \) implies \( i < j \). In other words, \( \pi(\mathbf{v}) \) lists the schools in the descending order of the preferences for a student with \( \mathbf{v} \), with \( \pi_i(\mathbf{v}) \) denoting her \( i \)-th preferred school. Let \( \Pi \) denote the set of all ordered lists of \( S \). Then, for each \( \tau \in \Pi \),

\[
m_{\tau} := \mu(\{\mathbf{v} | \pi(\mathbf{v}) = \tau\})
\]

represents the measure of students whose ordinal preferences are \( \tau \). By the full support assumption, \( m_{\tau} > 0 \) for each \( \tau \in \Pi \). Finally, let \( \mathbf{m} := \{m_{\tau}\}_{\tau \in \Pi} \) be a profile of measures of all ordinal types. Let \( \mathfrak{M} := \{\{m_{\tau}\}_{\tau \in \Pi} | \sum_{\tau \in \Pi} m_{\tau} = n\} \) be the set of all possible measure profiles.
We say a property holds *generically* if it holds for a subset of m’s that has the same Lebesque measure as M.

An *assignment*, denoted by x, is a probability distribution over S, and this is an element of a simplex, \( \Delta := \{(x_1, ..., x_n) \in \mathbb{R}_+^n | \sum_{i \in S} x_i = 1 \} \). We are primarily interested in how a procedure determines the assignment for each student *ex ante*, prior to conducting the lottery. To this end, we define an *allocation* to be a measurable function \( \phi := (\phi_1, ..., \phi_n) : V \mapsto \Delta \) such that \( \int \phi_i(v) d\mu(v) = 1 \) for each \( i \in S \), with the interpretation that student v is assigned by mapping \( \phi = (\phi_1, ..., \phi_n) \) to school i with probability \( \phi_i(v) \). Let \( \mathcal{X} \) denote the set of all allocations.

### 3.2 Welfare Standards

To begin, we say allocation \( \tilde{\phi} \in \mathcal{X} \) weakly Pareto dominates allocation \( \phi \in \mathcal{X} \) if, for almost every v,

\[
\sum_{i \in S} v_i \tilde{\phi}_i(v) \geq \sum_{i \in S} v_i \phi_i(v),
\]

(1)

and that \( \tilde{\phi} \) Pareto dominates \( \phi \) if the former weakly dominates the latter and if the inequality of (1) is strict for a positive measure of v’s. We also say \( \tilde{\phi} \in \mathcal{X} \) ordinally dominates \( \phi \in \mathcal{X} \) if the former has higher chance of assigning each student to her more preferred school than the latter in the sense of first-order stochastic dominance: for a.e. v,

\[
\sum_{i=1}^k \tilde{\phi}_{\pi_i(v)}(v) \geq \sum_{i=1}^k \phi_{\pi_i(v)}(v), \quad \forall k = 1, ..., n - 1,
\]

(2)

with the inequality being strict for some \( k \), for a positive measure of v’s.

Our welfare notion concerns the scope of efficiency, measured by the subset of schools that are efficiently allocated. To this end, fix an assignment \( \tilde{x} \in \Delta \) and a subset \( K \subset S \) of schools. An assignment \( \tilde{x} \in \Delta \) is said to be a *within-K reassignment* of \( x \) if \( \tilde{x}_j = x_j \) for each \( j \in S \setminus K \), and let \( \Delta^K_{\tilde{x}} \subset \Delta \) be the set of all such reassignments. Then, a *within-K reallocation* of an allocation \( \phi \in \mathcal{X} \) is an element of a set

\[
\mathcal{X}^K_{\phi} := \{ \tilde{\phi} \in \mathcal{X} | \tilde{\phi}(v) \in \Delta^K_{\phi(v)}, \text{ a.e. } v \in V \}.
\]

In words, a within-K reallocation represents an outcome of students trading their shares of schools only within K.
Definition 1. (i) For any \( K \subset S \), an allocation \( \phi \in X \) is **Pareto efficient (PE) within** \( K \) if there is no within-\( K \) reallocation of \( \phi \) that Pareto dominates \( \phi \). (ii) For any \( K \subset S \), an allocation \( \phi \in X \) is **ordinally efficient (OE) within** \( K \) if there is no within-\( K \) reallocation of \( \phi \) that ordinally dominates \( \phi \). (iii) An allocation is PE (resp. OE) if an allocation is PE (resp. OE) within \( S \). (iv) An allocation is pairwise PE (resp. pairwise OE) if it is PE (resp. OE) within every \( K \subset S \) with \( |K| = 2 \).

These welfare criteria are quite intuitive. Suppose the students are initially endowed with ex ante shares \( \phi \) of schools, and they can trade these shares among them. Can they trade mutually beneficially if the trading is restricted to the shares of \( K \)? The answer is no if allocation \( \phi \) is PE within \( K \). In other words, the size of the latter set represents the restriction on the trading technologies and thus determines the scope of markets within which efficiency is realized. The bigger this set is, the less restricted the agents are in realizing the gains from trade, so the more efficient the allocation is. Clearly, if an allocation is Pareto efficient within the set of all schools, then it is fully Pareto efficient. In this sense, we can view the size of such a set as a measure of efficiency.

A similar intuition holds with respect to ordinal efficiency. In particular, ordinal efficiency can be characterized by the inability to form a cycle of traders who can beneficially swap their probability shares of schools. Formally, let \( \triangleright^{\phi} \) be the binary relation on \( S \) defined by

\[
i \triangleright^{\phi} j \iff \exists A \subset V, \mu(A) > 0, \text{ s.t. } v_i > v_j \text{ and } \phi_j(v) > 0, \forall v \in A;
\]

that is, if a positive measure students prefer \( i \) to \( j \) but are assigned to \( j \) with positive probabilities. We say that \( \phi \) **admits a trading cycle within** \( K \) if there exist \( i_1, i_2, ..., i_l \in K \) such that \( i_1 \triangleright^{\phi} i_2, ..., i_{l-1} \triangleright^{\phi} i_l, \text{ and } i_l \triangleright^{\phi} i_1 \). The next lemma is adapted from Bogomolnaia and Moulin (2001).

**Lemma 1.** An allocation \( \phi \) is OE within \( K \subset S \) if and only if \( \phi \) does not admit a trading cycle within \( K \).

Before proceeding further, we observe how different notions relate to one another.

**Lemma 2.** (i) If an allocation is PE (resp. OE) within \( K' \), then it is PE (resp. OE) within \( K \subset K' \); (ii) An allocation is OE within \( K \subset S \) if it is PE within \( K \); (iii) If an allocation is
OE within $K$ for any $K$ with $|K| = 2$, then it is PE within $K$; (iv) If an allocation is OE, then it is pairwise PE.

Part (i) follows since a Pareto improving within-$K$ reallocation constitutes a Pareto improving within-$K'$ reallocation for any $K' \supseteq K$. Likewise, a trading cycle within any set forms a trading cycle within its superset. Part (ii) follows since if an allocation is not ordinally efficient within $K$, then it must admit a trading cycle within $K$, which produces a Pareto improving reallocation. Part (iii) follows since, whenever there exists an allocation that is not Pareto efficient within a pair of schools, one can construct a trading cycle involving two agents who would benefit from swapping their probability shares of these schools. Part (iv) then follows from Part (iii).

These characterizations are tight. The converse of Part (iii) does not hold for any $K$ with $|K| > 2$. In the example from the introduction, the DA allocation is OE but not PE. Likewise, an allocation that is PE within $K$ need not be OE within any $K' \supseteq K$, since an allocation could be Pareto improved upon only via a trading cycle that includes a school in $K' \setminus K$. In that case, the allocation may be PE within $K$, yet it will not be OE within $K'$.

### 3.3 Alternative School Choice Procedures

We consider three alternative procedures for assigning students to the schools: (1) Deferred Acceptance with Single Tie-breaking (DA-STB), (2) Deferred Acceptance with Multiple Tie-Breaking (DA-MTB), and (3) Choice-Augmented Deferred Acceptance (CADA).

The alternative procedures differ only by the way the schools break ties. The tie-breaking rule is well-defined for DA-STB and DA-MTB, and it follows Step 2 of Section 2 in the case of CADA. These rules can be extended to the continuum of students in a natural way. The formal descriptions are provided in the Supplementary Notes; here we offer the following heuristic descriptions:

- **DA-STB**: Each student draws a number $\omega \in [0,1]$ at random. A student with a lower number has a higher priority at every school than does a student with a higher number.

- **DA-MTB**: Each student draws $n$ independent random numbers $(\omega_{s_1}, \ldots, \omega_{s_n})$ from $[0,1]^n$. The $i$-th component, $\omega_{s_i}$, of student’s random draw then determines her priority at school $s_i$, with a lower number having a higher priority than does a higher number.
• **CADA**: The mechanism draws two random numbers \((\omega_T, \omega_R) \in [0, 1]^2\) for each student. School \(i\) then ranks those students who targeted that school, based on their values of \(\omega_T\), and then ranks the others based on the values of \(1 + \omega_R\) (with a lower number having a higher priority in both cases). In other words, those who didn’t target the school receive a penalty score of 1.

For each procedure, the DA algorithm is readily defined using the appropriate tie-breaker and the students’ ordinal preferences as inputs. The supplementary notes provide a precise algorithm, which is sketched here. At the first step, each student applies to her most preferred school. Every school \(i\) tentatively admits up to unit mass from its applicants according to its priority order, and rejects the rest if there are any. In general, each student who was rejected in the previous step applies to her next preferred school. Each school considers the set of students it has tentatively admitted and the new applicants. It tentatively admits up to unit mass from these students in the order of its priority, and rejects the rest. The process converges when the set of students that are rejected has zero measure. Although this process might not complete in finite time, it converges in limit and the allocation in the limit is well defined. We focus on that limiting allocation.

More importantly, all three procedures are ordinally strategy proof:

**Theorem 1. (Ordinal strategy-proofness)** In each of the three procedures, it is a (weakly) dominant strategy for each student to submit her ordinal preferences truthfully.

**Proof:** The proof is in the supplementary notes.

### 3.4 Characterization of Equilibria

☐ **DA-STB and DA-MTB**

In either form of DA algorithm, the resulting allocation is conveniently characterized by the “cutoff” of each school — namely the highest lottery number a student can have to get into that school. Specifically, the DA-STB process induces a cutoff \(c_i \in [0, 1]\) for each school \(i\) such that a student who ever applies to school \(i\) gets admitted by that school if and only if her (single) draw \(\omega\) is less than \(c_i\). We first establish that these cutoffs are well defined and generically distinct.
Lemma 3. DA-STB admits a unique set of cutoffs \( \{c_i\}_{i \in S} \) for the schools under DA-STB. Each cutoff is strictly positive and one of them equals 1. For a generic \( m \), the cutoffs are all distinct.

Importantly, these cutoffs pin down the allocation of all students. To see this, consider any student with \( v \) and a school \( i \) with cutoff \( c_i \). Suppose school \( j \) has the highest cutoff among those schools that are preferred to \( i \) by that student. If the cutoff of school \( j \) has \( c_j > c_i \), then the student will never get assigned to school \( i \) since whenever she has a draw \( \omega < c_i \) (good enough for \( i \)), she will get into school \( j \) or better. If \( c_j < c_i \), however, then she will get into school \( i \) if and only if she receives a draw \( \omega \in [c_j, c_i] \). The probability of this event is precisely the distance between the two cutoffs, \( c_i - c_j \). Formally, let \( S(i, v) := \{j \in S | v_j > v_i\} \) denote the set of schools more preferred to \( i \) by type-\( v \) students. Then, the allocation \( \phi^S \) arising from DA-STB is given by

\[
\phi^S_i(v) := \max\{c_i - \max_{j \in S(i, v)} c_j, 0\}, \forall v, \forall i \in S,
\]

where \( c_\emptyset := 0 \).

DA-MTB is similar to DA-STB, except that each student has independent draws \((\omega_1, ..., \omega_n)\), one for each school. The DA process again induces a cutoff \( \tilde{c}_i \in [0, 1] \) for each school \( i \) such that a student who ever applies to school \( i \) gets assigned to it if and only if her draw for school \( i \), \( \omega_i \), is less than \( \tilde{c}_i \). These cutoffs are well defined.

Lemma 4. DA-MTB admits a unique set of cutoffs \( \{\tilde{c}_i\}_{i \in S} \). Each cutoff is strictly positive and one of them equals 1. For a generic \( m \), the cutoffs are all distinct.

Given the cutoffs \( \{\tilde{c}_i\}_{i \in S} \), a type \( v \)-student receives school \( i \) whenever she has a rejectable draw \( \omega_j > \tilde{c}_j \) for each school \( j \in S(i, v) \) she prefers to \( i \) and when she has an acceptable draw \( \omega_i < \tilde{c}_i \) for school \( i \). Formally, the allocation \( \phi^M \) from DA-MTB is determined by:

\[
\phi^M_i(v) := \tilde{c}_i \prod_{j \in S(i, v)} (1 - \tilde{c}_j), \forall v, \forall i \in S,
\]

with the convention \( \tilde{c}_\emptyset := 0 \).

\( \square \) CADA

As with the two other procedures, given the students’ strategies on their messages, the DA process induces cutoffs for the schools, one for each school in \([0, 2]\). Of particular interest is the
equilibrium in the students’ choices of messages. Given Theorem 1, the only nontrivial part of
the students’ strategy concerns her “auxiliary message.” Let \( \sigma = (\sigma_1, ..., \sigma_n) : \mathcal{V} \mapsto \Delta \) denote
the students’ mixed strategy, whereby a student with \( v \) targets \( i \) with probability \( \sigma_i(v) \). We
first establishes existence of equilibrium.

**Theorem 2.** *(Existence)* There exists an equilibrium \( \sigma^\ast \) in pure strategies.

We say that a student applies to school \( i \) if she is rejected by all schools she lists ahead
of \( i \) in her (truthful) ordinal list. We say that a student subscribes to school \( i \in S \) if she
targets school \( i \) and applies to that school during the DA process. (The latter event depends
on where she lists school \( i \) in her ordinal list and the other students’ strategies, as well as
the outcome of tie breaking). Let \( \bar{\sigma}^\ast_i(v) \) be the probability that a student \( v \) subscribes to
school \( i \) in equilibrium. We say a school \( i \in S \) is oversubscribed if \( \int \bar{\sigma}^\ast_i(v) d\mu(v) \geq 1 \) and
undersubscribed if \( \int \bar{\sigma}^\ast_i(v) d\mu(v) < 1 \). In equilibrium, there will be at least (generically, exactly)
one undersubscribed school which anybody can get admitted to (that is, even when she fails to
get into any other schools she listed ahead of that school). Formally, a school \( w \in S \) is said to
be “worst” if its cutoff on \( [0, 2] \) equals precisely 2. Then, we have the following lemma.

**Lemma 5.** *(i)* Any student who prefers the worst school the most is assigned to that school
with probability 1 in equilibrium. *(ii)* If her most preferred school is undersubscribed but not the
worst school, then she targets that school in equilibrium. *(iii)* For almost every student with \( v \)
such that \( \pi_1(v) \neq w, \sigma^\ast(v) = \bar{\sigma}^\ast(v) \) in equilibrium.

In light of Lemma 5-(iii), we shall refer to “targets a school \( i \)” simply as “subscribes to
school \( i \).”

4 Welfare Analysis of Alternative Procedures

It is useful to begin with an example. Suppose there are three schools, \( S = \{a, b, c\} \), and three
types of students \( \mathcal{V} = \{v^1, v^2, v^3\} \), each with \( \mu(v^i) = 1 \), and their vNM values are described as
Consider first DA-MTB. Each student draws three lottery numbers, \((\omega_a, \omega_b, \omega_c)\), one for each school. The schools \(a, b\) and \(c\) then have cutoffs \(\tilde{c}_a \approx 0.39, \tilde{c}_b \approx 0.45,\) and \(\tilde{c}_c = 1\), respectively. The resulting allocation is \(\phi^M(v^1) = \phi^M(v^2) \approx (0.39, 0.27, 0.33)\) and \(\phi^M(v^3) \approx (0.22, 0.45, 0.33)\). This allocation is PE within \(\{a, c\}\) and within \(\{b, c\}\), but not even OE within \(\{a, b\}\). The ordinal inefficiency within \(\{a, b\}\) can be seen by the fact that type-\(v^1, v^2\) students have positive shares of school \(b\), and type-\(v^3\) students have positive share of school \(a\), which they can swap with each other to do better. This feature originates from the independent drawings of priority lists for the schools. For instance, as in the figure, type-\(v^1, v^2\) students may draw \((\omega_a, \omega_b)\) and type-\(v^3\) students may draw \((\omega'_a, \omega'_b)\). Hence, we have \(a \triangleright^M b \triangleright^M a\). (Note that the cutoff for school \(c\) is 1, which explains why the allocation is PE within \(\{a, c\}\) and within \(\{b, c\}\).)

**Figure 1:** Ordinal inefficiency within \(\{a, b\}\) under DA-MTB.

DA-STB avoids this problem, since each student draws only one lottery number for all schools. In this example, the cutoffs of schools \(a, b\) and \(c\) are \(c_a = 1/2, c_b = 2/3,\) and \(c_c = 1\), respectively. The resulting allocation is \(\phi^S(v^1) = \phi^S(v^2) = (1/2, 1/6, 1/3)\) and \(\phi^S(v^3) = (0, 2/3, 1/3)\). This allocation is OE, and thus pairwise PE (by Lemma 2).

**Figure 2:** Ordinal efficiency of DA-STB
To see this, consider any students who strictly prefer school \( b \) to school \( a \). In our example, type-\( v^3 \) students have such preference. These students can never be assigned to school \( a \) since, whenever they have draws acceptable for school \( a \) (for instance \( \omega < c_a \) in Figure 2), they will choose school \( b \) and admitted by it. Hence, we cannot have \( a \succ^{\phi^S} b \). A similar logic implies that we cannot have \( b \succ^{\phi^S} c \).\(^{11}\) Hence, \( \phi^S \) admits no trading cycle. Despite the superiority over DA-MTB, the DA-STB allocation is not fully PE; type-\( v^1 \) students can profitably trade with type-\( v^2 \) students, selling probability shares of schools \( a \) and \( c \) in exchange for probability share of school \( b \).

Consider lastly CADA. As with the two DA mechanisms, all students rank the schools truthfully; and type-\{\( v^1, v^2 \)\} students target school \( a \) and type-\( v^3 \) target school \( b \). The resulting equilibrium allocation is \( \phi^*(v^1) = \phi^*(v^2) = \left( \frac{1}{2}, 0, \frac{1}{2} \right) \) and \( \phi^*(v^3) = (0, 1, 0) \). Notice that no type-\{\( v^1, v^2 \)\} students are ever assigned to school \( b \), which means in this case the allocation is fully PE.

These observations are generalized as follows:

**Theorem 3.** (DA-MTB) (i) The allocation \( \phi^M \) from DA-MTB is PE within \( \{i, w\} \) for each \( i \in S \setminus \{w\} \). (ii) Generically, there exists no \( K \subset S \) with either \(|K| > 2\) or \(|K| = 2\) but \( \tilde{c}_j < 1, \forall j \in K \) such that \( \phi^M \) is OE within \( K \).

**Theorem 4.** (DA-STB) (i) The allocation \( \phi^S \) from DA-STB is OE and is thus pairwise PE. (ii) For a generic \( m \), there exists no \( K \subset S \) with \(|K| > 2\) such that \( \phi^S \) is PE within \( K \).

In sum, DA-STB can yield an ordinally efficient allocation in the large economy, but this is the most that can be expected from DA-STB, in the sense that the scope of efficiency is generically limited to (sets of) three schools.

**Remark 1.** With finite students, the allocation from DA-STB is ex post Pareto efficient but is not OE. But as the number of students and school seats get large, the DA-STB allocation becomes OE in the limit. This is an implication of Che and Kojima (2008), who show that the random priority rule (which coincides with our DA-STB) becomes indistinguishable from the probabilistic serial mechanism (which is known to be OE) as the economy grows large.\(^{11}\)In this example, no student prefers school \( c \) to \( b \), but the logic applies even if there were students with such a preference.
When the schools have intrinsic priorities, the DA-STB is not even ex post Pareto efficient (Abdulkadiroglu, Pathak and Roth (forthcoming)).

**Theorem 5.** (CADA) (i) An equilibrium allocation $\phi^*$ of CADA is OE and is thus pairwise PE. (ii) An equilibrium allocation of CADA is PE within the set of oversubscribed schools. (iii) If all but one school is oversubscribed, then the equilibrium allocation of CADA is PE.

Theorem 5-(ii) and (iii) showcase the ex ante efficiency benefit associated with CADA. The benefit parallels that of a competitive market. Essentially, CADA activates “competitive markets” for oversubscribed schools. Each student is given a “budget” of unit probability she can allocate across alternative schools for targeting. A given unit probability can buy different numbers of shares for different schools, depending on how many others name those schools. If a mass $z_i \geq 1$ students applies to school $i$, allocating a unit budget can only buy a share $1/z_i$. Hence, the relative congestion at alternative schools, or their relative popularity, serves as relative “prices” for these schools.\(^{12}\) In a large economy, individual students take these prices as given, so the prices play the usual role of allocating resources efficiently. It is therefore not surprising that the proof follows the First Welfare Theorem.

Why are competitive markets limited only to oversubscribed schools? Why not undersubscribed schools? Recall that one can get into an undersubscribed school in two different ways: she can target it, in which case she gets assigned to it for sure if she applies to it. Alternatively, she can target an oversubscribed school but the school may reject her, in which case she may still get assigned to that undersubscribed school via the usual DA channel. Clearly, assignment via this latter channel do not respond to, or reflect, the “prices” set by the targeting behavior. Consequently, competitive markets do not extend to the undersubscribed schools.

Finally, Part (i) asserts ordinal efficiency for CADA. At first glance, this feature may be a little surprising in light of the fact that different schools use different priority lists. As is clear from DA-MTB, this feature is susceptible to ordinal inefficiency. The CADA equilibrium is OE,\(^{12}\) Given the DA format, a student may be assigned to an undersubscribed school after targeting (and failing to get into) an oversubscribed school. This may cause a potential spill-over from consumption of an oversubscribed school toward undersubscribed schools. This spill-over does not undermine the efficient allocation, however. Under our CADA procedure, targeting alternative oversubscribed schools have no impact on the conditional probability of assignment with undersubscribed schools, since the tie breaking at non-target schools are determined by a separate random priority lists (see footnote 8).
however. To see this, observe first that any student who is assigned to an oversubscribed school with positive probability must strictly prefer it to any undersubscribed school (or else she should have secured assignment to the latter school by targeting it). Thus, we cannot have \( j \succ^* i \) if school \( j \) is undersubscribed and school \( i \) is oversubscribed. This means that if the allocation admits any trading cycle, it must be within oversubscribed schools or within undersubscribed schools. The former is ruled out by Part (ii) and the latter by the same argument as Theorem 4-(i).

The characterization of Theorem 5-(ii) is tight in the sense that there is generally no bigger set that includes all oversubscribed schools and some undersubscribed school that supports Pareto efficiency (see the supplementary notes).

Theorem 5 refers to an endogenous property of an equilibrium, namely the set of over/undersubscribed schools. We provide a sufficient condition for this property. For each school \( i \in S \), let \( m^*_i := \mu(\{v \in V | \pi_1(v) = i\}) \) be the measure of students who prefer \( i \) the most. We then say a school \( i \) is popular if \( m^*_i \geq 1 \), namely, the size of the students whose most preferred school is \( i \) is as large as its capacity.

It is easy to see that every popular school must be oversubscribed in equilibrium. Suppose to the contrary that a popular school \( i \) is undersubscribed. Then, by Lemma 5-(ii), every student with \( v \) with \( \pi_1(v) = i \) must subscribe to \( i \), a contradiction. Since every popular school is oversubscribed, the next result follows from Theorem 5.

**Corollary 1.** Any equilibrium allocation of CADA is PE within the set of popular schools.

It is worth emphasizing that the popularity of a school is sufficient, but not necessary, for that school to be oversubscribed. In many situations, many non-popular schools will be oversubscribed. In this sense, Corollary 1 understates the benefit of CADA. This point is confirmed by our simulation in Section 5. Even though full PE is not ensured by any of the three mechanisms, our results imply the following comparison between standard DA and CADA.

**Corollary 2.** (i) If \( n \geq 3 \), generically the allocations from DA-STB and DA-MTB are not PE. (ii) The equilibrium allocation of CADA is PE if all but one school is popular.

The results so far give a sense of a three-way ranking of DA-MTB, DA-STB, and CADA. Specifically, if the allocation from DA-MTB is PE within \( K \subset S \), then so is the allocation from
DA-STB, although the converse does not hold; and if the allocation from DA-STB is PE within $K' \subset S$, then so is the allocation from CADA, although the converse does not hold. Between the two DA algorithms, the DA-STB allocation is OE, whereas the DA-MTB allocation is not pairwise PE.

In particular, the CADA allocation is PE within a strictly bigger set of schools than the allocations from DA algorithms, if there are more than two popular schools. Unfortunately, this is not the case when all students have the same ordinal preference. This case, though special, is important since parents often tend to rank schools similarly. In this case, there is only one popular school in a CADA equilibrium, so Theorem 5 and Corollary 1-(i) do little to distinguish CADA from DA-STB. Nevertheless, we can find the CADA to be superior in a more direct way. To this end, let $V^U := \{v \in V | v_1 > ... > v_n\}$.

\textbf{Theorem 6.} Suppose all students have the same ordinal preferences in the sense $\mu(V^U) = \mu(V)$. The equilibrium allocation of CADA (weakly) Pareto dominates the allocation arising from DA-STB and DA-MTB.

This result generalizes the example discussed in the introduction. If all students have the same ordinal preferences, the DA algorithm with any random tie-breaking treat all students in the same way, meaning that each student is assigned to each school with equal probability. Under CADA, the students can at least replicate this random assignment via targeting.

\section{Simulations}

The theoretical results in the previous sections do not speak to the magnitude of efficiency gains or losses achieved by each mechanism. Here, we provide a numerical analysis of the magnitude via simulations.

In our numerical model, we have 5 schools, each with 20 seats and 100 students. Student $i$'s vNM value for school $j$, $\tilde{v}_{ij}$, is given by

$$\tilde{v}_{ij} = \alpha u_j + (1 - \alpha)u_{ij}$$

where $\alpha \in [0, 1]$, $u_j$ is common across students and $u_{ij}$ is specific to student $i$ and school $j$. For each $\alpha$, we draw \{u_j\} and \{u_{ij}\} uniformly and independently from the interval [0, 1]
to construct student preferences. We then normalize each student’s vNM utilities by \( v_{ij} = \zeta_j(\tilde{v}_i) := \frac{\tilde{v}_{ij} - \min_j \tilde{v}_{ij}}{\max_j \tilde{v}_{ij} - \min_j \tilde{v}_{ij}} \). Under this normalization, the values of schools range from zero to one, with the value of the least preferred school set to zero and that of the most preferred to one. This normalization is invariant to affine transformation in the sense that \( \zeta_j(\tilde{v}_{is_1}, ..., \tilde{v}_{is_5}) = \zeta_j(\alpha \tilde{v}_{is_1} + \beta, ..., \alpha \tilde{v}_{is_5} + \beta) \), for any \( \alpha \in \mathbb{R}_{++}, \beta \in \mathbb{R} \).

The students’ preferences become similar to one another both ordinally and cardinally as \( \alpha \) gets large. In one extreme case with \( \alpha = 0 \), students’ preferences are completely uncorrelated; in the other with \( \alpha = 1 \), students have the same cardinal (as well as ordinal) preferences. Given a profile of normalized vNM utility values, we simulate DA-STB and DA-MTB, compute a complete-information Nash equilibrium of CADA and the resulting CADA allocation. We repeat this computation 100 times each with a new set of (randomly drawn) vNM utility values for all values of \( \alpha \). In addition, we solve for a first-best solution, which is the utilitarian maximum for each set of vNM utility values. We then compute the average welfare under each mechanism, i.e., the total expected utilities realized under a given mechanism averaged over 100 draws (see the supplementary notes for details).

In Figure 3, we compare the three mechanisms to the first best solution. We plot the welfare of each mechanism as the percentage of the welfare of the first best solution. Two observations emerge from this figure. First, the welfare generated by each mechanism follows a U-shaped pattern. Second, CADA outperforms DA-STB, which in turn outperforms DA-MTB at every value of \( \alpha \), and the gap in performance between CADA and the other mechanisms grows with \( \alpha \). All three mechanisms perform almost equally well and produce about 96% of the first-best welfare when \( \alpha = 0 \). In this case, students have virtually no conflicts of interests, and each mechanism more or less assigns students to their first choice schools. The welfare gain of CADA increases as \( \alpha \) increases. This is due to the fact that competition for one’s first choice increases as \( \alpha \) increases (and students’ ordinal preferences get similar to one another). In those instances, who gets her first choice matters. While DA-STB and DA-MTB determine this purely randomly, CADA does so based on students’ messages. Intuitively, if a student’s vNM value for a school increases, the likelihood of the student targeting that school in an equilibrium of CADA — therefore the likelihood of her getting into that school — increases. This feature of CADA contributes to its welfare gain. DA-STB and DA-MTB start catching up with CADA at \( \alpha = 0.9 \). In this case, students have almost the same cardinal preferences, so any matching
is close to being ex ante efficient. At $\alpha = 0.9$, CADA achieves 95.5% of the first best welfare, whereas DA-STB achieves 92.2%.\footnote{At the extreme case of $\alpha = 1$, preferences are the same so every matching is efficient and the welfare generated by each mechanism is equal to the first best welfare.}

Figure 4 gives further insight into the workings of the mechanisms. It shows the percentage of students getting their first choices under each mechanism. First, DA-MTB assigns noticeably smaller numbers to first choices. This is due to the artificial stability constraints created by multiple tie breaking, which also explains the bigger welfare loss associated with DA-MTB. The patterns for CADA and DA-STB are more revealing. In particular, both assign almost the same number of students to their first choices for each value of $\alpha$. That is, whereas the poor welfare performance of DA-MTB is explained by the low number of students getting their first choices, the difference between the other two is explainable not by how many students, but rather by which students are assigned to their first choices.

This is illustrated more clearly by Figure 5, which shows the the ratio of the mean utility of those who get their $k$-th choice under CADA to the mean utility of those who get their $k$-th choice under DA-STB at the realized matchings, for $k = 1, 2, 3$. Specifically, those who get their $k$-th choice achieve a higher utility under CADA than under DA-STB for each $k = 1, 2, 3$. The utility gain is particularly more pronounced for the receivers of their second or third choices. This simply reflects the feature of CADA that assigns students based on their preference intensities: under CADA, those who have less to lose from the second- or third-best choices are more likely to target those schools, and are thus more likely to compose such assignments.

Figure 6 shows that the number of oversubscribed schools is larger on average than the number of popular schools. Note that the average number of oversubscribed schools is larger than 2 at all values of $\alpha$. Recalling our Theorems 4 and 5, DA-STB is never PE within a set of more than 2 schools, whereas CADA is PE within the set of oversubscribed schools. Figure 6 thus shows the scope of efficiency achieved by CADA can be much higher than is predicted by Corollary 1. It is also worth noting that the average number of oversubscribed schools exceeds 3 for $\alpha \leq 0.4$. This implies that there are often 4 oversubscribed schools. At those instances, CADA achieves full Pareto efficiency (recall Theorem 5-(ii)).

In practice, some schools have (non-strict) intrinsic priorities. We thus study their impact on assignments numerically. To this end, we modify our model as follows: Each school has two
priority classes, high priority and low priority. For each preference profile above, we assume that 50 students have high priority in their first choice and low priority in their other choices, 30 students have high priority in their second choice and low priority in their other choices, and 20 students have high priority in their third choice and low priority in their other choices.\(^{14}\)

It is well known that standard mechanisms such as DA do not produce student optimal stable matching in the presence of school priorities. Erdil and Ergin (2008) have proposed a way to attain constrained ex post efficiency subject to respecting school priorities, via performing so-called stable improvement cycles after an initial DA assignment. We thus simulate this algorithm, referred to as DASTB+SIC, to see how it compares with the CADA.

In Figure 7, we compare CADA, DA-STB and DA-STB+SIC again measured as percentage of first-best welfare. Again, CADA outperforms DA-STB for all values of \(\alpha\). Since DA-STB+SIC is designed to achieve constrained ex post efficiency (while CADA and DA-STB are not), it is not surprising that the former does better when \(\alpha\) is relatively small. In that case, students’ ordinal preferences are sufficiently dissimilar that ordinal efficiency matters. As \(\alpha\) gets large, however, ordinal efficiency becomes less relevant and cardinal efficiency becomes more important. For \(\alpha \geq 0.5\), CADA catches up with DA-STB+SIC and outperforms it as \(\alpha\) gets large. In particular, when \(\alpha\) is close to 1, virtually all matchings are ex post efficient, so DA-STB+SIC has little bite. The cardinal efficiency still matters, and in this regard, CADA does better than the other mechanisms. This finding is noteworthy since parents are likely to have similar ordinal preferences in real-life choice settings. In those instances, CADA allocates schools more efficiently than other mechanisms in ex ante welfare.

6 Discussion

6.1 Enriching the Auxiliary Message

CADA can be modified to allow for more complicated auxiliary messages, perhaps at the expense of some practicality. For instance, the auxiliary message can include a rank order of schools up to \(k \leq n\), with a tie broken in the lexicographic fashion according to this rank order: students targeting a school at a higher lexicographic component is favored by that school in a

\(^{14}\)This assumption is in line with the stylized fact about the Boston school system.
tie relative to those who do not target or target it at a lower lexicographic component. We call the associated CADA a **CADA of degree** \(k\).

It is worth noting that the CADA of degree \(n\) coincides with the Boston mechanism if the schools have no priorities and if all students have the same ordinal preferences. Such an enriching of the auxiliary message does not alter the qualitative features of CADA. In particular, an argument analogous to that of Theorem 6 applies to CADA of any degree, which has a rather surprising implication:

**Theorem 7.** If all students have the same ordinal preferences and the schools have no priorities, then the Boston mechanism weakly Pareto dominates the DA algorithm.

A richer message space could allow students to signal their relative preference intensities better, and this may lead to a better outcome (see Abdulkadiroglu, Che and Yasuda (2008) for an example). A richer message space need not deliver a better outcome, however. With more messages, students have more opportunities to express their relative preference intensities over different sets of schools. The increased opportunities may act as substitutes and militate each other. For instance, an increased incentive to self select at low-tier schools may lessen a student’s incentive to self select at high-tier schools. This kind of “crowding out” arises in the next example.

**Example 1.** There are 4 schools, \(S = \{a, b, c, d\}\), and two types of students \(V = \{v^1, v^2\}\), with \(\mu(v^1) = 3\) and \(\mu(v^2) = 1\).

<table>
<thead>
<tr>
<th></th>
<th>(v^1)</th>
<th>(v^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j = a)</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>(j = b)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>(j = c)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>(j = d)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Consider first CADA of degree 1. Here, type-\(v^1\) students target \(a\), and type-\(v^2\) students target school \(b\). In other words, the latter type of students self select into the second popular school. The resulting allocation is \(\phi^*(v^1) = (\frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3})\) and \(\phi^*(v^2) = (0, 1, 0, 0)\). The expected utilities are \(EU^1 = 4.33\) and \(EU^2 = 4\). In fact, this allocation is PE.

Suppose now CADA of degree 2 is used. In equilibrium, type-\(v^1\) students choose school \(a\) and \(b\) as their first and second targets, respectively. Meanwhile, type-\(v^2\) students choose school
a (instead of school b!) for their first target and school b for their second target. Here, the opportunity for type 2 students to self select at a lower-tier school (school c) blunts their incentive to self select at a higher-tier school (school b). The resulting allocation is thus \( \phi^{**}(v^1) = \left( \frac{1}{4}, \frac{1}{3}, \frac{1}{12}, \frac{1}{3} \right) \) and \( \phi^{**}(v^2) = \left( \frac{1}{4}, 0, \frac{3}{4}, 0 \right) \), which yield expected utilities of \( EU^1 = 3.75 \) and \( EU^2 = 4.25 \). This allocation is not PE since type-v^2 students can trade probability shares of school a and c in exchange for probability share of b, with type-v^1 students.

Even though \( \phi^* \) does not Pareto dominate \( \phi^{**} \), the former is PE whereas the latter is not. Further, the former is superior to the latter in the Utilitarian sense (recall that students’ payoffs are normalized so that they aggregate to the same value for both types): the former gives aggregate utilities of 17, the highest possible level, whereas the latter gives 15.5.

This example suggests that the benefit from enriching the message space is not unambiguous. This is a potentially important point. In practice, expanding a message space adds a burden on the parents to be more strategically sophisticated. Hence avoiding such a demand for strategic sophistication is an important quality for a procedure to succeed. This adds to the appeal of the simple CADA (i.e., of degree 1).

### 6.2 Strategic Naivety

Since CADA involves some “gaming” aspect, albeit limited to tie-breaking, a natural concern is that not all families may be strategically competent. This concern has arisen in the context of the Boston mechanism. It has been noted that some significant percentage of families have played suboptimal strategies, for instance, wasting their second top choices to schools that they could only get into by top-ranking them (Abdulkadiroglu, Pathak, Roth and Sönmez, 2006). Such mistakes may arise because of the lack of knowledge about how the system works or about which schools are popular. The same concern may arise with respect to CADA, in that some families may not understand well the role the auxiliary message plays in the system and/or they may not judge accurately how over/undersubscribed various schools will turn out to be.

It is thus important to investigate how CADA will perform when some families are not strategically sophisticated. To this end, we consider students who are “naive” in the sense that they always target their most preferred schools in the auxiliary message. Targeting the most preferred school appears to be a simple, but reasonable, choice when a student is unsure about
the popularity of alternative schools or is unclear about the role the auxiliary message plays in
the assignment. Such a strategy will indeed be a best response for many situations, particularly
if the first choice is distinctively better than the rest of the choices, so it could be a reasonable
approximation of “naive” behavior. We assume that there is a positive measure of students who
are naive in this way, and the others know the presence of these students and their behavior,
and respond optimally against them. Surprisingly, the presence of naive students do not affect
the main welfare results in a qualitative way.

**Theorem 8.** In the presence of naive students, the equilibrium allocation of CADA satisfies the
following properties: (i) The allocation is OE, and is thus pairwise PE. (ii) The allocation is
PE within the set $K$ of oversubscribed schools. (iii) If every student is naive, then the allocation
is PE within $K \cup \{l\}$ for any undersubscribed school $l \in J := S \setminus K$.

Theorem 8-(i) and (ii) are qualitatively the same as the corresponding parts of Theorem 5. Further, Lemma 5-(ii) remains valid in the current context, implying that any popular schools
must be oversubscribed here as well. Hence, the same conclusion as Corollary 1 holds.

**Corollary 3.** In the presence of naive students, the equilibrium allocation of CADA is PE
within the set of popular schools.

### 6.3 CADA with “Safety Valve”

The preceding subsection has seen that the main welfare property of CADA extends to the
situation where some students behave naively. This does not mean, however, that naive students
are not disadvantaged by the others who behave more strategically. The CADA mechanism
can be modified to provide an extra safeguard for those who are averse to strategic aspect of
the game. This can be done by augmenting the message space to include an “exit option.”
First, we can run DA for all students with a random tie breaking; those who invoke the exit
option are then assigned based on the outcome. Next, those who have not invoked the exit
option can be assigned based on their targeting. This modification yields an allocation that

---

15 Pathak and Sonmez (2008) analyze the Boston mechanism when some students are strategically naive, and
show that, at a Pareto dominant equilibrium of the game, the sophisticated students benefit in comparison to
the DA mechanism at the expense of the naive players.
Pareto dominates the standard DA algorithms (see Abdulkadiroglu, Che and Yasuda (2008) for detail).

6.4 Dynamic Implementation

As noted, the welfare benefit of CADA originates from the competitive markets it induces. Unlike the usual markets where there are explicit prices, however, in the CADA-generated markets, students’ beliefs about the relative popularity of schools act as the prices. Hence, for the CADA to have the desirable welfare benefit, their beliefs must be reasonably accurate. In practice, students/parents’ beliefs about schools are formed based on their reputations; thus, as long as the school reputations are stable, they can serve as reasonably good proxies for the prices. Nevertheless, the students may not share the same beliefs and the beliefs may not be accurate, in which case CADA procedure will not implement the CADA equilibrium precisely.

The CADA mechanism can be modified to implement the desired equilibrium more precisely. The idea is to allow students to dynamically revise their target choices based on the population distribution of choices (which is made public). By making their choices final only when the number of students changing their choices fall under a certain threshold, we can induce a best response dynamics, which will implement the desired equilibrium precisely whenever it converges (see Abdulkadiroglu, Che and Yasuda (2008) for detail).

6.5 Excess Capacities and Outside Options

Thus far, we have made simplifying assumptions that the aggregate measure of students equal the aggregate capacities of public schools and that all students find each public school acceptable. These assumptions may not hold in reality. While public schools must guarantee seats to students, all the seats need not be filled. And some students may find outside options, such as home or private schooling, better than some public schools. One can relax these assumptions by letting the aggregate capacities to be (weakly) greater than \( n \) and by endowing each student an outside option with value drawn from \([0, 1]\).\(^{16}\) Extending the model in this way entails virtually no changes in the main tenet of our paper. All theoretical results continue to hold in

---

\(^{16}\)This modeling approach implicitly assumes the outside options to have unlimited capacities, which may not accurately reflect the scarcity of outside option such as private schooling.
this relaxed environment. A subtle difference arises since, with excess capacities, there may be more than one school with cutoff equal to one under DA-MTB, so its allocation may become PE within more pairs of schools. Nevertheless, Theorems 1-8 remain valid. For instance, the DA-STB allocation is ordinally efficient. The CADA allocation is ordinally efficient and Pareto efficient within oversubscribed, and thus popular, schools.

7 Conclusion

In this paper, we propose a new deferred acceptance procedure in which students are allowed, via signaling of their preferences, to influence how they are treated in a tie for a school. This new procedure, choice-augmented DA algorithm (CADA), makes the most of two existing procedures, the Gale-Shapely deferred acceptance algorithm (DA) and the Boston mechanism. While the DA achieves the strategyproofness, an important property in the design of school choice programs, it limits students’ abilities to communicate their preference intensities, which entails an ex ante inefficient allocation when schools are indifferent among students with the same ordinal preferences. The Boston mechanism, on the other hand, is responsive to the agents’ cardinal preferences and may achieve more efficient allocation than the DA, but fails to satisfy strategyproofness. We show that, by allowing students to influence tie-breaking via additional communication, CADA implements a more efficient ex ante allocation than the standard DA algorithms, without sacrificing the strategyproofness of ordinal preferences.

References


Appendix: Proofs of the main results

Proof of Lemma 3. For any $S' \subset S$ and $i \in S'$, let $m_i(S') := \mu(\{v \mid v_i \geq v_j, \forall j \in S'\})$ be the measure of students who prefer $i$ the most among $S'$. The cutoffs of the schools are then defined recursively as follows. Let $\hat{S}^0 \equiv S \hat{c}^0 \equiv 0$, and $\hat{x}_i^0 \equiv 0$ for every $i \in S$. Given $\hat{S}^0, \hat{c}^0, \{\hat{x}_i^0\}_{i \in S}, \ldots, \hat{S}^{t-1}, \hat{c}^{t-1}, \{\hat{x}_i^{t-1}\}_{i \in S}$, and for each $i \in S$ define

$$\hat{c}_i^t = \sup \left\{ c \in [0, 1] \mid \hat{x}_i^{t-1} + m_i(\hat{S}^{t-1}) (c - \hat{c}^{t-1}) < 1 \right\},$$

(3)

$$\hat{c}^t = \min_{i \in \hat{S}^{t-1}} \hat{c}_i^t,$$

(4)

$$\hat{S}^t = \hat{S}^{t-1} \setminus \{i \in \hat{S}^{t-1} | \hat{c}_i^t = \hat{c}^t\},$$

(5)

$$\hat{x}_i^t = \hat{x}_i^{t-1} + m_i(\hat{S}^{t-1}) (\hat{c}^t - \hat{c}^{t-1}).$$

(6)

Each recursion step $t$ determines the cutoff of school(s) given cutoffs $\{\hat{c}^0, \ldots, \hat{c}^{t-1}\}$. Students with draw $\omega > \hat{c}^{t-1}$ can never be assigned to schools $S \setminus \hat{S}^{t-1}$. For each school $i \in \hat{S}^{t-1}$ with remaining capacity, a fraction $\hat{x}_i^{t-1}$ is claimed by students with draws less than $\hat{c}^{t-1}$, so only fraction $1 - \hat{x}_i^{t-1}$ of seats can be assigned to students with draws $\omega > \hat{c}^{t-1}$. If school $i$ has the next highest cutoff, $\hat{c}^t$, then the remaining capacity $1 - \hat{x}_i^{t-1}$ must equal the measure of those
students who prefer \( i \) the most among \( S^{t-1} \) and have drawn numbers in \([\hat{c}^{t-1}, \hat{c}^t] \). This, together with the fact that school \( i \) has cutoff \( \hat{c}^t \), implies (3) and (4). The recursion definition implies (5) and (6).

The recursive equations uniquely determine the set of cutoffs \( \{\hat{c}^0, ..., \hat{c}^k\} \), where \( k \leq n \). The cutoff for school \( i \in S \) is then given by \( c_i := \{\hat{c}^t | \hat{c}^t_i = \hat{c}^t \} \). It clearly follows from (3) and (4) for \( t = 1 \) that \( \hat{c}^1 > 0 \). It also easily follows that \( \hat{c}^k = 1 \). Obviously \( \hat{c}^k \leq 1 \). We also cannot have \( \hat{c}^k < 1 \), or else there will be positive measure of students unassigned, which cannot occur since every student prefers each school to being unassigned, and the measure of all students coincides with the total capacity of schools.

Although it is possible for more than one school to have the same cutoff, this is not generic. If there are schools with the same cutoff, we must have \( i \neq j \in S^{t-1} \) for some \( t \) and \( \hat{S}^{t-1} \) such that \( \hat{c}^t_i = \hat{c}^t_j \), which entails a loss of dimension for \( \mathfrak{m} \) within \( \mathfrak{M} \). Hence, the Lebesgue measure of the set of \( \mathfrak{m} \)'s involving such a restriction is zero. It thus follows that generically no two schools have the same cutoff. \( \blacksquare \)

**Proof of Lemma 4.** For each \( i \in S \) and any \( S' \subset S \setminus \{i\} \), let

\[
m_{i}^{S'} := \mu(\{v \in \mathcal{V} | v_j \geq v_i \geq v_k, \forall j \in S', \forall k \in S \setminus (S' \cup \{i\})\})
\]

be the measure of those students whose preference order of school \( i \) follows right after schools in \( S' \). (Note that the order of schools within \( S' \) does not matter here.) We can then define the conditions for cutoffs \( \{\tilde{c}_1, ..., \tilde{c}_n\} \) under DA-MTB as the following system of simultaneous equations. Specifically, for any school \( i \in S \), we must have

\[
\tilde{c}_i \left( m_i^\emptyset + \sum_{S' \subset S \setminus \{i\}} m_i^{S'} \left( \prod_{j \in S'}(1 - \tilde{c}_j) \right) \right) = 1. \tag{7}
\]

The LHS has the measure of students admitted by school \( i \). They consist of those students who prefer \( i \) most and have admissible lottery draws for \( i \) (i.e., \( \omega_i \leq \tilde{c}_i \)), and of those who prefer schools \( S' \subset S \setminus \{i\} \) more than \( i \) but have bad draws for those schools but have an admissible draw for school \( i \). In equilibrium, the cutoffs must be such that these aggregate measures equal one (the capacity of school \( i \)).

To show that there exists a set \( \{\tilde{c}_1, ..., \tilde{c}_n\} \) of cutoffs satisfying the system of equations (7),
let \( \Upsilon := (\Upsilon_1, \ldots, \Upsilon_n) : [0,1]^n \rightarrow [0,1]^n \) be a function whose \( i \)'s component is defined as:

\[
\Upsilon_i(\tilde{c}_1, \ldots, \tilde{c}_n) = \min \left\{ \frac{1}{m_i^\theta + \sum_{S' \subset S \setminus \{i\}} m_{i}^{S'} \left[ \prod_{j \in S'} (1 - \tilde{c}_j^*) \right]^\theta} \right\},
\]

where we adopt the convention that \( \min \{\frac{1}{0}, 1\} = 1 \).

Observe that self mapping \( \Upsilon(\cdot) \) is a monotone increasing on a nonempty complete lattice. Hence, by the Tarski's fixed point theorem, there exists a largest fixed point \( c^* = (c_i^*, \ldots, c_n^*) \) such that \( \Upsilon(c^*) = c^* \), and \( c^* \geq c^\bullet \) for any fixed point \( c^\bullet \).

We now show that at any such fixed point \( c^* \),

\[
\frac{1}{m_i^\theta + \sum_{S' \subset S \setminus \{i\}} m_{i}^{S'} \left[ \prod_{j \in S'} (1 - \tilde{c}_j^*) \right]^\theta} \leq 1, \tag{8}
\]

for each \( i \in S \). Suppose this is not the case for some \( i \). Then, by the construction of the mapping, we must have \( \tilde{c}_i^* = 1 \). This means that all students are assigned to some schools. Therefore, by pure accounting,

\[
\sum_{i \in S} \tilde{c}_i^* \left( m_i^\theta + \sum_{S' \subset S \setminus \{i\}} m_{i}^{S'} \left[ \prod_{j \in S'} (1 - \tilde{c}_j^*) \right] \right) = n. \tag{9}
\]

Yet, since (8) fails for some school,

\[
\sum_{i \in S} \tilde{c}_i^* \left( m_i^\theta + \sum_{S' \subset S \setminus \{i\}} m_{i}^{S'} \left[ \prod_{j \in S'} (1 - \tilde{c}_j^*) \right] \right) < \sum_{i \in S} \left( \frac{1}{m_i^\theta + \sum_{S' \subset S \setminus \{i\}} m_{i}^{S'} \left[ \prod_{j \in S'} (1 - \tilde{c}_j^*) \right]} \right) \left( m_i^\theta + \sum_{S' \subset S \setminus \{i\}} m_{i}^{S'} \left[ \prod_{j \in S'} (1 - \tilde{c}_j^*) \right] \right) = n,
\]

where the strict inequality follows since, for school \( l \) for which (8) holds, \( \tilde{c}_l^* = \frac{1}{m_l^\theta + \sum_{S' \subset S \setminus \{l\}} m_{l}^{S'} \left[ \prod_{j \in S'} (1 - \tilde{c}_j^*) \right]} \) and, for school \( i \) for which (8) does not hold, \( \tilde{c}_i^* = 1 < 1 \). This inequality contradicts (9). Since (8) holds for each \( i \in S \), the fixed point \( (\tilde{c}_1^*, \ldots, \tilde{c}_n^*) \) solves the system of equations (7). It is immediate from (7) that \( \tilde{c}_i > 0, \forall i \). Further, there must exist a school \( w \in S \) with \( \tilde{c}_w = 1 \), or else a positive measure of students are unassigned, which would violate (7). As before, it follows that the solutions to (7) are generically distinct.

To establish uniqueness, suppose to the contrary \( c^* > c^\bullet \): \( c_j^* \geq \tilde{c}_j^* \) for all \( j \) and \( c_i^* > \tilde{c}_i^* \) for some \( i \). Let \( w \in S \) be such that \( \tilde{c}_w^* = 1 \). Since \( c^* \geq c^\bullet \), \( c_w^* = 1 \). Since (7) must be satisfied for
$w$ under both cutoffs, we have

$$\left( m_w + \sum_{S' \subset S \setminus \{w\}} m_{w'} \prod_{j \in S'} (1 - c_j) \right) = \left( m_w + \sum_{S' \subset S \setminus \{i\}} m_{w'} \prod_{j \in S'} (1 - \tilde{c}_j) \right) = 1,$$

which holds if and only if $c_j = \tilde{c}_j$ for all $j$.

**Proof of Theorem 2.** The proof is an application of Theorem 2 of Mas-Colell (1984).

**Proof of Lemma 5.** Part (i) follows trivially since such a student can target that school and get assigned to it with probability one. To prove part (ii) consider any student of type $v$, whose values are all distinct. There are $\mu$-a.e. such $v$. Suppose her most-preferred school $\pi_1(v) = i$ is undersubscribed and not a worst school. It is then her best response to target $i$, since doing so can guarantee assignment to $i$ for sure, whereas targeting some other school reduces her chance of assignment to that school. Hence, the student must be targeting $i$ in equilibrium.

To prove part (iii), consider any $v$ (with distinct values), such that $\pi_1(v) \neq w$. Suppose first $\sigma^*_i(v) > 0$ for some oversubscribed school $i$. It follows from the above observation that she must strictly prefer school $i$ to all undersubscribed schools. Hence, she lists $i$ ahead of all undersubscribed schools in her ordinal list. Whenever she targets $i$, she can never place in any oversubscribed school other than $i$, so she will apply to school $i$ with probability one. Suppose next $\sigma^*_j(v) > 0$ for some undersubscribed school $j$. Then, the student must prefer $j$ to all other undersubscribed schools, so she will apply to $j$ with probability one whenever she fails to place in any oversubscribed school she may list ahead of $j$ in the ordinal list. Whenever she targets $j$, she is surely rejected by all oversubscribed schools she may list ahead of $j$, so she will apply to $j$ with probability one. We thus conclude that $\sigma^*(v) = \tilde{\sigma}^*(v)$ for $\mu$-a.e. $v$.

**Proof of Theorem 3:** To prove part (i), let school $j$ be such that $\tilde{c}_j = 1$. Hence, any students who prefer $j$ to $i$ can never be assigned to $i$. Hence, the allocation does not admit any trading cycle within $\{i, j\}$, and is thus OE within $\{i, j\}$ (Lemma 1). The allocation is then PE within $\{i, j\}$ by Lemma 2-(iii).

To prove part (ii), take any two schools $\{i, j\}$, with $\tilde{c}_i, \tilde{c}_j < 1$. There is a positive measure of students whose first- and second-most preferred schools are $i$ and $j$, respectively (call them “type-$i$”). Likewise, there is a positive measure of so-called “type-$j$” students whose first- and second-most preferred schools are $j$ and $i$, respectively. A positive measure of type-$i$ students draw $(\omega_i, \omega_j)$ such that $\omega_i > \tilde{c}_i$ and $\omega_j < \tilde{c}_j$; and a positive measure of type-$j$ students draw
\((\omega_i', \omega_j')\) with \(\omega_i' < \tilde{c}_i\) and \(\omega_j' > \tilde{c}_j\). Clearly, the former type students are assigned to \(j\) and the latter to \(i\), so both types of students will benefit from swapping their assignments. Part (ii) then follows since generically there is only one school with cutoff equal to 1 (Lemma 4).

**Proof of Theorem 4:** To prove part (i), suppose \(i \succ^s_j\). Then, we must have \(c_i < c_j\). Otherwise, any students who prefer school \(i\) to \(j\) can never be assigned to \(j\). This is because any such student will rank \(i\) ahead of \(j\) (by strategyproofness), so if she is rejected by \(i\), her draw must be \(\omega > c_i \geq c_j\), not good enough for \(j\). Hence, if \(i_1 \succ^s \cdots \succ^s_i \succ^s j\), then \(c_{i_1} < \cdots < c_i < c_j\), a contradiction. Hence, it is OE (and thus pairwise PE).

To prove part (ii), recall from Lemma 3 that the schools’ cutoffs are generically distinct. Take any set \(\{i, j, k\}\) with \(c_i < c_j < c_k\). Then, by the full support assumption, there exists a positive measure of \(v\)’s satisfying \(v_i > v_j > v_k > v_l\) for all \(l \neq i, j, k\). These students will then have a positive chance of being assigned to each school in \(\{i, j, k\}\), for their draws will land in the intervals, \([0, c_i]\), \([c_i, c_j]\) and \([c_j, c_k]\), with positive probabilities. Again, given the full support assumption, such students will all differ in their marginal rate of substitution among the three schools. Then, just as with the motivating example, one can construct a mutually beneficial trading of shares of these schools among these students.

**Proof of Theorem 5:** Part (i) builds on part (ii), so it will appear last. Throughout, we let \(K\) and \(J\) be the sets of over- and under-subscribed schools.

**Part (ii):** Let \(\sigma^*(\cdot)\) be an equilibrium and \(\phi^*(\cdot)\) be the associated allocation. For any \(v \in V\), consider an optimization problem:

\[
[P(v)] \quad \max_{x \in \Delta^K_{\phi^*(v)}} \sum_{i \in S} v_ix_i \quad \text{subject to} \quad \sum_{i \in K} p_i x_i \leq \sum_{i \in K} p_i \phi^*_i(v),
\]

where \(p_i \equiv \max\{\int \sigma^*_i(\tilde{v})d\mu(\tilde{v}), 1\}\).

We first prove that \(\phi^*(v)\) solves \([P(v)]\). This is trivially true for any type \(v\)-student whose most preferred school is the worst school \(w\). Then, by Lemma 5-(i), \(\phi^*_w(v) = 1\) and \(x_i = \phi^*_i(v) = 0, \forall i \in K\). So, \(\phi^*(v)\) solves \([P(v)]\).

Hence, assume that \(\pi_1(v) \neq w\) in what follows. Fix any such \(v\), and fix any arbitrary \(x \in \Delta^K_{\phi^*(v)}\) satisfying the constraint of \([P(v)]\). We show below that the type \(v\) student can mimic the assignment \(x\) by adopting a certain targeting strategy in the CADA game, assuming that all other players play their equilibrium strategies \(\sigma^*\).
To begin, consider a strategy called $s_i$ in which she targets school $i \in S$ and also top-ranks it in her ordinal list but ranks all other schools truthfully. If type $v$ plays strategy $s_i$, then she will be assigned to school $i$ with probability

$$\frac{1}{\max \{ \int \sigma_i^* (\tilde{v}) d\mu(\tilde{v}), 1 \} } = \frac{1}{p_i}.$$ 

If $i \in J$, this probability is one. If $i \in K$, then she will be rejected by school $i$ with positive probability. If she is rejected, she will apply to other schools. Clearly, she will not succeed in getting into any schools in $K$, since they are oversubscribed. The conditional probabilities of getting assigned to schools $J$ do not depend on which school in $K$ she has targeted (and gotten turned down), due to our design whereby her non-target draw $\omega_R$ is independent of her target draw $\omega_T$ (recall footnote 12). For each $j$, let that conditional assignment probability be $\bar{\phi}_j^*(v)$ for type $v$. Obviously, $\sum_{j \in J} \bar{\phi}_j^*(v) = 1$.

Suppose the type $v$ student randomizes by choosing “strategy $s_i$” with probability $y_i := p_i x_i$, for each $i \in K$, and with probability

$$y_j := \sigma_j^* (v) + \left[ \sum_{i \in K} (\sigma_i^* (v) - p_i x_i) \left( 1 - \frac{1}{p_i} \right) \right] \bar{\phi}_j^* (v),$$

for each $j \in J$. Observe $y_j \geq 0$ for all $j \in S$. This is obvious for $j \in K$. For $j \in J$, this follows since the terms in the square brackets are nonnegative:

$$\sum_{i \in K} (\sigma_i^* (v) - p_i x_i) \left( 1 - \frac{1}{p_i} \right) = \sum_{i \in K} (p_i \phi_i^* (v) - p_i x_i) \left( 1 - \frac{1}{p_i} \right)$$

$$= \left[ \sum_{i \in K} p_i (\phi_i^* (v) - x_i) \right] - \left[ \sum_{i \in K} (\phi_i^* (v) - x_i) \right] = \sum_{i \in K} p_i (\phi_i^* (v) - x_i) \geq 0,$$

where the first equality is implied by Lemma 5-(iii), the third equality holds since $x \in \Delta^K_{\phi^* (v)}$ (which implies $\sum_{i \in K} x_i = \sum_{i \in K} \phi_i^* (v)$), and the last inequality follows from the fact that $x$
exists an allocation $\phi$ for type $x^\ast$ and to each school $v_j$. The third equality holds since $\sum_{i \in J} \bar{\phi}_i^s(v) = 1$, the fourth is implied by Lemma 5-(iii), and the fifth follows since $x \in \Delta^K_{\phi^s(v)}$.

By playing the mixed strategy $(y_1, \ldots, y_n)$, the student is assigned to school $i \in K$ with probability $$\frac{y_i}{p_i} = x_i,$$
and to each school $j \in J$ with probability

$$y_j + \left[ \sum_{i \in K} y_i \left(1 - \frac{1}{p_i}\right) \right] \bar{\phi}_j^s(v)$$

$$= \sigma_j^s(v) + \left[ \sum_{i \in K} (\sigma_i^s(v) - p_i x_i) \left(1 - \frac{1}{p_i}\right) \right] \bar{\phi}_j^s(v) + \left[ \sum_{i \in K} p_i x_i \left(1 - \frac{1}{p_i}\right) \right] \bar{\phi}_j^s(v)$$

$$= \sigma_j^s(v) + \left[ \sum_{i \in K} \sigma_i^s(v) \left(1 - \frac{1}{p_i}\right) \right] \bar{\phi}_j^s(v) = \sigma_j^s(v) + \left[ \sum_{i \in K} \sigma_i^s(v) \left(1 - \frac{1}{p_i}\right) \right] \bar{\phi}_j^s(v)$$

$$= \phi_j^s(v) = x_j.$$

In other words, the type $v$ student can mimic any $x \in \Delta^K_{\phi^s(v)}$ that satisfies $\sum_{i \in K} p_i x_i \leq \sum_{i \in K} p_i \phi_i^s(v)$ by playing a certain strategy available in the CADA game. Since every feasible $x$ can be mimicked by a strategy available in the equilibrium of CADA, $\phi^s(\cdot)$ is a best response for type $v$, and since it and satisfies the constraints of $[P(v)]$, $\phi^s(\cdot)$ must solve $[P(v)]$.

Moreover, since $\mu$ is atomless and $[P(v)]$ has a linear objective function on a convex set, $\phi^s(v)$ must be the unique solution to $[P(v)]$ for a.e. $v$.

We prove the statement of the theorem by contradiction. Suppose to the contrary that there exists an allocation $\phi(\cdot) \in X^K_{\phi^s}$ that Pareto dominates $\phi^s(\cdot)$. Then, for a.e. $v$, $\phi(v)$ must either

35
solve \( P(v) \) or violate its constraints. For a.e. \( v \), the solution to \( P(v) \) is unique and coincides with \( \phi^*(v) \). This implies that for a.e. \( v \),

\[
\sum_{i \in K} p_i \phi_i(v) \geq \sum_{i \in K} p_i \phi^*_i(v). \tag{10}
\]

Further, for \( \phi \) to Pareto-dominate \( \phi^* \), there must exist a set \( A \subset V \) with \( \mu(A) > 0 \) such that each student \( v \in A \) must strictly prefer \( \phi(v) \) to \( \phi^*(v) \), which must imply (since \( \phi^*(v) \) solves \( P(v) \))

\[
\sum_{i \in K} p_i \phi_i(v) > \sum_{i \in K} p_i \phi^*_i(v), \forall v \in A. \tag{11}
\]

Combining (10) and (11), we get

\[
\sum_{i \in K} p_i \int \phi_i(v) d\mu(v) > \sum_{i \in K} p_i \int \phi^*_i(v) d\mu(v). \tag{12}
\]

Now since \( \phi(\cdot) \in X \), for each \( i \in S \),

\[
\int \phi_i(v) d\mu(v) = 1 = \int \phi^*_i(v) d\mu(v).
\]

Multiplying both sides by \( p_i \) and summing over \( K \), we get

\[
\sum_{i \in K} p_i \int \phi_i(v) d\mu(v) = \sum_{i \in K} p_i \int \phi^*_i(v) d\mu(v),
\]

which contradicts (12). We thus conclude that \( \phi^* \) is Pareto optimal within \( K \).

Part (iii): Consider the following maximization problem for every \( v \in V \):

\[
[\overline{P}(v)] \quad \max_{x \in \Delta} \sum_{i \in S} v_i x_i \text{ subject to } \sum_{i \in K} p_i x_i \leq 1.
\]

When we have only one undersubscribed school, say \( a \), then its assignment is determined by \( x_a = 1 - \sum_{i \in K} x_i \). Therefore, an assignment \( x \in \Delta \) is feasible in CADA game if (and only if) the constraint of \([\overline{P}(v)]\) holds.

Now consider the following maximization problem:

\[
[\overline{P}'(v)] \quad \max_{x \in \Delta} \sum_{i \in S} v_i x_i \text{ subject to } \sum_{i \in K} p_i x_i \leq \sum_{i \in K} p_i \phi^*_i(v).
\]

Since \( \phi^*(\cdot) \) solves a less constrained problem \([\overline{P}(v)]\) and is still feasible in \([\overline{P}'(v)]\), it must be an optimal solution for \([\overline{P}'(v)]\). The rest of the proof is shown by the same argument as in Part (ii).
Part (i): The argument in the text already established that the allocation cannot admit a trading cycle that includes both oversubscribed and unsubscribed schools. It cannot admit a trading cycle comprising only oversubscribed schools, since the allocation is PE within these schools, by Part (ii), making it OE within the schools, by Lemma 2-(ii). It cannot admit a trading cycle comprising only undersubscribed schools, since the logic of Theorem 4-(i) implies that it is OE within undersubscribed schools. Since the allocation cannot admit any trading cycle, it must be OE.

Proof of Theorem 6: Consider first a DA algorithm with any random tie-breaking. Since all students submit the same ranking of the schools, they are assigned to each school with the same probability $1/n$. In other words, the allocation is $\phi^{DA}(v) = (1/n, \ldots, 1/n)$ for all $v$.

Consider now CADA algorithm and an associated equilibrium $\sigma^*$. Then, a fraction $\alpha^*_i := \int \sigma^*_i(v)d\mu(v)$ of students target $i \in S$ in equilibrium. The equilibrium induces a mapping $\varphi^* : S \mapsto \Delta$, such that a student is assigned to school $j$ with probability $\varphi^*_j(i)$ if she targets $i$.

Since the capacity of each school is filled in equilibrium, we must have, for each $j \in S$,

$$\sum_{i \in S} \alpha^*_i \varphi^*_j(i) = 1. \tag{13}$$

That is, a measure $\alpha^*_i$ of students target $i$, and a fraction $\varphi^*_j(i)$ of those is assigned to school $j$. Summing the product over all $i$ then gives the measure of students assigned to $j$, which must equal its capacity, 1.

Consider a student with any arbitrary $v \in V$. We show that there is a strategy she can employ to mimic the random assignment $\phi^{DA}$. Suppose she randomizes by targeting school $i$ with probability

$$y_i := \frac{\alpha^*_i}{\sum_j \alpha^*_j} = \frac{\alpha^*_i}{n}.$$ 

Then, the probability that she will be assigned to any school $k$ is

$$\sum_j y_j \varphi^*_k(j) = \sum_j \frac{\alpha^*_j}{n} \varphi^*_k(j) = \frac{1}{n},$$

where the second equality follows from (13). That is, she can replicate the same ex ante assignment with the randomization strategy as $\phi^{DA}(v)$. Hence, the student must be at least weakly better off under CADA.
Figure 3: Welfare as Percentage of First Best

Figure 4: Percentage of Students Getting Their First Choice
Figure 5: Average Utility of Receivers of kth Choice, CADA vs DASTB

Figure 6: Average Number of Popular Schools and Oversubscribed Schools
Figure 7: Welfare as Percentage of First Best - with priorities