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This paper o®ers a new approach to the study of economic problems usu-

ally modeled as games of incomplete information with discontinuous payo®s.

Typically, the discontinuities arise from indeterminacies (ties) in the under-

lying problem. The point of view taken here is that the tie-breaking rules

which resolve these indeterminacies should be viewed as part of the solution

rather than part of the description of the model. A solution is therefore a

tie-breaking rule together with strategies satisfying the usual best-response

criterion. When information is incomplete, solutions need not exist; that is,

there may be no tie-breaking rule that is compatible with the existence of

strategy pro¯les satisfying the usual best-response criteria. It is shown that

the introduction of incentive compatible communication (cheap talk) restores

existence.
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1 Introduction

Economics is replete with situations in which privately informed agents be-

have strategically; such situations are usually modeled as games of incom-

plete information. As Harsanyi showed, the equilibrium analysis of such

games is no more complicated than the equilibrium analysis of games of

complete information | provided the set of possible types of agents and

the set of actions available to agents are ¯nite. However, in many familiar

situations | including Bertrand price competition, Cournot quantity com-

petition, Hotelling spatial competition, games of timing, and auctions |

actions are naturally modeled as continuous variables. Strategic analysis of

such situations is di±cult because tie-breaking rules | prescribing behavior

of the auctioneer when agents submit the same bid for instance | lead to

payo® functions that are discontinuous in actions. Much of the existing anal-

ysis of such situations avoids the consequences of discontinuity by imposing

conditions (such as private values, symmetric information, non-atomicity of

prior distributions, etc.) that guarantee ties do not occur at equilibrium and

hence that discontinuities do not matter.2 As soon as we leave the simplest

environments, however, we ¯nd situations in which ties do occur and discon-

tinuities do matter | indeed, we ¯nd situations in which equilibrium does

not exist.

For contexts in which information is complete, Simon and Zame (1990)

(henceforth SZ) argued that such situations should be modeled, not as games

in which payo®s are discontinuous, but rather as games in which payo®s

are only partially determined, and that the tie-breaking rule which leads to

discontinuities in payo®s should be viewed as part of the solution, rather than

as part of the data. SZ show that (with natural conditions), such a solution

(a tie-breaking rule together with a strategy pro¯le satisfying the usual best-

response criteria) always exists. In this paper, we extend this point of view

and result to situations in which information is incomplete.

It might seem at ¯rst glance that this extension would be routine, follow-

ing Harsanyi's method of analyzing a game ¡ of incomplete information by

transforming it into a game ¡¤ of complete information | but it is not. One
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di±culty is that it is not clear how indeterminacies in the game ¡ should be

transformed into indeterminacies in the game ¡¤; another is that it is not

clear what assumptions on ¡ will guarantee that ¡¤ has a solution. Most

importantly, it is not clear how a solution for ¡¤ (if it exists) should be

interpreted as a solution to ¡.

That these di±culties re°ect real problems with existence of a solution,

and not merely with a particular approach, can be seen in a simple example.

Consider a sealed-bid auction with two bidders, whose private valuations

v1; v2 for a single indivisible object are drawn from a joint distribution as

follows:

² with probability 1/2, v1 = 1 and v2 is drawn from the uniform distri-

bution on [1; 2]

² with probability 1/2, v2 = 1 and v1 is drawn from the uniform distri-

bution on [1; 2]

It is easy to see that the only tie-breaking rules that admit any equilibrium

at all have the property that when both bidders bid 1, the object is awarded

to the bidder whose valuation is higher. Given any such a tie-breaking rule,

it is an equilibrium for both bidders always to bid 1. Of course, such a tie-

breaking rule cannot be implemented by an auctioneer who does not observe

the valuations of the bidders, and allowing such observation would hardly

seem consistent with the presumption that this information is private.

Suppose, however, we allow the bidders to announce their types (their

true valuations) as well as their bids. If the auctioneer is constrained to sell

the object at the highest bid and breaks ties by awarding the object to the

bidder who announces the higher valuation, then it is an equilibrium for both

bidders to bid 1 and to truthfully announce their types.3 The key insight of

this paper is that, in considerable generality, this communication is necessary

and su±cient for the existence of a solution.

It is instructive to think about this auction in an environment in which

bids must be in multiples of a smallest monetary unit ±; for simplicity as-
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sume that 1=± is an integer. Independently of the tie-breaking rule, it is an

equilibrium for both players to follow the bidding strategy

b(v) =

(
1¡ ± if v = 1

1 if v > 1
(1)

(Because 1=± is an integer, 1 is a multiple of ±, hence an admissible bid.)

For every ± > 0 the bids convey the information as to which bidder has

the higher valuation, but in the limit when ± = 0 this information is lost;

allowing bidders to announce their valuations restores this lost information.

(This echoes a theme of Christopher Harris.)

As in this simple example, our approach is to extend the model so that

individuals may announce their private information. Such announcements

need not be truthful and do not directly a®ect payo®s; their only role is to

aid in breaking ties. In at least one interpretation (discussed further below),

these announcements can be viewed as \cheap talk." Our main result (The-

orem 1) is that (with natural conditions) this extension always has at least

one solution (a tie-breaking rule together with a strategy pro¯le satisfying

the usual best-response criterion) in which individuals truthfully announce

their private information. Type announcements are thus incentive compat-

ible. We emphasize that the tie-breaking rule will be determined as part

of the solution, and not prescribed exogenously, that the tie-breaking rule

may prescribe di®erent divisions at di®erent ties, and that the tie-breaking

rule may depend on announcements as well as on actions. As the previous

example and others in the text demonstrate, if we are not satis¯ed with such

a tie-breaking rule then we will be faced with many situations in which no

solution exists.

Although the proof of our main result is parallel to the proof of the main

result of SZ, it is by no means a routine extension. (Our analysis would

be much simpler if we restricted attention to ¯nite type spaces, but it would

seem contrived to insist on continuous action spaces and discrete type spaces.)

The text discusses the di®erences between the present argument and that in

SZ in some detail.
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As in SZ, we might interpret an endogenous tie-breaking rule as a proxy

for \actions taken by unseen agents whose behavior is not modeled explic-

itly." For example, although we would commonly model a sealed-bid auction

among N bidders as a simultaneous-move game with N players, it might also

(and perhaps more properly) be modeled as two-stage game with N+1 play-

ers. In the ¯rst stage of this latter game, the N bidders submit simultaneous

bids; in the second stage the auctioneer chooses the winner. If the auction-

eer is constrained (by law, for instance) to choose among the high bidders

then the auctioneer's strategy in the two-stage game corresponds precisely

to an endogenous tie-breaking rule in the simultaneous-move game, and the

subgame perfect equilibria of the two-stage game correspond precisely to so-

lutions of the simultaneous-move game.4;5 In general, the two-stage game will

not admit any (subgame perfect) equilibrium unless we allow the bidders to

communicate their private information. These communications do not a®ect

payo®s | utilities depend only on private information, on bids, and on the

the auctioneer's actions | but the auctioneer conditions his actions on these

communications. Hence communications in the two-stage game | which cor-

respond precisely to announcements in the simultaneous-move game | are

\cheap talk" in a familiar sense. Manelli (1996) provides a very similar use

of cheap talk to guarantee the existence of equilibrium in signalling games.

Alternatively, an endogenous tie-breaking rule might be interpreted as a

proxy for the outcome of an unmodeled second stage game. Thus, in their

analysis of ¯rst-price sealed-bid auctions for a single indivisible items, Maskin

and Riley (2000) adjoin to the sealed-bid stage a second stage in which the

bidders who submitted the high bids in the ¯rst stage participate in a Vickrey

auction. In the private value setting, it is a dominant strategy for bidders in

this second stage Vickrey auction to bid their true values. Thus the second

stage auction induces a tie-breaking rule that awards the item to the bidder

who values it the most.

We should emphasize that our results concern only the existence of solu-

tions in mixed strategies; we have little to say about the existence of solutions

in pure strategies. For recent work on pure strategy equilibrium in auctions

and similar environments, see Maskin and Riley (2000), Reny (1999) and
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Athey (2001).

Of course, the di±culties that arise because of discontinuities are a con-

sequence of our insistence on a model in which action spaces are continuous.

Restricting attention to discrete action spaces, either as an assumption about

the situations to be modeled or as a modeling strategy for approximating con-

tinuous action spaces by discrete action spaces, will yield a game to which

familiar ¯xed point theorems may be applied. However, there are a number of

reasons why models with continuous action spaces may be more satisfactory

than models with discrete action spaces.

(i) The equilibria of the game with discrete action spaces may depend

very sensitively on the particular discretization chosen | but it may

not be obvious that any particular discretization is \correct." When

van Gogh's \Irises" was sold at auction, bids were required to be in

multiples of $100,000, but other auctions frequently allow bids in mul-

tiples of $10 or $1. Indeed, when bids are prices per unit, they may

well be in multiples of $.01 or less. When the strategic variable is time,

the issue is more subtle. Discretization amounts to an assumption that

players can move only at some pre-speci¯ed speed, but there may be

no reason to suppose that all players can move at the same speed |

especially if a great deal can be gained by moving just a little more

quickly.

Of course, continuous action spaces are an idealization, and would not

be of much interest if equilibria in models with continuous action spaces

did not correspond to limits of equilibria in models with discrete action

spaces. Our convergence result (Theorem 2) shows that this is the case:

if we restore information lost in the limit, then equilibria of the discrete

action games converge to equilibria of the continuous action games.

(ii) The decision to model choice variables as continuous can greatly sim-

plify the analysis of equilibrium. In private value auctions, for example,

it is frequently the case that modeling bids bids as discrete variables

leads to a multiplicity of equilibria, while modeling bids as continuous

variables allows the conclusion that equilibrium is (essentially) unique.6
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Moreover, as in Maskin and Riley (2000), modeling bids as continuous

variables allows equilibrium to be characterized as the solutions to dif-

ferential equations.

(iii) Game theory usually simpli¯es the study of strategic interactions by

assuming that choice variables are discrete; general equilibrium theory

usually simpli¯es the study of markets by assuming that commodities

are divisible. If we want to think about strategic interactions in mar-

kets, it seems necessary to accommodate continuous choice variables

in game theory, just as indivisible goods have been accommodated in

general equilibrium theory.

Applications are largely beyond the scope of the present paper, but we do

give one simple application to private value auctions to show how a solution

with communication may sometimes be used as a starting point from which

to derive a solution without communication. Jackson and Swinkels (1999)

and Simon and Zame (1999) provide more extensive elaborations on the same

theme, extending some results of LeBrun (1995, 1999) and Maskin and Riley

(2000).

Following this Introduction, Section 2 presents several examples which

illustrate some of the di±culties we face and the way in which communica-

tion resolves them. Section 3 presents the general model. Section 4 discusses

the extension to allow communication, and discusses our general existence

result and a convergence theorem that follows as a straightforward conse-

quence. Section 5 presents the application to private value auctions. Proofs

are collected in Section 6.
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2 Examples

In the Introduction, we have described a ¯rst price auction with private

values which has the property that no tie-breaking rule that is independent

of private information is compatible with any equilibrium. The analysis and

conclusion depends crucially on the fact that marginal distributions have

atoms (see Section 5). Lest the reader suspect that atoms play a crucial

role in general, we give here a simple example to show that type-dependent

tie-breaking rules may be required as soon as valuations have a common

component.7

Example 1 Consider a sealed-bid ¯rst price auction for a single indivisible

object. There are two bidders; each bidder i observes a private signal ti
(which we identify as i's type). Types are independently and uniformly

distributed on [0; 1]. Given types t1; t2, valuations are

v1(t1; t2) = 5 + t1 ¡ 4t2

v2(t1; t2) = 5¡ 4t1 + t2(2)

After observing private signals, bidders simultaneously submit bids; the high

bidder wins and pays his bid. Ties are resolved according to some speci¯ed

tie-breaking rule.

We claim that no type-independent tie-breaking rule is compatible with

the existence of equilibrium. We defer the messy analysis to Section 6, but

the intuition is not hard to convey.8 Because types are independently

distributed and valuations are increasing in own type, we can use standard

arguments (see Maskin and Riley (2000) for instance) to show that if there

is any equilibrium at all then there is an equilibrium in which bid functions

are weakly increasing and continuous at 0. For intuition, suppose there is

an equilibrium in which bid functions b1; b2 are strictly increasing. Suppose

b1(0) < b2(0). Then the lowest types of bidder 2 always win the object, which

has an expected value less than 5, so b2(0) < 5. But then the lowest types

of bidder 1 never win the object and would prefer to bid slightly above b2(0)
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and win against the lowest types of bidder 2; this would be a contradiction.

Hence b1(0) ¸ b2(0); reversing the roles of bidders 1 and 2 we conclude

that b1(0) = b2(0). If b1(0) = b2(0) < 5 then the lowest types of bidder 1

would prefer to bid slightly more than b1(0) and win more often when bidder

2's type is low and bidder 1's valuation is therefore high; this would be a

contradiction. The only remaining possibility is that b1(0) = b2(0) ¸ 5, but

in that case the winning bid is always at least 5, and hence the expected

payo® to the winner is negative. That means that the ex ante expectation

of one of the bidders must be negative; that bidder would prefer to bid 0.

Again, this would be a contradiction.)

Suppose, however, that we allow the bidders to announce their types

as well as their bids and allow the auctioneer to use these announcements

when breaking ties. Suppose, for instance, that the auctioneer breaks ties so

that a bidder who announces a type above .5 always wins against a bidder

who announces a type below .5, but randomizes with equal probabilities

following all other pairs of announcements.9 Given this tie-breaking rule, it

is an equilibrium for both bidders to bid 3.5, independent of their type, and

to announce their type truthfully. (Verifying that this is an equilibrium is

straightforward but illuminating. Say a bidder is of high type if his signal is

above :5, and a low type otherwise. If bidder 1 is a high type, bidding above

3.5 wins more often only when bidder 2 is also a high type | in which case

bidder 1 would (on average) prefer to lose. Thus, this is not an improving

deviation. On the other hand, if bidder 1 is a low type, bidding above 3.5

guarantees than bidder 1 wins all the time | which yields negative expected

utility. Since the putative equilibrium play yields positive expected utility

to all types of bidder 1, this is not an improving deviation either. Finally, if

bidder 1 bids below 3.5 he never wins, and hence obtains 0 expected utility.

Because putative equilibrium play yields positive expected utility to all types

of bidder 1, this is again not an improving deviation.)

The example above illustrates that without type-dependent tie-breaking

rules, equilibria need not exist. Even when equilibria, do exist, however, it

may happen that the only equilibria are trivial or degenerate in some sense.
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The following example from Jackson (1999) illustrates the point.

Example 2 Consider a sealed-bid second price auction for a single indivisible

object. There are two bidders. Valuations have both a personal component

and a common component; if i's personal component is xi and the common

component is q, bidder i's valuation is axi + (1¡ a)q. Note that a = 0 is the

case of pure private values, while a = 1 is the case of pure common values;

we assume 0 < a < 1.

Prior to the auction, bidder i observes a private signal (xi; ti), which

we identify as his type; xi is i's personal component of the valuation and

ti 2 fL;M;Hg is correlated with the common component q:

² if ti = L then q = 0

² if ti = H then q = v

² if ti = M then q = 0; v with equal probability (so this signal is unin-

formative)

Personal components xi are distributed independently and take on values

0; 1 with equal probability. The true common component q is distributed

independently of x1; x2 and takes on values 0; v with equal probability. If

the common component q = 0, signals are drawn independently from the

distribution that puts probability .5 on each of the alternatives L;M ; if

the common component q = v, signals are drawn independently from the

distribution that puts probability .5 on each of the alternatives M;H.

This auction always admits trivial asymmetric equilibria: one bidder al-

ways bids 1+ v while the other bidder always bids 0. But if the tie-breaking

rule is type-independent, then for some values of a and v this auction ad-

mits no symmetric equilibrium; indeed, for some values of a and v it admits

only equilibria in which at least one type of one player bids above his maxi-

mum possible valuation (conditional on his information). Equilibria in which

such strategies are employed would be ruled out by any sensible notion of

perfection, such as that o®ered by Simon and Stinchcombe (1995). }
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3 Games with Indeterminate Outcomes

A game with indeterminate outcomes consists of:

² a ¯nite set of players N = f1; : : : ; ng

² for each player i, a space Ai of actions; write A = £Ai for the space of

action pro¯les

² for each player i, a space Ti of types; write T = £Ti for the space of

type pro¯les

² a probability measure ¿ on T

² a space − of outcomes

² an outcome correspondence £ : A ! −

² a utility mapping u : graph££ T ! IRN

Note that outcomes depend on actions but not on types. On the other hand,

utilities depend on actions, on outcomes and on types. The interpretation

intended is that for an action pro¯le a 2 A, the set £(a) represents the set

of outcomes that might result if the action pro¯le a is taken. In the usual

¯rst price auction for a single indivisible object, the structure is particu-

larly simple: £(a) is a singleton unless a involves ties, in which case £(a)

represents the probability with which each of the high bidders receives the

object. (Assuming that £(a) assigns positive probability only to the high

bidders represents a natural constraint on the auctioneer. Of course one

might certainly imagine situations in which the auctioneer was subject to

fewer constraints, leading to a di®erent speci¯cation of £.) In an auction

for k (not necessarily identical) divisible objects, actions might be demand

schedules, and £(a) might represent physical or probabilistic divisions of each

of the various objects and charges to the various bidders.
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As usual, we write t¡i for a pro¯le of types of all players other than i,

and T¡i for the space of such type pro¯les. We adopt similar notation for

action pro¯les, strategy pro¯les, marginals, etc.

We assume throughout that

² action spaces Ai and type spaces Ti are compact metric

² ¿ is a Borel measure

² ¿ is absolutely continuous with respect to the product £¿i of its mar-

ginals10

² − is a compact convex11 metrizable subset of a locally convex topo-

logical vector space E

² the outcome correspondence £ is upper-hemi-continuous, with non-

empty compact values

² the utility mapping is continuous12

The game ¡ is a±ne if the correspondence £ has convex values and, for

each action pro¯le a 2 A and type pro¯le t 2 T the function

u(a; ¢; t) : £(a) ! IRN(3)

is a±ne. The meaning of a±neness can be seen easily in a simple perfect

information, ¯rst-price auction for a cake of size 1. Suppose each bidder i

is a von Neumann { Morgenstern expected utility maximizer, whose utility

for cake and money is Ui(c;m) = ui(c) +m; without loss normalize so that

ui(0) = 0; ui(1) = 1. If outcomes are physical divisions of cake and payment,

then bidder i's utility when both bidders bid b and i gets the physical share

µ is ui(µ) ¡ µb. Hence the game is a±ne exactly when the functions ui are

a±ne; with our normalization this means that ui(c) = c. On the other hand,

if outcomes are probabilistic divisions of cake and payment, then (because

i is an expected utility maximizer) bidder i's utility when i bids b and gets
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the probabilistic share µ is µ[ui(1) + b]. Hence the game is always a±ne. In

particular, when outcomes are probabilistic divisions, a±neness is compatible

with risk aversion or with any other attitude toward risk.

If type spaces are singletons an a±ne game with indeterminate outcomes

is equivalent to what SZ calls a game with an endogenous sharing rule.

Following Milgrom and Weber (1985), a distributional strategy for player

i is a probability measure ¾i on Ti £ Ai whose marginal on Ti is ¿i. If

¾ = (¾1; : : : ; ¾n) is a pro¯le of distributional strategies, we write ¹¾ for the

joint distribution on T £A. If f is the Radon-Nikodym derivative of ¿ with

respect to the product ¦i¿i of its marginals, then ¹¾ = f¦i¾i.

If µ : A ! − is a selection from £ (that is, µ(a) 2 £(a) for each a 2 A)

that is universally measurable13 , and ¾ = (¾1; : : : ; ¾n) is a pro¯le of distri-

butional strategies, we de¯ne expected utilities

Eui(¾jµ) = Eui(¾ij¾¡i; µ) =
Z
T£A

ui(a; µ(a); t) d¹¾(4)

A solution for ¡ consists of a universally measurable selection µ from £

and distributional strategies ¾1; : : : ; ¾n which satisfy the usual best response

criterion: for each i and each distributional strategy ¾0i on Ti £ Ai we have

Eui(¾ij¾¡i; µ) ¸ Eui(¾
0

ij¾¡i; µ)(5)

We emphasize that we allow the tie-breaking rule µ to depend on actions but

not on types | which will typically be unobservable.

Alternatively, given a universally measurable selection µ from £, we de-

¯ne a Bayesian game ¡µ by specifying players, action spaces, type spaces and

priors as for ¡, and de¯ning utilities by uµ(a; t) = u(a; µ(a); t). A solution

for ¡ may therefore be identi¯ed as a universally measurable selection µ from

£ and a pro¯le of distributional strategies ¾ = (¾1; : : : ; ¾n) which constitute

a Bayesian Nash equilibrium for ¡µ. If µ is a continuous selection then ¡µ

has continuous payo®s and the existence of equilibrium follows from famil-

iar results. However, the correspondence £ may not admit any continuous

selections, so that the game ¡µ will typically have discontinuous payo®s.
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4 Communication

As our examples show, a game with indeterminate outcomes may not

admit any solutions. In this Section we show how to expand the game to allow

players to communicate their private information. In the presence of natural

assumptions, this communiction guarantees the existence of equilibrium.

Let ¡ be a game with indeterminate outcomes. For mnemonic purposes,

set Si = Ti for each i; we will view elements of Si as announcements and

elements of Ti as true types. The communication extension ¡c is the game

with indeterminate outcomes de¯ned by

² player set N = f1; : : : ; ng

² action spaces Si £Ai

² type spaces Ti

² outcomes −

² outcome correspondence £c : S £A ! −c de¯ned by £c(s; a) = £(a)

² prior ¿

² utility mapping uc : graph£c £ T ! IRN de¯ned by

uc(s; a; !; t) = u(a; !; t)

That is, ¡c di®ers from ¡ only in that we allow players to announce their

types | and hence allow the auctioneer to condition on these announcements

| but the announcements are not payo® relevant.

Theorem 1 If ¡ is an a±ne game with indeterminate outcomes then the

extension ¡c admits a solution in which the tie-breaking rule is Borel mea-

surable and type announcements are truthful.14
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If information is complete, the extension ¡c coincides with ¡. As we

have noted earlier, when information is complete, a game with indeterminate

outcomes is equivalent to a game with an endogenous sharing rule in the sense

of SZ. In this case, therefore, Theorem 1 reduces to the main result of SZ.

The proof of Theorem 1 is in six steps, paralleling the proof of the main

result of SZ, but with substantial di®erences, indicated below.

Step 1: Finite Approximations Given a game ¡ and the

communication extension ¡c, we construct families f¡rg, f¡crg

of games with ¯nite action spaces (but the same type spaces as

¡) which \approximate" ¡, ¡c. For each of these games we choose

an arbitrary selection qr from the outcome correspondence, and

use these selections to de¯ne a Bayesian game. Each of these

Bayesian games admits a Bayesian Nash equilibrium ¾r in distri-

butional strategies, having the property that type announcements

are truthful. Each qr, which is a function on A, has trivial exten-

sions µr : S£A ! −, ~µr : S£A£T ! − which are independent of

announcements and types. [The construction here is more elab-

orate than in SZ | because we must take account of outcomes

and types | but very similar.]

Step 2: Limits The strategy pro¯les ¾r correspond to joint dis-

tributions ¹¾r, and induce outcome-valued vector measures ~µr¹¾r.

Passing to a subsequence as necessary, we show that (¾r) con-

verges to a strategy pro¯le ¾ for the game ¡c, and (~µr¹¾r) converges

to an outcome-valued vector measure º of the form º = ~µ¹¾ where

µ is a selection from the outcome correspondence £c and ~µ is the

trivial extension to S £ A£ T that does not depend on types.

Step 3: Convergence of Utilities Convergence of strat-

egy pro¯les and selections implies convergence of utilities. [This

step, which is required because we work in outcome space, has no

analog in SZ, which works entirely in utility space.]

Step 4: Identifying Better Responses The desired solu-

tion strategy pro¯le is ¾; the tie-breaking rule will be a pertur-
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bation of µ. Perturbation may be necessary because ~µ (hence µ)

is only determined up to sets of ¹¾-measure 0, leaving open the

possibility that there are pro¯table deviations. For each player i

we identify a set Hi ½ Ai where perturbations may be necessary

to prevent deviations by that player, and use the absence of prof-

itable deviations in the games ¡r to show that Hi has measure

0. [The argument here is di®erent than in SZ because the depen-

dence of utilities on types requires that we be substantially more

careful in the construction of the corresponding deviations in the

¯nite games.]

Step 5: Perturbation We construct the necessary pertur-

bations on the measure 0 sets Hi. [The argument here is much

di®erent than in SZ and more subtle in several ways. The pertur-

bations are constructed to punish the potential deviator. In SZ

all that is necessary is to choose the worst possible outcome for

the deviator. Here, however, utilities depend on types, so there

need be no outcome that is \worst possible" for all types of the

potential deviator | indeed, there need be no outcome that is

uniformly bad for all types of the potential deviator. We there-

fore use punishment outcomes constructed as limits of outcomes

in the ¯nite games. The argument is subtle because these limits

must be taken in the weak sense of convergence of vector val-

ued measures, and because these various punishments must be

assembled in a measurable way. The construction relies on an

in¯nite dimensional extension of a measurable selection theorem

of Dellacherie and Meyer (1982).]

Step 6: Equilibrium We verify that the perturbed selection

µ0 and strategy pro¯le ¾ constitute a solution for ¡c.

The same argument that proves Theorem 1 establishes a convergence re-

sult for equilibria of sequences of games. In order to give a precise statement,

we ¯rst need to describe the relevant notion of convergence of games.

For r = 0; 1; : : : ; let ¡r = hN r; (Ar
i ); (T

r
i ); ¿

r;−r;£r; uri be a game with
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indeterminate outcomes. We assume that all the games in question have the

same set of players N r = N = f1; : : : ; ng, that the action spaces Ar
i lie in a

¯xed compact metric space Ai, that the type spaces T
r
i lie in a ¯xed compact

metric space Ti, and that the outcome spaces −r lie in a ¯xed compact metric

space −. We say that the sequence of games f¡rg converges to ¡0 if

² for each i, Ar
i ! A0

i in the Hausdor® metric

² for each i, T r
i ! A0

i in the Hausdor® metric

² −r ! −0 in the Hausdor® metric

² the graph of £r : Ar ! −r converges to the graph of £0 : A0 ! −0 in

the Hausdor® metric

² ¿ r ! ¿ in the total variation norm (as measures on T = T1 £ : : :£ Tn)

² for every " > 0 there is a ± > 0 and an index r0 such that if

{ r ¸ r0

{ (ar; !r; tr) 2 graph£r

{ (a0; !0; t0) 2 graph£0

{ dist
³
(ar; !r; tr); (a0; !0; t0)

´
< ±

then jur(ar; !r; tr)¡ u0(a0; !0; t0)j < "

Note that we require convergence of priors in the variation norm | not in

the weak* topology | and uniform convergence of utilities.

Our convergence theorem can be formulated in the following way.

Theorem 2 Let f¡rg be a sequence of a±ne games with indeterminate out-

comes, converging to the a±ne game with indeterminate outcomes ¡0. For

every r ¸ 1, let µr; ¾r
1
; : : : ; ¾r

n be a solution for the communication exten-

sion ¡rc in which type announcements are truthful. Then there is a solu-

tion µ0;¾0

1
; : : : ; ¾0

n for the communication extension ¡0c in which the type

announcements are truthful and a subsequence f¡rjg such that:
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² for each i, ¾rj

i ! ¾0

i weak*

² if ¹¾rj ; ¹¾0 are the joint distributions of actions then µr
j

¹¾rj ! µ0¹¾0 weak*

² for each i, Eur
jc
i (¾rj ; µr

j

) ! Eu0ci (¾
0; µ0)

Some consequences of this convergence theorem are worth noting.

i) Theorem 1 itself is a direct application of Theorem 2 (as sketched

above).

ii) If ¡ is a symmetric game with indeterminate outcomes, then the com-

munication extension ¡c has a symmetric solution. (Write ¡c as the

limit of symmetric ¯nite games ¡r. Each ¡r has a symmetric solution,

which induces a symmetric solution of the communication extension

¡rc. Some subsequence of these symmetric solutions converges to a

solution of the communication extension ¡c, and any limit of such a

subsequence is a symmetric solution.) Note that symmetry entails that

the tie-breaking rule depends on actions and type announcements but

not on names of the players.

iii) The communication extension of a game with indeterminate outcomes

admits a solution that is \perfect" in the sense of Simon and Stinch-

combe (1995). This is useful because, as we have noted earlier, perfec-

tion rules out trivial equilibria.

We have focused on solutions in which type announcements are truthful,

but this probably involves little loss. Indeed, if ¡ is a game with indeter-

minate outcomes, ¡c is the communication extension, and µ; ¾ is a solution

of ¡c for which type announcements are not truthful, we can use a familiar

revelation argument to construct a solution µ0; ¾0 of ¡c which prescribes the

same actions, and truthful type announcements, and which induces the same

outcome distribution.15
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5 Private Value Auctions

Our existence result (Theorem 1) guarantees that the communication

extension of a game admits solutions in which players communicate their

private information. However, in many circumstances it is possible to turn

a solution with communication into a solution without communication, and

hence obtain a solution to the game without communication. The following

simple private value auction will illustrate the point. For more on private

value auctions, see LeBrun (1995, 1999), Maskin and Riley (2000), Athey

(2001), Jackson and Swinkels (1999), Simon and Zame (1999) and Bresky

(2000).

Example 3 Consider a sealed bid ¯rst price auction for a single indivisible

item. Risk neutral bidders i = 1; : : : ; n draw a private value ti according to a

joint distribution ¿ on T = T1£ : : : Tn = [0; 1]n; i's utility if he wins the item

and pays b is ¿i ¡ b. Write ¿i for the marginal of ¿ on Ti. We assume that

each of the marginals ¿i is non-atomic, and that ¿ is absolutely continuous

with respect to the product ¿1£ : : :£ ¿n of the marginals. Note that, subject

to the limitation that the joint distribution be absolutely continuous with

respect to the product of its marginals, we allow valuations to be correlated

or a±liated to an arbitrary extent.

If bids are constrained to be multiples of a smallest monetary unit, the

game corresponding to this auction admits a perfect equilibrium, and such

an equilibrium has the property that bidders never submit bids above their

true values. Theorem 2 therefore guarantees that when arbitrary bids are

allowed the communication extension of the game has a solution µ; ¾1; : : : ; ¾n
with the property that bidders never submits bids above their true values.

We assert that in any such solution, the probability that a tie for the high

bid occurs is 0. Because the details are a little fussy, we merely indicate the

argument here, referring to Jackson and Swinkels (1999) or Simon and Zame

(1999) for details.
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(i) Whenever a tie for the highest bid occurs, there is at most one bidder

whose value exceeds the bid, and this bidder must win the item with

probability 1. (Otherwise, some bidder who does not win such ties with

probability 1 would gain by bidding a little bit more.)

(ii) Ties for the highest bid occur with probability 0. (To see this, ¯x a

bidder i and a type ti of bidder i, and condition on bidder i being type

ti, bidding below his true value, being the highest bidder, and winning

a tie. In view of (i), this can only happen if the other bidders who

are tied with i are bidding their true value and i is bidding precisely

this value. Absolute continuity of information and non-atomicity of

marginal distributions implies that this is a set of probability 0. In-

tegrating and applying Fubini's theorem guarantees that ties for the

highest bid occur with probability 0.)

Since ties for the high bid occur with probability 0, the tie-breaking rule is

irrelevant; in particular, if ' is the tie-breaking rule that randomizes equally

among all high bidders then '; ¾ is also a solution for the game with com-

munication, whence '; ¾ is a solution for the game without communication.

(To see this, suppose that '; ¾ were not a solution, so that some bidder, say

bidder 1, would prefer to follow a strategy ¾0
1
6= ¾1. If ties occur with pos-

itive probability when bidders follow ¾0
1
; ¾2; : : : ; ¾n then we could construct

another strategy ¾00
1
for bidder 1, in which 1 bids slightly more than in ¾0

1
,

which 1 still prefers to ¾1, and which has the property that ties occur with

0 probability when bidders follow ¾00
1
; ¾2; : : : ; ¾n. But if ties occur with 0

probability when bidders follow ¾00
1
; ¾2; : : : ; ¾n then payo®s will be the same

as when bidders follow ¾. That is, ¾00
1
is not preferred by bidder 1, hence ¾0

1

is not preferred by bidder 1.)16 }

An additional point is worth noting. Assume in addition that valuations

are independently distributed, and write bi(ti) for i's (perhaps mixed) equi-

librium bidding strategy conditional on observing the valuation ti. It is easily

seen that bi is strictly monotone, in the sense that if ti > t0i then the every bid

in the support of bi(ti) exceeds every bid in the support of bi(t
0

i). It follows
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that bi(ti) is a pure strategy for almost all valuations ti. Since ties occur with

probability 0, we can change the bidding strategies on a set of measure 0 and

obtain a pure strategy equilibrium.
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6 Proofs

6.1 Details of Example 1

As promised, we provide here the details that no type-independent tie-

breaking rule is compatible with the existence of any equilibrium. To see this,

¯x a type-independent tie-breaking rule, and assume that b1; b2 constitute an

equilibrium in mixed behavioral strategies. Because signals are independent

and valuations are strictly increasing in own signal, the proof of Proposition

1 in Maskin and Riley (2000) is easily adapted to show that there is no loss in

assuming the bidding strategies b1; b2 are monotone, in the sense that if t0i > ti
then every bid in the support of bi(t

0

i) is at least as large as every bid in the

support of bi(ti). It follows immediately that there is an at most countable

set of signals ti for which the support of bi(ti) is not a singleton. For such ti,

replace bi by the in¯mum of the support of bi(ti). It is easily checked that

the modi¯ed bid functions b1; b2 again constitute an equilibrium. Thus we

have an equilibrium in monotone, pure behavioral strategies. Altering bids

following signals 0; 1 if necessary, there is no loss in assuming that b1; b2 are

continuous at 0; 1.

Let b = maxfb1(0); b2(0)g; and for each i; let ¿i = suppftjbi(t) · bg:

Assume that ¿2 = 0: Then, b1(0) wins with probability 0, and so earns 0.

But, a bid of b+ " by 1 wins with positive probability, and for " small, does

so only when t2 »= 0 (using that ¿2 = 0) so that v1 »= 5 + 0 ¡ 4(0) = 5:

For there not to be a pro¯table deviation of this form, it must thus be that

b ¸ 5; and hence that the winning bid is always at least 5: But, the average

value of the object, even if allocated optimally to the player with larger t;

is 5 + 2=3 ¡ 4(1=3) < 5, since 2/3 and 1/3 are the expected higher and

lower values of two draws from the uniform distribution. So, someone is

losing money on average, and would be better o® to bid 0 always. This is a

contradiction, and so ¿2 > 0: Arguing symmetrically, ¿1 > 0:

Assume both players use b with positive probability, and assume that

ties at b are broken with probability p 2 (0; 1) in favor of player 1. Let
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t0 and t00, t0 < t00; be two values of t for which b1(t) = b: It follows that

5+ t0¡ 4E(t2jb2(t2) = b) ¸ b, else 1 would be better to bid b¡ " with t0. But

then 5 + t00 ¡ 4E(t2jb2(t2) = b) > b, and so 1 should deviate to b+ " with t00:

This is a contradiction. There are thus two remaining possibilities.

(i) Assume ¯rst that one player, w.l.o.g. player 2, does not use b with

positive probability (since ¿2 > 0; this implies b2(0) < b; and also that player

1 bids b with positive probability since ¿1 > 0; and by de¯nition of b): Now,

with t = ¿2 ¡ "; player 2 never wins, but by bidding b+ " wins with positive

probability for an expected value of 5+¿2¡"¡4(¿1=2): So, for 2 not to want

to deviate, it must be that b ¸ 5 + ¿2 ¡ 4(¿1=2) > 5 + ¿2 ¡ 4¿1:

(ii) Assume next that both players use b with positive probability. Then,

by the above, one player, again, w.l.o.g. player 2, always has ties at b decided

against him. Let (°1; ¿1) be the (non-empty) interval over which player 1 bids

b: Then, with t = ¿2 ¡ "; player 2 wins only when t1 < °1; while by bidding

" more, he can also win when t1 2 (°1; ¿1) : For this not to be a pro¯table

deviation, it must be that b ¸ 5 + ¿2 ¡ 4 (°1 + ¿1) =2 > 5 + ¿2 ¡ 4¿1:

Assume that ¿2 < 1: Pick t = ¿2 + "; and consider replacing b2(t) (which

is by de¯nition greater than b) by any bid in (b; b2(t)): This bid pays less in

the (positive probability, since ¿1 > 0) event that it still wins, and when it

changes a win into a loss, t1 ¸ ¿1; and hence v2 is at best 5+ ¿2+ "¡4¿1 < b:

So, this is a pro¯table deviation, a contradiction. Thus, ¿2 = 1:

Since ¿2 = 1; it follows that 1 wins with probability 1 (since 2 does not

win when t2 < 1); and hence that he always bids b (he bids at least this

by de¯nition, and need not bid any more since ¿2 = 1). Hence, b · 3 =

5+0¡4(1=2); otherwise 1 is better to bid 0 with t1 near 0. But then, player

2 can pro¯tably bid b+" when he has t above 0, a contradiction. Thus, there

is no equilibrium to this game.

6.2 Proofs of Theorems 1 and 2
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We need some preliminary results. We begin by establishing some facts

about weak* convergence and marginals.

Lemma 1 Let X;Y be compact metric spaces, let ¸ be a positive measure on

X, let f be a positive ¸-integrable function on X, and let (°n) be a sequence

of positive measures on Y £X whose marginals on X are ¸. If °n ! ° in

the weak* topology, then

(i) the marginal of ° on X is ¸

(ii) f°n ! f° in the weak* topology

Proof To see (i), ¯x an open set U ½ X and " > 0. Because X is compact

and metrizable, U is the increasing union of compact sets. Thus, we can

choose a compact set K ½ U such that

¸(U)¡ ¸(K) < " and °(Y £ U)¡ °(Y £K) < "(6)

Use Urysohn's lemma to choose a continuous function g : X ! [0; 1] which

is 1 on K and 0 on the complement of U . Then

°(Y £K) ·
Z
g d° · °(Y £ U)(7)

Because the marginal of °n on X is ¸ and g is independent of Y , it follows

that, for each n

¸(K) = °n(Y £K) ·
Z
g d°n · °n(Y £ U) = ¸(U)(8)

for each n. Weak* convergence of (°n) to ° guarantees that for n su±ciently

large ¯̄̄
¯
Z

g d°n ¡
Z
g d°

¯̄̄
¯ < "(9)

Combining these inequalities, we conclude that j°(Y £ U)¡ ¸(U)j < ". Be-

cause " > 0 is arbitrary, it follows that °(Y £ U) = ¸(U). Because U is an

arbitrary open set, it follows that the marginal of ° on X is ¸, as asserted.
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To see (ii), ¯x a continuous real-valued function h on X £ Y and " > 0.

Write M = supX£Y jhj. Because f is integrable, there is a ± > 0 such thatR
E f d¸ < " whenever ¸(E) < ±; without loss we may assume ± < ". Use

Lusin's theorem to choose a compact set K ½ X such that ¸(X n K) < ±

and the restriction of f to K is continuous. Choose an open set U ¾ K such

that ¸(U nK) < "=maxK f . Use Urysohn's lemma and the Tietze extension

theorem to choose a continuous function ¹f on X which agrees with f on K,

vanishes o® U , and for which maxX ¹f = maxK f .

Recalling that the marginal of ° on X is ¸, that
R
E f d¸ < " whenever

¸(E) < ±, that ¸(X nK) < ± and that ¸(U nK) < "=maxX ¹f , yields¯̄̄
¯
Z

h ¹f d°n ¡
Z
hf d°

¯̄̄
¯ ·

Z
Y£(UnK)

jh ¹f ¡ hf j d° +
Z
Y£(XnU)

jh ¹f ¡ hf j d°

· M

"Z
Y£(UnK)

¹f d°

+
Z
Y£(UnK)

f d° +
Z
Y£(XnU)

f d°

#

= M

"Z
UnK

¹f d¸+
Z
UnK

f d¸+
Z
XnU

f d¸

#

· 3"M(10)

Similarly ¯̄̄
¯
Z

h ¹f d°n ¡
Z
hf d°

¯̄̄
¯ · 3"M(11)

Weak* convergence of (°n) to ° entails that for n su±ciently large¯̄̄
¯
Z
h ¹f d°n ¡

Z
h ¹f d°

¯̄̄
¯ < "(12)

Combining these inequalities, we conclude that for n su±ciently large¯̄̄
¯
Z
hf d°n ¡

Z
hf d°

¯̄̄
¯ < "+ 6"M(13)

Because " > 0 is arbitrary, it follows that
R
hf d°n !

R
hf d°. Because h is

arbitrary, we conclude that f°n ! f° weak*, as asserted.
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The proof makes use of the theory of vector measures and integration of

vector-valued functions. An excellent reference is Diestel and Uhl (1977); we

collect the basic information here. Let X be a set and F a sigma-algebra

of subsets of X. (When X is a compact metric space we take F to be the

sigma-algebra of Borel sets.) Let E be a Hausdor®, locally convex topological

vector space and let E¤ be its dual, the space of continuous linear functionals.

For ! 2 E; ' 2 E¤, we write ' ¢! for the value of ' at !. A vector measure on

X with values in E (an E-valued measure) is a (weakly) countably-additive

function ¹ : F ! E.17 For ¹ an E-valued measure and ' 2 E¤, we write

' ¢ ¹ for the real-valued measure de¯ned by ' ¢ ¹(E) = ' ¢ (¹(E)).

The function f : X ! E is weakly measurable if the real-valued compo-

sition ' ¢ f is measurable for each ' 2 E¤. (Equivalently, the inverse image

of every weakly open set is measurable.) If ¸ is a measure on F , the weakly

measurable function f is Pettis integrable (or weakly integrable) if for each

E 2 F there is an element !E 2 E such that ' ¢ !E =
R
E ' ¢ f d¸ for all

' 2 E¤. If this is the case, we de¯ne
R
E f d¸ = !E to be the Pettis integral

of f on E. If f is Pettis integrable then the function ¹ : F ! E de¯ned by

¹(E) =
R
E f d¸ is an E-valued measure. In this circumstance, we say that f

is the Radon-Nikodym derivative of ¹ with respect to ¸ and write ¹ = f¸.

Recall that weak* convergence of scalar measures on a compact space X

is de¯ned by:

¸® ! ¸ ()
Z
f d¸® !

Z
f d¸ for all continuous f(14)

Weak* convergence of E-valued measures on X is de¯ned by

¹® ! ¹ () ' ¢ ¹® ! ' ¢ ¹ (weak*) for all ' 2 E¤(15)

If − ½ E and £ : X ! − is a correspondence, we write M(X;−) for

the space of E-valued measures ¹ for which ¹(E) 2 − for each E 2 F ,

and AC(X;£) for the space of E-valued measures ¹ for which there exists a

probability measure ¸ and a Pettis integrable selection z from £ such that

¹ = z¸. The ¯rst part of the next lemma is a standard result for which there
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seems to be no convenient reference; the second part extends Lemma 2 of SZ

to the in¯nite dimensional context.

Lemma 2 If X is a compact metric space, E is a Hausdor® locally con-

vex topological vector space, − ½ E is a compact convex metrizable subset,

and £ : X ! − is an upper-hemi-continuous correspondence with non-empty

compact convex values, then

(i) M(X;−) is a compact metric space (in the weak* topology)

(ii) AC(X;£) is a closed subset of M(X;−)

Proof To establish (i), we ¯rst show that M(X;−) is compact. To this end,

let (¹®) ½ M(X;−) be a net. For each ' 2 E¤, (' ¢ ¹®) is a net of scalar

measures, and hence has a convergent subnet. We may therefore extract a

single subnet (¹¯) of (¹®) with the property that for each ' 2 E¤ there is a

scalar measure ¸' such that ' ¢ ¹¯ ! ¸' weak*. For each Borel set E ½ X,

compactness and convexity of − guarantees that we may implicitly de¯ne

a unique element ¹(E) = − by requiring that ' ¢ ¹(E) = ¸'(E) for every

' 2 E¤. The de¯nitions imply immediately that ¹ 2 M(X;−) and ¹¯ ! ¹

weak*.

To see that M(X;−) is metrizable, use compactness and metrizability of

X to choose a countable dense subset ffig of the space C(X) of real-valued

continuous functions on X and use compactness and metrizability of − to

choose a countable family ('j) ½ E¤ of linear functionals that distinguishes

points of −. (That is, ! = !0 if and only if 'j(!) = 'j(!
0) for each j.) Write

kfik = sup
x2X

jfi(x)j ; k'jk− = sup
!2−

j' ¢ !j(16)

De¯ne a distance function on M(X;−) by

d(¹; ¹0) =
X
i;j

2¡i¡j

kfik+ k'jk−

¯̄̄
¯
Z

fi d('j ¢ ¹)¡
Z
fi d('j ¢ ¹

0)
¯̄̄
¯(17)
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This is easily seen to be a metric and it is easily checked that the metric

topology is weaker than the weak* topology. Since the weak* topology is

compact, the metric topology coincides with the weak* topology. This com-

pletes the proof of (i).

To establish (ii), we must show ¯rst that AC(X;£) is a subset ofM(X;−).

To see this, let ¹ 2 AC(X;£) and write ¹ = z¸ for some probability measure

¸ and some selection z of £. By de¯nition, for each Borel set E ½ X and

each ' 2 E¤ we have '¢¹(E) =
R
' ¢z d¸. This is the integral of a scalar func-

tion with respect to a probability measure, so lies in the closed convex hull

of 0 and the range of ' ¢z, which is a subset of ' ¢−.18 Since ' ¢¹(E) 2 ' ¢−

for each ' 2 E¤ and − is convex, the separation theorem guarantees that

¹(E) 2 −. Since E is arbitrary, it follows that ¹ 2 AC(X;£) as desired.

To complete the proof, let (¹n) ½ AC(X;£) be a sequence converging

weak* to ¹ 2 M(X;−); we must show ¹ 2 AC(X;£). For each n, choose

a probability measure ¸n and a selection zn from £ such that ¹n = zn¸n.

Passing to a subsequence if necessary, we may assume that there is probability

measure ¸ such that ¸n ! ¸ weak*; we construct a selection z from £ such

that ¹ = z¸.

It is convenient to imbed − in IR1. To accomplish this, let f'jg be

the countable family of linear functionals chosen above and de¯ne a linear

mapping © : E ! IR1 by ©(x) = ('1(x); : : : ; ). If IR1 is endowed with the

product topology, this mapping is continuous. Because the collection ('j)

distinguishes points of −, the restriction of © to − is one-to-one; because −

is compact, the restriction of © to − is a homeomorphism. Because we can

now replace −;£; E by ©(−);© ± £; IR1, we may assume without loss that

E = IR1.

For each positive integer k, let ¦k : IR1 ! IRk be the projection on

the ¯rst k coordinates and let ½k : IRk ! IRk¡1 be the projection on the

¯rst k ¡ 1 coordinates. Fix an index k. The composition ¦k ± ¹n is a vector

measure with values in IRk and the composition ¦k±zn is a selection from the

correspondence ¦k±£. Continuity of ¦k implies that the sequence (¦k±¹n) of

28



IRk-valued measures converges weak* to ¦k ±¹, so Lemma 2 of SZ guarantees

that there is a selection zk from ¦k ±£ such that ¦k ± ¹ = zk¸.

Note that ½k ± ¦k ± ¹ = ¦k¡1 ± ¹. Uniqueness of the Radon-Nikodym

derivative implies that ½k ± zk = zk¡1 almost everywhere (with respect to

¸). We can therefore choose a set X0 ½ X such that ¸(X n X0) = 0 and

½k ± zk(x) = zk¡1(x) for every x 2 X0 and every index k. For each index

k and x 2 X0, write £k(x) = ¦¡1k (zk(x)) \ £(x). Compactness of £(x)

and continuity of ¦k guarantee that £k(x) is compact, and the construction

of X0 guarantee that (£k(x)) is a decreasing sequence of compact sets, so

the intersection
T
£k(x) is not empty. Our construction guarantees that

this intersection consists of a single point, which we de¯ne to be z(x). By

construction, z is a selection from £ on X0. The graph of z is the intersection

of the graphs of the measurable correspondences ¦¡1k (zk(¢)) \ £(¢), so z is

measurable. Extend z arbitrarily to a measurable selection on all of X.

Our construction guarantees that, for each k, zk = ¦k ± z is the Radon-

Nikodym derivative of ¦k±¹. Linearity of ¦k guarantees that for every Borel

subset G ½ X we have

¦k[¹(G)] = (¦k ± ¹)(G)

= ¹k(G)

=
Z
G
zk d¸

=
Z
G
(¦k ± z) d¸

= ¦k

µZ
G
z d¸

¶
(18)

Since this is true for every k, we conclude that ¹(G) =
R
G z d¸, as desired.

The next lemma is an extension of a result of Dellacherie and Meyer

(1982) to the present context.19

Lemma 3 Let X;Y be a compact metric spaces, let E be a locally convex

topological vector space, let − be a compact convex metrizable subset of E,
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and let £ : X ! − be an upper-hemi-continuous correspondence with non-

empty, compact, convex values. Let y 7! ¹y be a weak* measurable family of

E-valued measures on X having the property that for every y 2 Y there is a

selection zy from £ such that ¹y = zy¸. Then there is a Borel measurable

function Z : X £Y ! E such that for each y 2 Y , Z(¢; y) is a selection from

£ and ¹y = Z(¢; y)¸. (That is, Z(¢; y) = zy almost everywhere with respect

to ¸.)

Proof As in the proof of Lemma 2, there is no loss in assuming that E = IR1;

we adopt the notation of that proof. For each k, f¦k ± ¹y : y 2 Y g is

a weak* measurable family of measures on X with values in IRk, and for

every y 2 Y the composition ¦k ± zy is a selection from ¦k ± £ such that

¦k±¹y = (¦k±zy)¸. Applying Theorem V.58 of Dellacherie and Meyer (1982)

to each coordinate separately, we may ¯nd a Borel function Zk : X£Y ! IRk

such that ¦k ± ¹y = Zk(¢; ¢; y)¸ for each y 2 Y . As in the proof of Lemma 2,

we can construct a Borel function Z¤ : X£Y ! IR1 such that ¦k ±Z¤ = Zk

for each k.

The construction guarantees that ¹y = Z¤(¢; y)¸ for every y 2 Y . How-

ever, Z¤ need not be quite the function we want because it need not be a

selection from £; a perturbation will achieve this. To accomplish this per-

turbation, ¯x an arbitrary Borel measurable selection z0 of £. De¯ne the

Borel function Q : X £Y ! X £−£Y by Q(x; y) = (x; Z¤(x; y); y). De¯ne

a Borel measurable selection Z from £ by

Z(x; y) =

(
Z¤(x; y) if (x; y) 2 Q¡1[(graph£)£ Y ]

z0(x) otherwise
(19)

Uniqueness of the Radon-Nikodym derivative implies that for every y 2 Y ,

Z¤(x; y) = zy(x) for ¸-almost all x 2 X, whence Z(x; y) = Z¤(x; y) = zy(x)

for ¸-almost all x 2 X. Thus Z is the desired mapping.

Finally, it is convenient to isolate a lemma that will be used several times.

If ¡ is a game with action spaces Ai and type spaces Ti and f is any function
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or correspondence de¯ned on A, we write ~f for the trivial extension of f to

A£ T : ~f(a; t) = f(a).

Lemma 4 Let ¡ be an a±ne game with indeterminate outcomes. Let (zr)

be a sequence of selections from the outcome correspondence £ and let (°r)

be a sequence of positive measures on A£T .20 If there is a selection z from

the outcome correspondence £ and a positive measure ° on A£ T such that

°r ! ° and ~zr°r ! ~z° (weak*) then

Z
ui(a; ~z

r(a; t); t) d°r !
Z
ui(a; ~z(a; t); t) d°(20)

for each i.

Proof Fix i. We begin by constructing an approximation to ui by a con-

tinuously weighted sum of a±ne functions. Write E¤ for the dual space of

E (the space of continuous linear functionals, equipped with the topology of

pointwise convergence).

Fix " > 0. For a 2 A; t 2 T , the function ui(a; ¢; t) is a±ne on £(a), so

it can be approximated to within " by an a±ne function on E.21 That is,

there are a constant cat and a linear functional 'at 2 E¤ such that

jui(a; !; t)¡ cat ¡ 'at ¢ !j < "(21)

for each ! 2 £(a). Compactness of A; T;−, continuity of ui and 'at, and

upper-hemi-continuity of £ imply that there are neighborhoods W (a; t) of

(a; t) in A£ T and W 0(a; t) of 0 in − such that

² (a0; t0) 2 W (a; t); !0 2 £(a0) ) 9! 2 £(a) such that (!¡!0) 2 W 0(a; t)

² (a0; t0) 2 W (a; t); !0 2 £(a0); (! ¡ !0) 2 W 0(a; t) )

jui(!; a; t)¡ ui(!
0; a0; t0)j < " ; j'at ¢ (! ¡ !0)j < "(22)
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Combining these facts, we conclude that

(a0; t0) 2 W (a; t); !0 2 £(a0) ) jui(!
0; a0; t0)¡ cat ¡ 'at ¢ !

0j < 3"(23)

The family fW (a; t)g is a cover of A £ T by open sets. Choose a ¯nite

subcover fW (aj; tj)g and a partition of unity ff jg subordinate to this cover;

i.e., a family of continuous functions f j : A£ T ! [0; 1] such that

² f j(a0; t0) = 0 if (a0; t0) 62 W (aj; tj)

²
P

j f
j ´ 1

To simplify notation, write cj = cajtj and 'j = 'ajtj . De¯ne mappings

c" : A£ T ! IR ; '" : A£ T ! −¤(24)

by

c"(a; t) =
X
j

f j(a; t)cj ; '"(a; t) =
X
j

f j(a; t)'j(25)

Because ff jg is a partition of unity subordinate to the cover fW (aj; tj)g, it

follows that c"; '" are continuous functions and that

(a; !; t) 2 graph££ T ) jui(a; !; t)¡ c"(a; t)¡ '"(a; t) ¢ !j < 3"(26)

This is the desired approximation to ui.

It follows from (26) that

¯̄̄
¯
Z
ui(a; ~z(a); t) d° ¡

Z
[c"(a; t) + '"(a; t) ¢ ~z(a; t)] d°

¯̄̄
¯ < 3"¯̄̄

¯
Z

ui(a; ~z
r(a; t); t) d°r ¡

Z
[c"(a; t) + '"(a; t) ¢ ~z

r(a; t)(a; t)] d°r
¯̄̄
¯ < 3"(27)

for every r.
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Now apply weak* convergenceZ
[c"(a; t) + '"(a; t) ¢ ~z

r(a; t)] d°r

=
Z X

j

f j(a; t) [cj + 'j ¢ ~z
r(a; t)] d°r

=
X
j

cj

Z
f j(a; t) d°r +

X
j

Z
f j(a; t)'j ¢ ~z

r(a; t) d°r

=
X
j

cj

Z
f j(a; t) d°r +

X
j

Z
f j(a; t) d('j ¢ ~z

r°r)

!
X
j

cj

Z
f j(a; t) d° +

X
j

Z
f j(a; t) d('j ¢ ~z°)

=
X
j

cj

Z
f j(a; t) d° +

X
j

Z
f j(a; t)'j ¢ ~z(a; t) d°

=
Z X

j

f j(a; t) [cj + 'j ¢ ~z(a; t)] d°(28)

Combining this with (26) and keeping in mind that " is arbitrary, we obtain

Z
ui(a; ~z

r(a; t); t) d°r !
Z
ui(a; ~z(a; t); t) d°(29)

which is the desired result.

With the preliminaries complete, we turn to the proof of Theorem 1.

Proof of Theorem 1 As indicated, the proof is in six steps. The argument

is a bit fussy because we need to keep track of strategies and selections in

several games. Recall that, as a mnemonic device to distinguish between

announcements and true types, we write Si = Ti for each i. Without loss of

generality, we assume that 0 · ui · 1 for each i.

Step 1: Finite Approximations For each r = 1; 2; : : : and each player

i, choose and ¯x ¯nite subsets Sr
i ½ Si; A

r
i ½ Ai such that every point of

Si is within 1=r of some point in Sr
i and every point of Ai is within 1=r

of some point in Ar
i . For each r, let qr : A ! − be a Borel measurable
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selection from £. For each r, let ¡r be the Bayesian game with player set N ,

action spaces Ar
i , type spaces Ti, prior probability distribution ¿ and utility

functions uri (a; t) = ui(a; q
r(a); t). Milgrom and Weber (1985) show that ¡r

has an equilibrium ®r = (®r1; : : : ; ®
r
n) in distributional strategies.

Let ¡cr be the Bayesian game with player set N , action spaces Sr
i £

Ar
i , type spaces Ti, prior probability distribution ¿ and utility functions

uri (s; a; t) = ui(a; q
r(a); t). Payo®s in ¡cr are independent of announcements,

so announcements are cheap talk. De¯ne

di : Ai £ Ti ! Si £ Ai £ Ti ; d : A£ T ! S £A£ T(30)

by di(ai; ti) = (ti; ai; ti) and d(a; t) = (t; a; t). Let ¾ri = di¤®
r
i , ¹¾r = d¤¹®

r

be the direct image measures. Note that the marginal of ¾ri on T is ¿i, so

¾ri is a distributional strategy for the game ¡cr. Moreover, ¹¾r is the joint

distribution on S £A£ T of the tuple ¾r = (¾r1; : : : ; ¾
r
n). Because payo®s in

¡cr do not depend on announcements, ¾r is an equilibrium for ¡cr. Write

¢ = f(s; a; t) 2 S £A£ T : s = tg(31)

for the set of announcement/action/type pro¯les for which announcements

are truthful. By construction, ¹¾r is supported on ¢, so gives probability one

to truthful announcements.

For each r, de¯ne µr : S£A ! − and ~µr : S£A£T ! − by ~µr(s; a; t) =

µr(s; a) = qr(a). De¯ne ~£c : S£A£T ! − by ~£c(s; a; t) = £c(s; a) = £(a).

Note that µr is a selection from £c and that ~µr is a selection from ~£c.

Step 2: Limits Passing to an appropriate subsequence if necessary, we

may assume that, for each i, the sequence (¾ri ) of scalar measures converges

weak* to a scalar measure ¾i on Si £ Ai £ Ti, and the sequence (~µr¹¾r) of

E-valued measures converges weak* to an E-valued measure º on S£A£T .

Note that convergence of individual strategies implies convergence of joint

distributions; that is, ¹¾r ! ¹¾, the joint distribution of ¾ = (¾1; : : : ; ¾n).

By Lemma 2, there is a Borel measurable selection Á from £ such that

º = Á¹¾. De¯ne µ(s; a) = Á(s; a; s) for every (s; a) 2 S £ A. Note that ¹¾
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is supported on ¢, the set of truthful pro¯les, so ~µ = Á almost everywhere

(with respect to ¹¾), whence º = ~µ¹¾.

Step 3: Convergence of Utilities Applying Lemma 4 to the game ¡c,

we conclude that utilities converge. That is, for each i:

Eui(¾
rjµr) ! Eui(¾jµ)(32)

Step 4: Identifying Better Responses The selection Á is only deter-

mined up to sets of measure 0, so we may have chosen the wrong selections

µ; ~µ. This leaves open the possibility that players may have pro¯table devi-

ations. We will construct perturbations of µ; ~µ to eliminate these deviations.

In order to do this, we ¯rst identify the places where perturbation is required.

By assumption, ¿ is absolutely continuous with respect to the product of

its marginals; let F : T ! IR be the the Radon-Nikodym derivative (which

we can assume is a Borel function), so that ¿ = F (£¿i). Notice that the

conditionals are ¿(¢jti) = F (¢jti)(£¿i).

Fix a player i. Consider the maps ¨ : Ti ! IR, ª : Ti ! L1(¿¡i)

de¯ned by ¨(ti) = Eui(¾jµ; ti), ª(ti) = F (¢jti). The maps ¨;ª are Borel

measurable,22 so Lusin's theorem allows us to ¯nd an increasing sequence

(T k
i ) of compact subsets of Ti such that the restrictions of ¨;ª to each T k

i are

continuous and ¿i(Ti n T k
i ) < 2¡k. There is no loss of generality in assuming

that the support of ¾ijT k
i is T k

i ; equivalently, every relatively open subset of

T k
i has positive ¿ -measure. Set T ¤i =

S
T k
i , so that ¿i(Ti nT ¤i ) = 0. Let Hi be

the set of pairs (si; ai) 2 Si £ Ai for which there is a type ti 2 T ¤i such that

Eui(si; aij¾¡i; ti; µ) > Eui(¾ij¾¡i; ti; µ)(33)

That is, player i of type ti prefers to announce si and play ai rather than

to follow ¾i, given that others are following ¾¡i and that the selection is µ.

The continuity properties of ¨ and ª and the continuity of utility functions

guarantees that Hi is a Borel set. We assert that ¾i(Hi £ T ¤i ) = 0.
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To see that this is so, we suppose not, and construct a pro¯table deviation

in ¡cr for r su±ciently large. To this end, let ³i be the marginal of ¾i on

Ai£ Ti, so ³(Hi) = ¾i(Hi£Ti) = ¾i(Hi£ T ¤i ) > 0. For each j, let Hj
i be the

set of pairs (si; ai) 2 Si £ Ai for which there is a type ti 2 T ¤i such that

Eui(si; aij¾¡i; ti; µ) > Eui( ¹¾ij¾¡i; ti; µ) +
1

j
(34)

Since Hi =
S
Hj
i , we can ¯nd some j so that ³i(H

j
i ) > 0.

We can ¯nd a Borel measurable map h : Hj
i ! T ¤i such that

Eui(si; aij¾¡i; h(si; ai); µ) > Eui(¾ij¾¡i; h(si; ai); µ) +
1

j
(35)

for every (si; ai) 2 Hj
i . Applying Lusin's theorem to h and recalling that

T ¤i =
S
T k
i , we can ¯nd a compact subset H ½ Hj

i such that ³i(H) > 0,

the restriction of h to H is continuous, and h(H) ½ T k
i . There is no loss

in assuming that supp (³ijH) = H, so every relatively open subset of H has

positive ³i-measure.

Fix an arbitrary (s¤i ; a
¤
i ) 2 H. Continuity of of ui (in outcomes and types)

and continuity of ª on T k
i guarantees that there is a compact neighborhood

L of h(s¤i ; a
¤
i ) in T k

i such that if (si; ai) 2 Si £Ai and ti; t
0
i 2 T k

i then

jEui(si; aij¾¡i; ti; µ)¡ Eui(si; aij¾¡i; t
0
i; µ)j <

1

4j
(36)

Continuity of h on H means that we can choose a compact neighborhood K

of (s¤i ; a
¤
i ) in H such that h(K) ½ L. Combining (35) and (36) yields that

Eui(si; aij¾¡i; ti; µ) > Eui(si; aij¾¡i; h(si; ai); µ)¡
1

4j

> Eui(¾ij¾¡i; h(si; ai); µ) +
3

4j

> Eui(¾ij¾¡i; ti; µ) +
1

2j
(37)

for every (si; ai) 2 K and ti 2 L. Our construction guarantees that ³i(K) > 0

and ¿i(L) > 0. Shrinking K;L if necessary, we may ¯nd a real number R
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such that

(si; ai) 2 K; ti 2 L )

Eui(si; aij¾¡i; ti; µ) > R +
1

2j
> R > Eui(¾ij¾¡i; ti; µ)(38)

Because the restriction of ª to T k
i is continuous, shrinking L further if nec-

essary we may guarantee

ti; t
0
i 2 L ) kF (¢jti)¡ F (¢jt0i)k <

1

16j
(39)

Finally, continuity of ui guarantees that, shrinking L still further if necessary,

we may guarantee

ti; t
0
i 2 L ) jui(s; a; !; t)¡ ui(s; a; !; t

0)j <
1

16j
(40)

Let " > 0. Choose an open set Q with K ½ Q ½ Si £ Ti such that

³i(QnK) < ", and a continuous function ' : Si£Ai ! [0; 1] that is identically

1 on K, and identically 0 o® U . Let Â be the characteristic function of L

in Ti. View '; Â as functions on S £ A £ T that are independent of other

components. Write M =
R
'Âd¹¾, and set © = 1

M
'Â. Note that

Z
1 d(©¹¾) = 1(41)

Lemma 1 guarantees that ©¹¾r ! ©¹¾ and that ~µr©¹¾r ! ~µ©¹¾ (weak*).

Weak* convergence guarantees thatZ
1 d(©¹¾r) !

Z
1 d(©¹¾) = 1(42)

Lemma 4 guarantees thatZ
ui(s; a; ~µ

r(s; a); t) d(©¹¾r) !
Z
ui(s; a; ~µ(s; a); t) d(©¹¾)(43)

Together, the inequalities (38), (41) guarantee thatZ
ui(s; a; ~µ(s; a); t) d(©¹¾) > R(44)
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so Z
ui(s; a; ~µ

r(s; a); t) d(©¹¾r) > R(45)

for r su±ciently large.

For each r, the marginal of ¹¾r on Si£Ai£Ti is ¾
r
i ; let º

r(¢j(si; ai; ti)) be

the conditionals. Because © depends only on si; ai; ti, the marginal of ©¹¾r

on Si£Ai£Ti is ©¾
r
i and the conditionals are ºr(¢j(si; ai; ti)). Hence we can

writeZ
ui(s; a; ~µ

r(s; a; t); t) d(©¹¾r) =
Z ·Z

ui(s; a; ~µ
r(s; a; t); t) dºr

¸
d(©¾ri )(46)

In view of (42),
R
1 d(©¹¾r) is arbitrarily close to 1 for r su±ciently large.

Hence, for each r su±ciently large, there is some (sri ; a
r
i ; ti) for whichZ

ui
h
(sri ; s¡i); (a

r
i ; a¡i);

~µr
³
(sri ; s¡i); (a

r
i ; a¡i); (ti; t¡i)

´
; (ti; t¡i)

i
dºr

> R+
1

4j
(47)

Note that this integral is the expected payo® to player i in the game ¡cr

if he is type ti, announces sri and plays ari . Taken together, (39) and (40)

guarantee that the expected payo® to player i in the game ¡cr if he is type

t0i 2 L, announces si and plays ai is at least R + (1=8j). In particular,

the expected payo® to player i in the game ¡cr when his type lies in L, he

announces si and plays ai is at least [R + (1=8j)]¿i(L).

On the other hand, applying Lemma 4 to Â¹¾r ! Â¹¾ guarantees that the

expected payo® to player i in the game ¡cr if his type lies in L and he plays

according to ¾ri converges to the expected payo® to player i in the game ¡c if

his type lies in L and he plays according to ¾ri . In view of (38), this is at most

R¿i(L). Taken together, these last three facts constitute a contradiction (for

r large enough). We conclude that ³i(Hi) = 0 as asserted.

Step 5: Perturbation We now correct the selection µ on Hi. Intuitively

speaking, the correction is to give player i the limit of what he would obtain

in the games ¡cr; the details are complicated because we must put these
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limits together in a manner that is consistent across actions of others and

measurable in i's own actions.

Write

¢¡i = f(s¡i; a¡i; t¡i) 2 S¡i £ A¡i £ T¡i : s¡i = t¡ig(48)

Fix (si; ai) 2 Hi. De¯ne B : ¢¡i ! − by B(s¡i; a¡i; s¡i) = £(si; ai; s¡i; a¡i).

For each r, de¯ne ¯r : ¢¡i ! − by ¯r(s¡i; a¡i; s¡i) = µr(si; ai; s¡i; a¡i); note

that ¯r is a selection from B.

Write ¹¾r¡i; ¹¾¡i for the joint distributions on S¡i£A¡i£T¡i of announce-

ments/actions/types of players other than i. Because announcements (of

players other than i) are truthful, ¹¾r¡i; ¹¾¡i are supported on ¢¡i; we abuse

notation and view them as measures on this space.

Let ¥(si; ai) be the set of E-valued measures » on ¢¡i for which there is

a sequence of integers (rm) and points (srmi ; armi ) 2 Si £ Ai such that

² (srmi ; armi ) ! (si; ai)

² ¯rm¹¾r¡i ! »

Lemma 2 guarantees that ¥(si; ai) is a non-empty compact set of E-valued

measures, and that for each » 2 ¥(si; ai) there is a selection ¯ from B so that

» = ¯¹¾¡i. It is easily checked that the correspondence (si; ai) 7! ¥(si; ai) is

weak* upper-hemi-continuous, so it admits a weak* Borel measurable selec-

tion (si; ai) 7! »(si;ai).

Lemma 3 guarantees that there is a Borel function Ri : Hi £ ¢¡i ! −

such that »(si;ai) = Ri(si; ai; ¢)¹¾¡i for each (si; ai). De¯ne

µ0(s; a) =

(
Ri(si; ai; s¡i; a¡i; s¡i) if there is a unique i with (si; ai) 2 Hi

µ(s; a) otherwise
(49)
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Note that µ0 = µ except on

H =
[
i

[Hi £ Ti £ S¡i £A¡i £ T¡i](50)

The construction of Step 4 guarantees that ¹¾(H) = 0. In particular,

Eui(¾jµ) = Eui(¾jµ0) for all i.

Step 6: Equilibrium We assert that the selection µ0 and strategy pro¯le

¾ constitute a solution for the game ¡c. To see this, ¯x a player i. We must

show that for almost all ti 2 Ti, the strategy ¾i is a best response to ¾¡i,

given that agent i is type ti. We only have to worry about types ti 2 T ¤i ,

because the complementary set of types has measure 0. Let ti 2 T ¤i and

suppose there is an announcement si and action ai so that, given he is type

ti, player i would strictly prefer to play (si; ai) rather than follow ¾i. By

construction, ti 2 T k
i for some k. Continuity of payo®s and information on

T k
i implies there is a relatively open subset W ½ T k

i such that for every

t0i 2 W , player i of type t0i would strictly prefer to play (si; ai) rather than

follow ¾i. Thus, if we write Eui(si; aij¾¡i;W; µ0) for the expected utility of

player i when his type is in W , he plays si; ai, others follow their components

of ¾, and the tie-breaking rule is µ0 (and similarly for ¾i in place of si; ai), we

¯nd

Eui(si; aij¾¡i;W; µ0) > Eui(¾ij¾¡i;W; µ0)(51)

On the other hand, we can estimateEui(si; aij¾¡i;W; µ0) directly from payo®s

in the games ¡cr. By de¯nition, (si; ai) 2 Hi. By construction, for each

t0i 2 W

~µ0(si; ai; s¡i; a¡i; t
0
i; t¡i) = Ri(si; ai; s¡i; a¡i; s¡i) = ¯(si; ai)(52)

except for (s¡i; a¡i; t
0
i; t¡i) belonging to a set of ¹¾¡i-measure 0. Hence, using

Lemma 4 exactly as in Step 4 above and recalling the equilibrium conditions

in the games ¡cr, we see that

Eui(si; aij¾¡i;W; µ0) = lim
rm!1

Eui(s
rm
i ; armi j¾r¡i;W; µrm)

· lim
rm!1

Eui(¾
rm
i j¾r¡i;W; µrm)

= Eui(¾ij¾¡i;W; µ0)(53)
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This contradicts (51), so we conclude that µ0; ¾ is a solution, as desired.

Proof of Theorem 2 The argument follows by substituting the given

solutions for the solutions constructed in Step 1 of the proof of Theorem 1,

and continuing as in Steps 2-6.
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Endnotes

1 This paper merges \Cheap Talk and Discontinuous Games of Incom-

plete Information," by Simon and Zame, and \Existence of Equilibrium

in Auctions and Discontinuous Bayesian Games: Endogenous and Incen-

tive Compatible Sharing Rules," by Jackson and Swinkels. We are grate-

ful for comments from Kim Border, Martin Cripps, Bryan Ellickson, Pre-

ston McAfee, Roger Myerson, John Nachbar, Phil Reny, John Riley, Larry

Samuelson, Mark Satterthwaite, Tianxiang Ye, seminar audiences at Min-

nesota, Northwestern, Rochester, Stanford, the Stony Brook Game Theory

Conference, UCLA, and UCSD. We especially thank Andy Postlewaite and

three referees for helpful comments. Zame is grateful for the hospitality of

the UC Berkeley Economics Department in Winter 1996, when much of this

work was done, and for ¯nancial support from the Ford Foundation, from the

National Science Foundation, and from the UCLA Academic Senate Com-

mittee on Research.

2 Milgrom (1989) provides excellent background reading; for recent

work, see LeBrun (1995, 1999), Maskin and Riley (2000), Bajari (1996),

Reny (1999), Athey (2001) and Bresky (2000).

3 The bidder whose value is 1 has no incentive to lie since he derives

no surplus from obtaining the object at that price; the bidder whose value

is above 1 has no incentive to lie since by telling the truth she obtains the

object for her bid of 1.

4 Of course, the auctioneer chooses among actions which leave him in-

di®erent. One might ask why the auctioneer should choose in any particular

way, but the answer, to quote SZ, is that \. . . equilibrium theory never ex-

plains why any agents would act in any particular way. Equilibrium theory

is intended to explain how agents behave, not why."

5 In general, equilibrium play for the N + 1-st player might depend

on the valuation functions of bidders and on the distribution of types, data

that a real auctioneer might not have. It seems an important challenge to
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identify circumstances in which uniform auction rules | not depending on

such information | su±ce to guarantee the existence of equilibrium. The

two-stage auctions of Maskin and Riley (2000) are encouraging ¯rst steps in

such a program.

6 Our convergence result shows that equilibria of the auction games

with discrete bids converges to a communication equilibrium of the auction

game with continuous bids. As in Example 3, we can show that such com-

munication equilibria are behaviorally equivalent to equilibria without com-

munication. It follows that the equilibria of the auction games with discrete

bids converge to the unique equilibrium of the auction game with continuous

bids. Thus, the multiplicity of equilibria disappears in the limit.

7 Our example is a close relative of Example 3 of Maskin and Riley

(2000), but in our example information has a continuous distribution, rather

than an atomic distribution.

8 Our analysis is aided by the fact that each bidder's valuation is de-

creasing in the other bidder's type, but our experience with discrete examples

suggests to us that similar examples could be constructed in which valuations

are increasing in both types.

9 Neither the cut point :5 nor the common bid 3:5 is uniquely deter-

mined.

10 So information is absolutely continuous in the sense of Milgrom and

Weber (1985).

11 Convexity of − itself is merely a convenient technical assumption;

all we need is that the range of £ be contained in some compact convex

metrizable set.

12 Assuming that type spaces are compact metric and that utility is

continuous in types, | rather than simply measurable | may involve some

small loss of generality.
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13 Recall that a set G is universally measurable if it is measurable with

respect to the completion of every Borel measure; i.e., for every Borel measure

º there are Borel sets G0; G00 such that (GnG0)[(G0nG) ½ G00 and º(G00) = 0.

Universal measurability of the selection is the weakest measurability require-

ment consistent with the desideratum that expected utility be well-de¯ned

for all strategy pro¯les. As the reader will see, the selections constructed in

Theorems 1 and 2 of this paper will in fact be Borel measurable.

14 That is, equilibrium strategies ¾i, which are probability distributions

on Si £Ai £ Ti, are supported on f(si; ai; ti) : si = tig.

15 We thank Phil Reny for pointing this out.

16 The existence of such a solution could also be obtained from the

results of Reny (1999).

17 Weak countable additivity means that if fEng is a countable disjoint

collection of Borel measurable subsets of X then ¹(
S
En) =

P
¹(En), con-

vergence of the summation being in the weak topology of E; equivalently,

' ¢ ¹(
S
En) =

P
' ¢ ¹(En) for each ' 2 E¤.

18 Note that 0 = ¹(;) 2 −.

19 We thank a referee for directing us to Dellacherie and Meyer (1982).

20 We do not assume that °r is the joint distribution of any strategy

pro¯le.

21 See Phelps (1966). In the in¯nite dimensional context, there may be

no a±ne function on E which coincides with ui(a; ¢; t) on £(a).

22 We give L1(¿¡i) the norm topology.
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