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Abstract

One of the central features of classical models of competitive mar-
kets is the generic determinacy of competitive equilibria. For smooth
economies with a finite number of commodities and a finite number of
consumers, almost all initial endowments admit only a finite number
of competitive equilibria, and these equilibria vary (locally) smoothly
with endowments; thus equilibrium comparative statics are locally de-
terminate. This paper establishes parallel results for economies with
finitely many consumers and infinitely many commodities. The most
important new condition we introduce, quadratic concavity, rules out
preferences in which goods are perfect substitutes globally, locally,
or asymptotically. Our framework is sufficiently general to encom-
pass many of the models that have proved important in the study of
continuous-time trading in financial markets, trading over an infinite
time horizon, and trading of finely differentiated commodities.
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1 Introduction

One of the central features of classical models of competitive markets is the
generic determinacy of competitive equilibria. For smooth economies with
a finite number of consumers and a finite number of commodities, almost
all initial endowments yield an economy that admits only a finite number
of competitive equilibria, and these equilibria vary (locally) smoothly with
endowments. These results, based on Debreu’s (1970, 1972) seminal work,
guarantee that equilibrium and local comparative statics in the Walrasian
model are meaningful.

In this paper we establish parallel results for economies with finitely many
consumers and infinitely many commodities. Our framework is sufficiently
general to encompass most of the models that have proved important in the
study of continuous-time trading in financial markets, trading over an infinite
time horizon, and trading of finely differentiated commodities.

Debreu’s approach to determinacy in the finite-dimensional setting relies
on the familiar characterization of equilibrium as a zero of aggregate excess
demand. His assumptions — that preferences are differentiably strictly con-
vex and satisfy a boundary condition — guarantee that aggregate excess
demand is a smooth mapping on the open domain of strictly positive prices,
so the machinery of smooth analysis — the implicit function theorem and
the transversality theorem in particular — may be applied. By now it is
well-understood that this approach cannot work in general in the infinite-
dimensional setting for many reasons, including the fact that demand may
be undefined for many prices, the domain of strictly positive prices is not
open, and demand may not be smooth even where it is defined.!-?

To address some of these problems, Kehoe and Levine (1985) pioneered
an approach to determinacy in the infinite-dimensional setting that relies on
the Negishi characterization of equilibrium as a zero of the excess spending
map. Because they consider consumption over a discrete infinite horizon

!See Shannon (1998a) for a more detailed discussion.

2Kehoe, Levine, Mas-Colell, and Zame (1989) treat a model in which smooth analysis
can be applied. They take the commodity space to be a Hilbert space, specify a consumer
by a smooth demand function (rather than by a preference relation), and require that price
and consumption sets be open. However, the last requirement means that they allow for
negative consumptions and negative prices, which are difficult to interpret economically.



and assume that utility functions are additively separable across time, they
can decompose the infinite-dimensional planner’s problem into an indepen-
dent sequence of finite-dimensional planning problems. Because they assume
period utility functions are differentiably strictly concave and satisfy Inada
conditions, the solutions to these finite-dimensional planning problems are
smooth. From this it follows that the excess spending map is smooth, so the
machinery of smooth analysis again applies to yield generic determinacy in
a fairly straightforward fashion.

Much of the relatively small body of existing work on determinacy in
infinite-dimensional models adopts both Kehoe and Levine’s approach of
using the excess spending map and their assumption of additively separa-
ble preferences (see Kehoe, Levine, and Romer (1990), Balasko (1997), and
Chichilnisky and Zhou (1998)). Additive separability is clearly economically
restrictive, ruling out habit formation, any disentangling of risk aversion and
intertemporal substitution, or interpretation of nearby characteristics as close
substitutes for example, yet it is crucial for their results.

Shannon (1998a) gives the first determinacy results in infinite dimen-
sions applicable to a broad class of non-separable preferences. As Shannon
(1998a) points out, such results must overcome two main problems. The
Inada or boundary conditions on utility functions used by Debreu (1970,
1972) and Kehoe and Levine (1985) are inconsistent with the assumptions
(“properness”) generally required to guarantee the existence of equilibrium
in infinite-dimensional models. Without these assumptions, however, the so-
lution to the planner’s problem, and hence the excess spending map, need
not be smooth. To address this problem, Shannon (1998a) introduces tech-
niques from nonsmooth analysis and demonstrates that Lipschitz continuity
of the excess spending map is sufficient to yield generic determinacy. A more
fundamental problem involves finding conditions on general preferences in
infinite dimensions sufficient to ensure that distinct goods are not perfect
substitutes either locally or asymptotically, and that the planner’s prob-
lem — and hence excess spending map — is Lipschitz continuous. Shannon
(1998a) gives one such set of conditions. The method Shannon (1998a) uses
to analyze the planner’s problem involves approximation by increasing finite
truncations of the commodity space, however, and the results apply only if
the number of commodities is countable. Shannon (1998a) therefore does
not apply to a variety of important commodity spaces, including those that



arise in continuous-time models of finance, which have proved to be among
the most useful and successful applications of general equilibrium theory, or
in models of commodity differentiation.

In this paper, we introduce simple and natural restrictions on utility func-
tions that generalize Debreu’s differentiable strict concavity to the infinite-
dimensional setting. The most important of these restrictions is a condition
we call quadratic concavily, which requires that near any feasible bundle,
utility differs from the linear approximation by an amount that is at least
quadratic in the distance to the given bundle. Quadratic concavity provides
a quantitative measure of the extent to which distinct commodities are not
perfect substitutes — globally, locally, or asymptotically. We use quadratic
concavity to give a direct analysis of Pareto optima and supporting prices.
A simple geometric argument shows that the solution to the planner’s prob-
lem is Lipschitz; a parallel analysis of supporting prices establishes that the
excess spending mapping is Lipschitz. Generic determinacy then follows by
arguments similar to those in Shannon (1998a). The direct, geometric nature
of our arguments means we require neither a countable number of commodi-
ties nor separability of preferences. Our methods also allow us to appeal to
the infinite-dimensional genericity notion developed by Anderson and Zame
(1997), Christensen (1974) and Hunt, Sauer, and Yorke (1992), and apply
the transversality results of Shannon (1998b) to establish that determinacy
is generic with respect to the (infinite-dimensional) set of all possible endow-
ment distributions.

Because our approach does not depend on the number of commodities,
our results apply equally well to all commodity spaces, regardless of whether
they have a finite, countably infinite, or uncountably infinite number of com-
modities. Our results encompass the results of Debreu (1970, 1972) and
Shannon (1994) for finite-dimensional commodity spaces, the results of Ke-
hoe and Levine (1985) for /,, and the results of Shannon (1998a) for ¢;. Our
results are not strictly comparable to the results of Shannon (1998a) for /.,
although in spirit both our assumptions and our conclusions are weaker.?

The remainder of the paper is organized as follows. In Section 2 we detail

3In particular, Shannon (1998a) uses a stronger notion of differentiability and a different
notion of genericity, but obtains determinacy with respect to the £, norm, while we obtain
determinacy with respect to the Mackey topology. We discuss this in more detail in Section
3.



the basic assumptions maintained throughout. In Section 3 we introduce the
notion of quadratic concavity. In Section 4 we characterize equilibrium in
terms of welfare weights as the zeroes of the excess spending mapping. In
Section 5 we study the social planner’s problem characterizing Pareto optimal
allocations, and in Section 6 we study supporting prices and show that the
excess spending map is Lipschitz. We use these results in Section 7 to show
that equilibria are generically determinate. In Section 8 we discuss several
illustrative examples, including models of continuous-time trading, trading
in differentiated commodities, and trading over an infinite horizon. Some of
the more technical proofs are relegated to the Appendix.

2 The Economy

We consider an exchange economy £ with m consumers. Throughout we
maintain the following quite standard assumptions on the commodity and
price spaces and on consumer characteristics:

A1 the commodity space X is a vector lattice endowed with a Hausdorff,
locally convex topology 7 *

A2 the price space X™ is the topological dual of X and is a sublattice of
the order dual of X °

A3 order intervals in X are weakly compact
A4 each consumer’s consumption set is the positive cone X

A5 each individual endowment e; is positive and the social endowment
€ = Y e; is strictly positive ©

4Following Mas-Colell and Richard (1991), we do not assume X is a topological vector
lattice, so the lattice operations may not be continuous.

5In particular, prices are T-continuous and the supremum and infimum of prices in X*
are again in X*.

6Recall that € € X is strictly positive if the order ideal {x € X : Ik > 0, |z| < ke}
is weakly dense in X. If X is a topological vector lattice, this is equivalent to the more
familiar requirement that p-e > 0 for every p € X7 \ {0}.



A6 each consumer’s utility function U; : X, — R is 7-continuous, strictly
monotone, and strictly concave

We view the social endowment as fixed and treat the distributions of en-
dowments as parameters. Let P(€) C X™ denote the set of feasible Pareto
optimal allocations of the social endowment & and P°(€) C P(€) the subset
of allocations (z1, ..., x,,) for which each x; # 0. Let P;(€) and P?(€) denote
the projections of P(€) and P°(€) onto the i-th coordinate. In addition to
the above we assume:

A7 for each i, U; is Gateaux differentiable at each x € P?(¢) and the
Gateaux derivative DU;(x) € X7, 7

We call an economy satisfying assumptions A1-A7 a basic economy.

These assumptions represent standard conditions needed to ensure ex-
istence of equilibrium in economies with infinitely many commodities. The
assumption that consumers’ utilities are Gateaux differentiable plays the role
of uniform properness here in ensuring the existence of prices supporting each
Pareto optimal allocation. While it might seem strange to require differen-
tiability only on the Pareto set, rather than on the entire consumption set,
our weaker requirement allows us to include preferences satisfying Inada con-
ditions, which might otherwise be excluded.® Of course differentiability on
the entire consumption set or on the order interval [0, €] would suffice.

3 Quadratic Concavity

To motivate the central new notions we use, consider the simplest examples
of robust indeterminacy of equilibrium: a two person, two commodity Edge-
worth square in which both consumers find the two commodities to be perfect

"Recall that U; is Gateauz differentiable at * € X, if there is a continuous linear
functional DU;(x) such that

i Ui(x + hy) — Us(x)
h—0t h

for each y € X having the property that  + hy € X for h sufficiently small.
8For more on this point see Duffie and Zame (1989) and Araujo and Monteiro (1991).



complements or both consumers find the two commodities to be perfect sub-
stitutes. Smoothness of utility functions rules out perfect complements, while
differential strict concavity rules out perfect substitutes. Moreover, in finite
dimensions these assumptions are sufficient to rule out not only these simple
examples of robust indeterminacy but all robust indeterminacies. Our as-
sumptions are intended to have the same effect, but the precise formulation
requires some care in our infinite-dimensional setting. A little background
will help to understand our definitions.

Let U : R} — R be twice continuously differentiable and differentiably
strictly concave, let Y C R’} be a compact set and let Z C R} be a bounded
set. For our purposes, these assumptions have three important implications.
Continuity of the first derivative implies that it is bounded on compact sets,
thus:

(i) there is a constant B such that, for each 2 € Y and z € R”

|DU(z) - 2| < Bz

Continuity of the second derivative implies that the gradient map z — DU (x)
is Lipschitz on Y. That is, there is a constant ¢ such that

DU (z) — DU(y)|| < cllz —y||
for all 2,y € Y.? In particular, for z € Z,
|DU(x) -z — DU(y) - 2| < [|DU(z) = DU ()| [|z]| < cllz] |z — y]|
Because Z is a bounded set, we conclude:
(ii) there is a constant C' such that, for each z,y € Y and z € Z:

|DU(z) -z = DU(y) - 2| < Cf|lz —y||

9To see this, apply Taylor’s theorem to the first derivative. Given z,y € Y, there is
some & on the line segment from x to y such that DU(x) — DU(y) = D?U(z)(z — y).
Hence |DU(x) — DU (y)|| < ||D*U(2)|| ||z — y||. Because & — D?U(Z) is continuous and
Y is compact, there is a constant ¢ such that |DU(z) — DU (y)|| < cllz — |-



In other words, the evaluation map « — DU (x)-z is Lipschitz on Y, uniformly
for z € Z.

Finally, Taylor’s theorem implies that for x,y € Y,
1 .
Uly) = U(z) + DU(x) - (y = 2) + 5 [D°U(@)(y — )] - [y — 2]

for some 2 on the line segment between x and y. Strict differential concav-
ity together with continuity of the second derivative means that the second
derivative matrix is strictly negative definite, uniformly on compact sets, so:

(iii) there is a constant K > 0 such that, for each z,y € Y~

Uly) < U(x) + DU(x) - (y — 2) — Klly —

The properties (i)-(iii) all refer to a particular norm on R", but they are
in fact unambiguous because all norms on R™ are equivalent. In an infinite-
dimensional setting, the given commodity space X may not admit any norm
or may admit many inequivalent norms. Our key assumptions abstract the
properties (i)-(iii) of differentiably strictly concave functions in R", but a
crucial feature of our approach is that we do not require that X be normed,
or that the conditions be satisfied with respect to the given norm of X even if
X is normed. Rather, we require only that there be some norm with respect
to which these conditions are satisfied, that also induces the given topology
7 on the set [0, €] of feasible consumptions.

The following two definitions abstract the properties we need.

Definition Let U : Xy — R be Gateaux differentiable on Y C X.. We say
the norm ||-]| is adapted to U on Y if the topology induced by ||| coincides
with 7 on the order interval [0, &],'° and

(i) there is a constant B such that, for each z € Y and z € X:

|DU(z) - 2| < B[]

0For most of our purposes, it would suffice to assume that the topology induced by ||-||
is stronger than 7 on the order interval [0, €].



(i) there is a constant C' such that for each z,y € Y and z € [0, €]
|DU(x) -z = DU(y) - 2| < Cllz — |

That is, the evaluation map x +— DU(x)-z: Y — R is Lipschitz on Y,
uniformly for z € [0, e]."!

Next we adapt condition (iii) above. This condition implies that a signif-
icant change in consumption, measured by ||z — y||, must have a significant
effect on marginal utility,!? which in turn provides a measure of the extent
to which distinct goods are not perfect substitutes either locally or globally.
The following abstraction of this condition will be central for our determinacy
results.

Definition Let U : X; — R be a concave function and let ||-|| be a norm
on X. We say U is quadratically concave on Y C X with respect to ||-|| if U
is Gateaux differentiable on Y and there is a constant K > 0 such that for
each z,y € Y:

Uly) <U(z)+DU(z) - (y —2) — K [ly — z|]?

To understand this condition, recall that a differentiable concave function
is bounded above by the linear approximation given by the gradient, that is,
Uly) <U(x)+DU(x)-(y—=x) for all z,y € X;. Quadratic concavity requires
in addition that the error in this linear approximation is at least quadratic,
uniformly for z,y € Y.

A5 in the finite-dimensional setting, the second condition is implied by either of the
simpler and more familiar conditions:

(ila) the gradient map x — DU (x) : X — X* is Lipschitz on Y’

(iib) U is twice continuously Gateaux differentiable on Y and D?U(z) is uniformly
bounded with respect to ||-|]] on YV

We use the less restrictive, although more complicated, condition given rather than either
of these simpler conditions because the difference is important in a number of applications.
In particular, ? presents an example of an environment in which the natural utility
functions satisfy our conditions but are not twice differentiable and for which the gradient
mappings are not Lipschitz.

12Gee also the discussion in Example 3.1.



As a simple illustration, note that quadratic concavity is implied by differ-
ential strict concavity. Indeed, if U : X, — R is twice continuously Gateaux
differentiable and differentiably strictly concave on a convex set Y C X,
then there is a constant K > 0 such that z - D*U(y)z < —K]|z|* for all
z € X and y € Y. It follows immediately from Taylor’s theorem that U is
quadratically concave on Y, as we argued above. On the other hand, many
natural utility functions in some of the most basic infinite-dimensional mod-
els are quadratically concave but not differentiably strictly concave. See 7
for examples of quadratically concave utility functions in environments that
admit no differentiably strictly concave utility functions.

Shannon (1998a) introduces a different condition, called uniform concav-
ity, that is also meant to generalize differential strict concavity to infinite
dimensions. For the commodity space fs or Lo, uniform concavity is essen-
tially equivalent to differential strict concavity, as it amounts to requiring
the utility function to be C? with uniformly strictly negative definite second
derivative. Thus in {5 or Ly quadratic concavity is implied by uniform concav-
ity, and our results encompass those of Shannon (1998a). For the commodity
space /., uniform concavity requires instead that the utility function have a
second derivative that, after an appropriate rescaling, is uniformly negative
definite. This rescaling essentially amounts to a local renormalization similar
in spirit to the global renormalization we permit with quadratic concavity.
The conditions are not directly comparable, however. In spirit quadratic
concavity is a weaker condition, and yields weaker conclusions, as we obtain
determinacy with respect to the Mackey topology while Shannon (1998a)
obtains determinacy with respect to the o, norm. The additional generality
we get by stating our condition only in terms of the directional derivatives
and the first-order approximation error will be very useful, as our examples
illustrate.

We will assume that each consumer’s utility function is quadratically
concave on weakly compact subsets of P?(€) with respect to some norm ||-||;
that is adapted to U; on weakly compact subsets of P?(¢). The flexibility both
to choose a norm different from the underlying norm when X is a normed
space, and to choose a different norm for each consumer, will be important
in a number of applications, as the following example illustrates; see also
Examples 8.2 and 8.3 and 7, Example 8.4.



Example 3.1 Let X = /., the space of bounded real sequences, with the
Mackey topology. Let u: Ry — R be twice continuously differentiable and
differentiably strictly concave. Fix § with 0 < # < 1, and define

Ulx) = f(:)ﬂfum)

We claim that U is not quadratically concave with respect to the £, norm
|||l on [0, €] for any positive social endowment é.

The intuition is simple. Discounting means that big changes in con-
sumption in the distant future have small effects on utility and on marginal
utility. Discounting thus generates the same insensitivity of marginal util-
ity to changes in consumption ordinarily associated with goods with a high
degree of substitutability, and therefore suggests the potential for robust in-
determinacies.

To make the point more formally, note that Gateaux differentiability and
quadratic concavity of a function U on some set Y require that there exist
some K > 0 such that for each z,y € Y

U(x) < Uy)+DU(y)- (z—y) — K|z -yl and
Uly) < Ulx)+DU(x)-(y —z) — K|y — |

Combining and simplifying yields the following inequality for all z,y € Y:
[DU(y) — DU(2)] - (z — y) = 2K ||z — y|* (1)

On the other hand, discounting entails that the directional derivatives
DU(y) - (z —y) and DU(z) - (z — y) will be close, even if the consumption
bundles = and y are far apart, provided the change in consumption x — y
occurs far in the future. That is, the left hand side in (1) may be small
while the right hand side is large, provided the change occurs in the distant
future. To see this formally, set = (1,1,...). For each T, let x* € /o
be the sequence which has 1 in the T-th coordinate and 0 elsewhere. Write
yI' = 2 + 7, and note that ||y’ — z| = 1 for each T". Applying Taylor’s
theorem and noting that DU (z) - (y* —x) = pT4/(1), we conclude that there
exists ¢ € (1,2) such that

Uy") = Ulx)+ 8" (w(2) —u(1))

10



= U@+ 5" (1) + 557 (Q)

= Ua) 4 DUG) - (4" — ) — 28 Q" o

Because u” is bounded on the interval [1,2], 8Tu"(¢)||y? — z|>, — 0 as
T — oo. In particular, U is certainly not quadratically concave with respect
to the /., norm.

Nonetheless there is an adapted norm with respect to which U is quadrat-
ically concave.'® The appropriate norm is the 3 weighted norm defined, for
2z € Ly, by

Izl = >_ 8"l
t=0

This norm reflects the same impatience as the utility function, measuring as
close bundles that differ only in the distant future.

Fix the social endowment e € /., ;. The computations required to verify
that ||-||3 is adapted to U on [0, €] are straightforward, and left to the reader.
To see that U is quadratically concave on [0,€] with respect to ||||g, fix
z,y € |0,€]. Applying Taylor’s theorem to utility in period ¢ yields

() = ) o () e — ) + 0 () (0 — 22

for some z; between z; and y,. Because u is differentiably strictly concave,
there is a constant ¢ > 0 such that v”(¢) < —c for { < sup, ¢;. Hence

V() U@ = 35 (ulw) — u(z)

= 3 B ) )+ X B () e — )
U() - (= 0)+ 5 X 0 () — )
=)= 538 — )

2
: y—:c)—cb (Zﬁt\yt—xtD
DU(z) - (y — ) — cb|ly — =3

Nl
S ©
-

IN
S
-

(
(
(
(

13See also Example 8.3 in Section 8.

11



for some b > 0, where the second inequality follows from the fact that in a
finite measure space, there exists B > 0 such that ||f||s > B||f||, for all f,
where ||-||, denotes the L, norm for 1 < p < oco. Thus U is quadratically
concave with respect to ||-||s on [0, €].

4 Equilibrium and the Excess Spending Map

Given a distribution e = (eq, ..., ey) of the social endowment €, an equilib-
rium can be characterized, using the welfare theorems, as a Pareto optimal
allocation x and a supporting price p for which the budget equations

p-(tn—e) = 0

p'(mm_em) =0

are satisfied. Because x is a feasible allocation, we henceforth suppress the
last (redundant) equation. Central to our approach is an amplification of this
characterization, following Negishi, in which pairs consisting of Pareto opti-
mal allocations and supporting prices are parametrized uniquely by “welfare
weights.” The parametrization of Pareto optima is of course very familiar,
while, surprisingly, the parametrization of allocation/price pairs seems to
have escaped attention, even in the finite-dimensional setting.

The first step in this program involves the familiar parametrization of
Pareto optima as the solutions to a social planner’s problem. Given a so-
cial endowment bundle € and a vector of “welfare weights” A € R with
> A; = 1, the social planner’s problem is to choose a feasible allocation z(\) =
(x1(A), ..., Zm(A)) to maximize the weighted sum of utilities Y- A\;U;(x;). The
following result records several basic properties of the solution to the plan-
ner’s problem under our assumptions; we omit the familiar proof. We write

A= {DeRT:D) N=1}
A’ = {AeA: )\ >0 forall i}

for the sets of welfare weights and strictly positive welfare weights.
Lemma 4.1 If £ is a basic economy then

12



(i) for each X € A the planner’s problem has a unique solution x(\) € P(€)

(ii) the mapping x : A — P(€) is continuous when P(€) is equipped with
the weak topology of X™

(iii) x(A) = P(€) and x(A%) = P%(e)

The second step is the characterization of supporting prices in terms of
welfare weights. Our assumptions imply that every Pareto optimum z(\)
can be supported by some price. If 2 = z()) is interior, the unique sup-
porting price, up to normalization, is \;DU;(z;) for any 7. If x(\) is not
interior, however, it may admit many supporting prices, a difficulty that is
particularly acute in the infinite-dimensional setting, and any one of these
might be an equilibrium price. Mas-Colell and Richard (1991) show that
V; MiDU;(z;) is always one supporting price, but there may be many other
supporting prices.!* Because we seek to show that a given economy admits
only finitely many equilibria, we must be sure to identify all of the equilibria.
The following lemma, which shows that pairs consisting of Pareto optima
and supporting prices can be parametrized uniquely by the welfare weights,
is just what we need. We defer the proof to the Appendix.

Lemma 4.2 [If £ is a basic economy, x is a feasible allocation for which
x; # 0 for each i, and q € X7 is a non-zero price, then the following state-
ments are equivalent:

(i) = is a Pareto optimal allocation and q supports

(ii) there is a vector of welfare weights X € A° and a constant 3 > 0 such
that x solves the planner’s problem for the weights A and

4Indeed, if the map from welfare weights to Pareto optima is not one-to-one, so that
x(A) = z(X') for some A # X, then \/,; \; DU;(x;) and \/; A, DU;(z;) are certainly distinct
prices supporting the Pareto optimal allocation x = x(A) = z(\'). Lemma 4.2 shows that
this is the only possible multiplicity.

13



In other words, the map A — (x()\), Vi )\iDUi(LL’i)> is a parametrization
of pairs consisting of Pareto optima and supporting prices by non-zero wel-
fare weights, and this parametrization is one-to-one and onto (up to scalar
multiplication of prices).

In view of Lemma 4.2 and the redundancy of the budget equations, we
obtain immediately the following characterization of equilibrium in terms of
welfare weights.

Lemma 4.3 Let £ be a basic economy. The allocation x and the price p

constitute an equilibrium if and only if there exists a vector of welfare weights
A € A% such that

(a) x solves the planner’s problem with weights A
(b) p=BV; iDU;(z:(N)) for some > 0

(c) the budget equations
p-(@1(A) —er) = 0

P (ma(A) —em_1) = 0

are salisfied

Given these results, we can characterize equilibrium in terms of the zeroes
of the excess spending mapping. Given the social endowment, write

D°e) = {e € X7 :¢; # 0 for each ¢ and Zei = é}

for the set of distributions of the social endowment that give no consumer zero
endowment. Write p(A) = V; \iDU;(z;())), and define the excess spending
mapping
S:A”x D) — R™1

by Si(A,€) = p(A) - (z;(A\) — €;) for each i. If e is a distribution of the social
endowment €, write £(e) for the economy with endowment profile e. In
view of the discussion above, we may identify an equilibrium of the economy
E(e) with a zero of S(-,e). In the following sections, we first show that the
planner’s problem is Lipschitz and then that the excess spending mapping
is Lipschitz; we then use versions of Sard’s theorem and the transversality
theorem for Lipschitz functions to obtain our generic determinacy results.

14



5 The Social Planner’s Problem

In this section, we carry out the first step in our program, analyzing the
solution to the social planner’s problem. As we show below, under the addi-
tional assumption of quadratic concavity with respect to an adapted norm,
the solution to the planner’s problem is locally Lipschitz continuous. This
result will become the key to all of our determinacy results.

Lemma 5.1 [f€& is a basic economy and for each i there is a norm ||-||; such
that

(a) ||||; is adapted to U; on weakly compact subsets of PP(€)

(b) U; is quadratically concave with respect to ||-||; on weakly compact sub-

sets of PP(e)

then the solution x(-) to the planner’s problem is locally Lipschitz on A® with
respect to these norms and continuous with respect to the topology T.

Proof: We first show that each U; is Lipschitz on weakly compact subsets of
P2(€). For § > 0set A° ={\ € A: )\ >0 forall i}, write P%(€) = 2(A°),
and let P{(€) be the projection of P°(€) onto the i-th coordinate. Lemma
4.1 guarantees that P?(€) is weakly compact, so by adaptedness, for each i
there is a constant B; such that

|DU;(z) - 2| < Byl

for each x € P(€) and z € X. If 2,y € P?(€) then concavity of U; guarantees
that
Uily) — Ui(z) < DUi(x) - (y — ) < Billy — «|;

Reversing the roles of x and y yields
Ui(y) — Ui(x)| < max (|DUi(x) - (y — x)|, IDUi(y) - (x — y)|) < Billy — s

which is the desired Lipschitz estimate.

Now fix 0 > 0 and let A\, \' € A°. Write 2 = x()\) and 2’ = x()\). For
each i, quadratic concavity of U; with respect to || - ||; on P°(€) means there
is a constant C; > 0 such that

Ui(a}) < Ui(x;) + DUi(;) - (2 — 2) — Cil|lay — ][]
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Multiplying by A; and summing over ¢ yields
Do AUs(f) <3 AUi(ma) + 3 NDU () - (a — 23) = Y- Cidilla — @il (2)

By assumption, x solves the social planner’s problem for weights A, so the
first order conditions imply that > \;DU;(z;) - (2} — ;) < 0. Substituting
into (2) gives

> AUi(a) <D NUi(wi) = Y0 Cidillag — aill? (3)
Because x’ solves the social planner’s problem for weights X', weighted utility
is no greater at x, so:

0< ) NUila) = > NUi(a) (4)
Adding (3) and (4) yields:
YoNUi()) < Y NUi(w) = Cidillag — al[f + Y NUi()) — - NUi()
Rearranging terms gives
SO — il < 0= A)i(a) — Uil
< DI = Nl U (ag) = Us(a)] (5)

Because utility functions are Lipschitz on P (&) = z(A?), for each i there
is a constant K; > 0 such that |U;(z}) — U;(x;)| < K|« — a;];- Substituting
into (5) yields

ZCZ)VHJ;; - J;szQ < ZKiP\;‘ — Ail ||35; - szHz (6)

Let ¢ = minC; and K = max K;. The left hand side of (6) is the
summation of m positive terms, so is at least as large as any one of them.
Because \, ) € A%, it follows that

2
s <max Iz, — xi||i) < K max||a} — o]l (313 - M)
Rearranging terms yields

K
2 < >\/_
max||o] — aifly < 25 30N — A

which gives the desired Lipschitz estimate.

<.

Finally, because the topology induced by each of the norms |[|-||; coincides
with the topology 7 on the set [0, €] of feasible consumptions, the solution
z(+) to the planner’s problem is continuous in the topology 7 as well. O
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6 Spending, Wealth and Excess Spending

In this section we turn to the second step in our program, demonstrating the
Lipschitz continuity properties of the spending map, the wealth map and the
excess spending map. The proof is deferred to the Appendix.

Lemma 6.1 [f& is a basic economy and for each i there is a norm ||-||; such
that

(a) ||||; is adapted to U; on weakly compact subsets of PP(€)

(b) U; is quadratically concave with respect to ||-||; on weakly compact sub-

sets of PY(e)
then

(i) for each i the spending map X +— p(\) - 2;(N\) is locally Lipschitz on A

(ii) the wealth map X — p(X\) - w is locally Lipschitz on A°, uniformly for
w € [0, €]

(iii) S(-,e) is locally Lipschitz on A°, uniformly for e € D°(€)

(iv) S(-,-) is jointly continuous on A° x D°(é)

7 Generic Determinacy

In this section we use the results of Sections 5 and 6 to establish generic
determinacy of equilibria. We treat the basic features of the economy &
— commodity space, price space, utility functions, social endowment — as
fixed, and consider variations in the initial endowment profile e over the set
of all distributions of the social endowment €. As before, we write D°(é) for
the set of non-zero endowment distributions. For e € D), let £(e) denote
the economy & with initial endowment profile e, and let E(e) denote the
set of equilibrium allocations of £(e). Our basic notion of determinacy in-
volves finiteness of the number of equilibria and continuity of the equilibrium
allocation correspondence. Formally:
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Definition The economy E£(e) is determinate if the number of equilibria
is finite and the equilibrium allocation correspondence E : D°(€) — X' is
continuous at e.

In view of our discussion at the end of Section 4, we may identify an
equilibrium of £(e) with a zero of S(-,e). It is convenient to define the
equilibrium weight correspondence E, : D°(e) — A by

Ex(e)={Ne A:S(\e) =0}

Since Lemma 5.1 guarantees that the solution to the planner’s problem =z is
continuous with respect to the topology 7, £(e) is determinate if and only if
Ex(e) is finite and F, is continuous at €.

Our goal is to show that, given our assumptions, almost all endowment
distributions lead to determinate economies. To make this statement precise,
we need to explain what we mean by “almost all” endowment distributions.
In a finite-dimensional setting, it is natural to interpret “almost all” to mean
having full Lebesgue measure in the set of all endowment distributions. In an
infinite-dimensional setting, however, there is no natural measure on the set
of endowment distributions. We provide two alternatives; the first makes use
of a finite-dimensional parameterization of endowment distributions, while
the second uses an infinite-dimensional analogue of Lebesgue measure 0.

For our first determinacy result, fix a profile e* = (ef,...,¢e!) € X™ for
which 3" ef = € and a vector v € X \ {0}.1¢ Set

A(e*,v):{aeRm:ef+oziv>0alliand Zai:O}

To each vector a € A(e*,v) corresponds an initial endowment distribution
e of the social endowment € defined by e = e; + a,v for each i. We view
e“ as a perturbation of the initial profile e*. Considering the family of such
perturbations gives us a simple finite-dimensional parameterization of initial
endowments indexed by A(e*,v). Our first determinacy result shows that

15We do not insist that the equilibrium price correspondence be continuous; this may
be a delicate issue. However, it follows from Lemma 6.1 and Theorem 7.2 that if £(e) is
determinate then the “evaluation” correspondence P, : D°(g) — R defined by P.(e) =
{p(A) - z: XA € Ex(e)} is continuous at e for each z € [0, &].

16For applicability in Theorem 7.2, we allow for the possibility that e* is not positive
and even that A(e*,v) may be empty for some e* and v.
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those perturbations for which the economy £(e®) is determinate form a set
of full (m — 1)-dimensional Lebesgue measure.

Theorem 7.1 If £ is a basic economy and for each i there is a norm ||-||;
such that

(a) ||||; is adapted on weakly compact subsets of P(é)

(b) U; is quadratically concave with respect to ||-||; on weakly compact sub-

sets of PY(e)

then for each €* € X™ with Y- e} = € and each v € X, \ {0}, almost all
parameters a € A(e*,v) lead to a determinate economy; i.e.,

Ag(e™,v) = {a € A(e*,v) : E(e”) is determinate }

is a set of full (m — 1)-dimensional Lebesque measure in A(e*,v).

Proof: Normalize prices by defining

P = (s ) o

for each A € A. Let S : A% DY(é) — R™ ! be the corresponding normalized
excess spending mapping whose i-th coordinate is:

~

Si(As€) = P(A) - [2:(A) — e

Note that S and S have the same zeroes. Define o : A° — R™ ! by o(\) =

~

S(A, e*). Note that

~ ~

S,L(A, ea) = Sl()\, 6*) — O = O'z()\) — O

for each i. Now for each a € A(e*,v), write a_,, = (aq,..., ;1) € R™ L.
Note that S(\,e*) = o()\) — a_,,. Lemma 6.1 guarantees that the excess
spending map S(-, e) is locally Lipschitz on A for each e, and that A — p(\)-v
is locally Lipschitz on AY. It follows that S (-, €) is locally Lipschitz on A° for
each e and thus that o is locally Lipschitz on AY.
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If U is an open subset of R™ ! and f : U — R™ ! is a mapping, recall that
v € R™ 1 is said to be a regular value of f if D f(() exists and is nonsingular
whenever ¢ € U and f(() = . Sard’s theorem for locally Lipschitz functions
(see Rader (1973) Lemma 2) guarantees that if f is locally Lipschitz then
almost every element of R™~! is a regular value of f. Because o is locally
Lipschitz, it follows that almost every v € R™ ! is a regular value of o.
Clearly a_,, is a regular value of o if and only if 0 is a regular value of
S(-,e%), so the set

A.(e",v) = {a € A(e*,v) : 0 is a regular value of S(-, e®) }

has full (m — 1)-dimensional Lebesgue measure.

To complete the proof it remains only to show that A,.(e*,v) C Ay(e*,v);
that is, if 0 is a regular value of S(-, *) then &(e®) is a determinate economy.
To see this, fix an o € A, (e*,v). We must show that £(e*) has only finitely
many equilibria and that F, is continuous at e®.

To see that £(e*) has finitely many equilibria, note that each equilibrium
corresponds to a vector of weights A € A? by individual rationality. Each
equilibrium vector of weights is locally unique because 0 is a regular value
of S(-,e) (see Shannon (1994)). Then to show there are only finitely many
equilibria it suffices to show that

AP ={Ne A U(xi(N) > Uyle?) for all i}

is a compact subset of A°. To that end, first note that because z(-) is weakly
continuous on A and U;(+) is weakly upper semi-continuous, A’# is a compact
set. Moreover, because utilities are strictly monotone, x;(\) = 0 if \; = 0.
Since e > 0 for each ¢, U;(ef) > U;(0) for each i, again using the strict
monotonicity of utilities, which implies that A’® C A°. Now each equilibrium
vector of welfare weights is locally unique and contained in the compact set
AR 5o there are only finitely many equilibria in £(e%).

Upper hemi-continuity of F, at ¢* (and indeed, at every e € D°(€))
follows immediately from the joint continuity of S on A° x D%(). To see
that F, is lower hemi-continuous at e®, fix \* € F)(e®) and a neighborhood
V* of A* in A°. We must find a neighborhood W of ¢* in D°(€) such that
if e € W then g()\, e) = 0 for some A € V*. To accomplish this, we use the
invariance of Brouwer degree under small perturbations. If N C A° is an
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open set and f : N — R™ ! is a continuous mapping, write deg (f, N,0) for
the Brouwer degree of f on N at 0.

Let \* € F(e®). Choose a neighborhood V' of A* in A" such that F(e®)N
V = {\*}. Because 0 is a regular value of S(-, %), |deg (S(-,e*),V’,0)| = 1
for every neighborhood V’ C V of X* (see Shannon (1994), Theorem 9). Then
for each such neighborhood V’ C V' of \* there exists a neighborhood B’ of
graph S(-,e®)|ys such that |deg (f,V’,0)| = 1 for any continuous function
f: V' — R™! for which graph f C B’. In particular, for any such function
f there exists A € V' such that f(A\) = 0. To establish our result, it thus
suffices to show that given a neighborhood B’ of graph S (+,e%)|y there exists
a neighborhood W of ¢ in D°(€) such that graph S(-,e)|y» C B’ for each
ecW.

To see this, note that for any e € D°(€) and X € V’,
Si(A,€) = Si(A, ) = p(N) - (e — €f)

Now let € > 0 be given. The map (A, v) — p(A) - v is jointly continuous on
A% x [0,€] by Lemma 6.1. Thus for each A € V' there exists a neighborhood
V) of A and a neighborhood W) of e* in DP(€) such that for each e € W,\
and S Vi we have [p()) - (; — e¥)| < e. Since {V,} is an open cover of V'
and V' is compact, there is a ﬁmte subcover {Vy1, ..., Vin}. Set W = nNW)y;.
Then for e € W, |Si(\e) — Si(\,e?)| < ¢ for each A € V. Thus given a
neighborhood B’ of graph g(, e®)|y+ there exists a neighborhood W of e® in
DP(&) such that graph S(-,¢)|y, C B’ for each e € W. Hence for each e € W
there exists A € V’ such that S(\,e) = 0, that is, such that A € Ex(e). We

conclude that F, is lower-hemi-continuous at e, so the proof is complete. O

Because of the finite-dimensional nature of this parameterization, this re-
sult is not entirely satisfactory. To obtain a more satisfactory result, we would
like to parameterize over the (infinite-dimensional) set of all possible endow-
ment distributions, thus we need a notion of genericity suitable for use in
an infinite-dimensional setting. Unfortunately, there is no natural analogue
of Lebesgue measure in an infinite-dimensional space. A frequently used
alternative topological notion of genericity would require that the set of en-
dowment distributions leading to determinate economies be the intersection
of a countable family of open sets that is dense in the space of all endowment
distributions. The set of endowment distributions leading to determinate
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economies is dense, as a consequence of Theorem 7.2 below, but because
the nature of regularity for Lipschitz functions is weaker than for smooth
economies, the set of regular economies is not open nor is it the intersection
of a countable family of open sets — even in the finite-dimensional setting.
Instead we turn to a measure-theoretic analogue of “full Lebesgue measure”
developed by Christensen (1974), Hunt, Sauer, and Yorke (1992), and Ander-
son and Zame (1997). Christensen (1974) and Hunt, Sauer, and Yorke (1992)
have developed analogues of Lebesgue measure 0 and full Lebesgue measure
for infinite-dimensional spaces, called shyness and prevalence. Their notions
are not directly applicable in our problem, however, since our parameters
are drawn not from the whole space but from the set of distributions of a
fixed social endowment, itself a shy subset of the ambient space. Anderson
and Zame (1997) have extended the work of Hunt, Sauer and Yorke and
Christensen to notions of prevalence and shyness relative to a convex subset
that may be a small subset of the ambient space. Their notion of relative
prevalence, given below, is the concept of infinite-dimensional determinacy
we use.

Definition Let Y be a topological vector space and let C' C Y be a convex
Borel subset which is completely metrizable in the relative topology. Let
c € C. A universally measurable subset I C Y is shy in C at c if for each
0 > 0 and each neighborhood W of 0 in Y, there is a regular Borel probability
measure 4 on Y with compact support such that supp p C (0(C' —¢) +¢) N
(W +¢) and pu(E +y) = 0 for every y € Y.}7 The set F is shy in C if it is
shy at each point ¢ € C. A (not necessarily universally measurable) subset
F C Cis shy in C if it is contained in a shy universally measurable set. A
subset £ C C'is prevalent in C' if its complement C'\ E is shy in C.

Anderson and Zame (1997) show that, like shyness and prevalence, rel-
ative shyness and prevalence have the properties we ought to require of
measure-theoretic notions of “smallness” and “largeness.” In particular, the
countable union of shy sets is shy, no relatively open subset is shy, prevalent
sets are dense, and a subset of R” is shy in R™ if and only if it has Lebesgue
measure 0. They also provide the following simple sufficient conditions for
relative shyness and prevalence.

1"Recall that a set £ C Y is universally measurable if for every Borel measure n on Y,
FE belongs to the completion with respect to 1 of the sigma algebra of Borel sets.
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Definition Let Y be a topological vector space and let C' C Y be a con-
vex Borel subset which is completely metrizable in the relative topology. A
universally measurable set I C C'is finitely shy in C' if there is a finite di-
mensional subspace V' C Y such that (E'+y) NV has Lebesgue measure 0 in
V for every y € Y. A universally measurable set I/ C C'is finitely prevalent
in C'if its complement C'\ F is finitely shy.

Sets that are finitely shy are shy, hence sets that are finitely prevalent are
prevalent (see Anderson and Zame (1997)). Using these facts leads to more
satisfactory infinite-dimensional determinacy results.

Theorem 7.2 [f £ is a basic economy and for each i there is a norm ||-||;
such that

(a) ||||; is adapted to U; on weakly compact subsets of PP(€)

(b) U; is quadratically concave with respect to ||-||; on weakly compact sub-
sets of PY(e)

then almost all endowment distributions lead to a determinate economy; i.e.,
DY(e) = {e € DY(é) : E(e) is determinate }
is prevalent in DY(e).

Proof: We will show that DY(é) is finitely prevalent in D°(€). As before,
we use the fact that £(e) is determinate exactly if Fx(e) is finite and E)j is
continuous at e.

It is evident that D°(€) is a Borel set. To see that it is completely metriz-
able, define a norm on X™ by |[|(z1,...,Zn)| = max; ||z;||;. Adaptedness of
||I-||; implies that the topology induced by ||-||; agrees with the topology T
on the order interval [0, €], so the topology induced by ||-|| agrees with the
product topology 7 on the set D(€) = {e € XT": Y e; = €}. Because order
intervals are weakly compact in X, D(€) is weakly compact in X™. It follows
that D(€) is complete in the metric induced by the norm ||-||,qz-1® Because

~18Let X™ be the completion of X™ with respect to the topology 7. Note that X™ and
X™ have the same dual spaces. Hence D(€) is weakly closed in X™. Since 7 is a stronger

topology, D(€) is also 7-closed in X™. Now because X™ is complete, D(€) is T-complete
as well.
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DP(e) is a relatively open subset of D(€), there is a complete metric on D(€)
having the property that the metric topology coincides with the topology 7.

We next show that Dj(€) is a Borel set. Toward this end, write D}(€)
for the endowment distributions e for which E(e) is finite (equivalently, for
which Fj (e) is finite), and D?(¢) for the endowment distributions e at which
the equilibrium correspondence F' is continuous (equivalently, at which the
equilibrium weight correspondence F, is continuous). As Dj(é) = D%(e) N
DY(e), it suffices to show that these are Borel sets.

To see that D?(é) is a Borel set, write Q for the set of strictly positive
rational numbers. For each positive integer n, let R™ = (QT N A°)" be the
set of n-tuples of points in A° with rational coordinates. For r; € Q7 N A°
and §; € Q4 let B(r;, ;) be the open ball in R™ with center r; and radius
B;. An endowment distribution e € D°(€) leads to an economy with at most
n equilibria exactly if the set of equilibrium weights is contained in the union
of n balls with rational centers and arbitrarily small rational radii. Hence

0N u {eeD° n@e() Bm,m}

n=1reR" feQn

Because E, is upper hemi-continuous (see the proof of Theorem 7.1), each
of the sets in curly brackets is is open, so D?c (€) is a Borel set.

To see that D?(€) is a Borel set, let h denote the Hausdorff distance
between compact subsets of A’. The correspondence E, is continuous at e

exactly if for each integer n there is a neighborhood W of e with the property
that h(Ea(e'), Ex(e”)) < 1/n for €',¢” € W. Hence

(({e€ D°€): 3 open W C D°(&) s.t. e € W
n=1
and h(Ex(e'), Er(¢")) < 1/n for all ¢, ¢" € W}

Thus, D2(€) is the countable intersection of open sets, and in particular is a
Borel set.

Now let DO (&) = D) \ DY(€). To show that D?,(€) is finitely shy, set
v =21¢, and let V. C X™ be the (m — 1)-dimensional subspace

V:{(alv,...,amv):Zai:O}

24



If n* = (v,...,v) then
VN [De) —n]={(aav,...,anv) : > a;=0and a; > —1lalli}

so V N [D%é) — n*] certainly has positive measure in V. Now let n € X™
and consider V N [DY,(e) —n]. Ify € V N [DY,(€) — n|, then there exists
e € D%,(é) and « such that 3" «a; = 0 for which y; = ayv = ¢; — 7; for each
i. In particular, e; = n; + a;v > 0 for each 7 and £(e) is not determinate.
Thus o € A,4(n,v), which has (m — 1)-dimensional Lebesgue measure 0 by
Theorem 7.1. Thus

VN[De) — '] = {(a1v,...,anv) i a € Apg(n,v)}

has (m — 1)-dimensional measure 0. We conclude that DY ,(é) is finitely shy,
and thus that DY(e) is finitely prevalent, in D°(€) as asserted. O

Since prevalent sets are dense, this result allows us to conclude imme-
diately that the set of endowment distributions that lead to a determinate
economy is dense in D°(€) as well.

Stronger assumptions on consumers’ utility functions lead to a stronger

conclusion about local comparative statics. To make this statement precise
we need two additional notions. The first is a stronger notion of determinacy.

Definition The economy E(e) is Lipschitz determinate with respect to ||-|
if it is determinate and for every equilibrium x € FE(e) there exist neigh-
borhoods O of x and W of e such that on W every selection from O N E is
pointwise Lipschitz at e with respect to ||-||.1°

For this result we will need to specify a single norm on the commodity
space. To this end, for each x € X define

||$Hmaw = miaX ||‘75HZ

If each individual norm ||-||; is absolute, that is if |||z||| = ||z for every z € X,
then Lipschitz determinacy with respect to ||+||;nae holds for a prevalent set

19Recall that if X, Y are normed spaces, then f : X — Y is pointwise Lipschitzon X at
zZ € X if there exists K > 0 such that ||f(z) — f(2)]]| < K||z — Z|| for all z € X.
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of endowment distributions.2°

Theorem 7.3 If £ is a basic economy and for each i there is an absolute
norm ||-||; such that

(a) |||li is adapted to U; on weakly compact subsets of PP(€)

(b) U; is quadratically concave with respect to ||||; on weakly compact sub-

sets of PY(e)

then almost all endowment distributions lead to an economy that is Lipschitz
determinate with respect to the norm ||+||mae on X. That is,

DY,(€) = {e € D%e) : E(e) is Lipschilz determinate with respect to ||Hmm}
is prevalent in DY(e).

Proof: Fix a compact subset A* C A°. We first show that, for A\ € A*,
supporting prices p(\) are uniformly bounded in the ||-||,;4: norm. To this
end, note that ||-||;nee is an absolute norm, as

121l = e ] = ms s = [l
Moreover, by definition,

Hp(A)Hmax = Ssup ‘p(A) ’ Z|

[zllmaz<1

Because p(A) is positive and ||-||mqz is absolute,

PN [[maz = sup  [p(A) -z = sup p(A)-z
HZ”mazgl HZ”mazgl
Z€X+

20Requiring that a norm be absolute is not innocuous. For instance, there are many
norms on M [0, 1] (the space of signed measures on the unit interval) for which the topology
induced by the norm coincides with the weak star topology (viewing M0, 1] as the dual
of the space C[0,1] of continuous functions) on order intervals, but there is no absolute
norm with this property. See ? for further discussion.
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By definition, p(A) = V A\;DU;(x;(N)) and each A\;DU;(z;(N)) is a positive

linear functional, so for z € X, we have
0 <p(\) -2 < [Y NDUi(xi(N)] - 2 = Y- [NDUs(i(N)) - 2]
Using the adaptedness of ||-||; on 2(A*) and the definition of ||-||;4. We obtain

1PN lmae = sup  p(A) - 2
[2llmaa<1
Z€X+

< sup Z NDU;(x;(N)) - 2]
Pt

ZAiBiHZHi < ZAiBi < ZBi

IN

for some constants B; > 0.
We now show that the excess spending map S is jointly locally Lipschitz
on AY x D°(é). Fix a consumer i. For \, \ € A® and e,¢’ € D'(e)
19i(Ae) = Si(N, €)= [p(A) - [2:(A) — e] = p(X) - [:(X) — €]
< p(A) - zi(A) = p(X) - (X)) + [p(X) - € — p(A) - €]
< [p(A) - zi(A) = p(X) - 2i(N)]
+ [p(N) - € = p(N) - il + [p(X) - ei = p(A) - €4
< p(A) - @A) = p(X) - (X))
+ IV [lmacll€; = €illmaz + [[p(N) = p(V)] - €]
Consider the last three terms. Lemma 6.1 guarantees that there is a constant

C such that
IP(A) - zi(A) = p(X) - 2 (N)| < Ci[A = X

The bound obtained in the previous paragraph guarantees that
Hp(X)HmawHe; - eiHmaw < Z Bz‘Hd - eiHmaw
Lemma 6.1 guarantees there is a constant Cy such that
() = p(N)] - €] < CafA =N

Putting these together, we conclude that S is Lipschitz on A* x D%(e), and
in particular, is locally Lipschitz on A x D°(€), as asserted. The result now
follows from the transversality results in Theorem 2.2 and Theorem 3.7 in

Shannon (1998b). O

27



8 Examples

In this section we develop examples illustrating our results in the setting of
continuous time trading in financial markets and of trade over an infinite
horizon. For examples in the setting of commodity differentiation, see ?.

Example 8.1 Continuous-Time Trading in Financial Markets. The
standard model?! of continuous time trading begins with a probability space
(Q,F,P) and a filtration {F; : 0 < t < T} of sub-sigma-algebras of F
such that Fy = {0,Q}, Fr = F and F, C Fp if t < t'. The filtration
{F:} represents revelation of information over the time interval [0,77]; F;
is the sigma-algebra of events observable at time ¢t. Commodity bundles are
square integrable predictable stochastic processes, thus the commodity space
is L2(2x[0,T),P,v), where P is the predictable sigma algebra and v = P x 1
is the product of P with (normalized) Lebesgue measure on [0, 7.

Each consumer 7 is characterized by an initial endowment e; and a utility
function, usually assumed to have an expected utility representation

Ui(z) = E VOTui(a;t,t)dt] :/Q VOTui(g:t(w),t)dt] dP(w)

where u'(+,t) : R — R is strictly increasing and strictly concave for each ¢.
It is usually assumed that utility functions satisfy Inada conditions, so that
the partial derivatives u'(x,t) — oo as  — 0, uniformly in ¢, and that the
social endowment e is bounded above and uniformly bounded away from O.

Under these assumptions for each consumer, it is easily verified that ev-
ery Pareto optimal allocation in P%(€) is uniformly bounded away from 0.
A straightforward computation then shows that for each ¢ the L? norm is
adapted to U; on weakly compact subsets of P?(€).

If in addition u’(-,¢) is C? and differentiably strictly concave, uniformly
in ¢, then U’ is quadratically concave on weakly compact subsets of P?(e)
with respect to the L? norm. To see this, note that for each b* € R, there
is a constant K; > 0 such that

W (b, 1) < u(a,1) — i (a, £)(b — ) — Kilb — al

218ee Duffie and Zame (1989) or Breeden (1979) for instance.
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for each t € [0, 7] and a,b € [0,0*].? Then for z,y € [0, €]

Uily) — Ui(z) = E-/OTui(yt,t)dt]—EVOTuf(xt,t)dt]

- B /OT[ui(yt, t) — u'(ay, t)]dt]

T .
< b | [ it 00— )~ Kol —

T | T
= b / g (g, 1) (Ye — iUt)dt] — KiE [/ |y — $t|2dt]
0 0

= DU'(z)- (y — ) — Killy — =

which is the required inequality.

Because the L? norm is absolute, Theorem 7.3 guarantees that almost all
endowment distributions lead to economies which are Lipschitz determinate
with respect to the L? norm.

In the framework above, a commodity bundle = represents a rate of con-
sumption. Hindy, Huang, and Kreps (1992) (see also Hindy and Huang
(1992, 1993)) argue that intertemporal consumption patterns should admit
the possibility of consumption in discrete lumps (“gulps”), as well as in rates
(“sips”). For consumption over the time interval [0, 1], they suggest that
commodities should be represented by positive, increasing, right continuous
functions ¢ : [0,1] — R, where () gives total consumption at or before
time ¢. In this formulation, consumption occurs in “gulps” at points where ¢
has an upward jump and in “sips” at points of continuity of ¢. For our pur-
poses it is convenient to adopt an equivalent formulation in which commodity
bundles are non-negative measures x on [0, 1], so that x[0, t] represents total
consumption on the interval [0,¢]. In our formulation, consumption occurs
in “gulps” at atoms of x and in “sips” elsewhere. Equivalently, note that the
functions that represent commodity bundles in the Hindy, Huang and Kreps
formulation are just the cumulative distribution functions of the measures
that represent commodity bundles in our formulation. This alternative for-
mulation leads to the commodity space M |0, 1], the space of signed measures

22Smoothness and quadratic concavity of u‘(-,t) would suffice.
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on [0,1]. As the following example shows, models such as those developed
by Hindy, Huang and Kreps also satisfy our requirements.

Example 8.2 Lumpy Consumption. The commodity space is M|0, 1],
endowed with the weak star topology when viewed as the dual of the space
of continuous functions C'[0,1]. To capture the idea that consumptions at
nearby dates should be nearly perfect substitutes at the margin, Hindy,
Huang, and Kreps (1992) assume that preferences are continuous in the weak
star topology and uniformly proper with respect to one of a particular family
of norms of the form

1/p

1
Il = | [ lal0, APt + 2o, )
for p > 1. A typical utility function satisfying their assumptions is:
1
Uz) = / u(@[0, 4], £)dt + v(x[0, 1])
0

where u(-,t) : Ry — R is C?, strictly increasing and strictly concave for each
t and v : R, — R is C?, strictly increasing, and strictly concave. Suppose
in addition that v”(c) < 0 for each ¢ and that u..(c,t) < 0 for each ¢,t.2> We
assert that the norm ||-||; is adapted to U on every order interval |0, €], and
that U is quadratically concave on every order interval [0, €] with respect to
this norm.?*

Hindy, Huang, and Kreps (1992) show that the topology induced by ||-||;
(or indeed any of their norms) coincides with the weak star topology on order
intervals. To verify that the norm ||-||; is adapted to U, therefore, we must
only verify the relevant properties of derivatives. To this end, note that our
assumptions provide a constant C' such that v'(¢) < C' and u.(-,t) < C for
every ¢ < €[0, 1]. Thus

DU@) ol = | [ uelel0. 2 0900, + o/ (a10, )of0, 1

23 Again, smoothness and quadratic concavity of u and v would suffice.

24Note that ||-||; is not an absolute norm: if z € M[0,1] then ||z[|; > |||z|||1, but equality
holds exactly when z > 0 or x < 0. Indeed, as we have noted in footnote 20, no absolute
norm on M0, 1] has the property that the norm topology coincides with the weak star
topology on order intervals. The total variation norm is an absolute norm on M0, 1] —
but these utility functions are not quadratically concave with respect to the total variation
norm.
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1

_ g/ Clyl0, |dt + Cly[0,1]|
0

= Cllylx

for x € 0, €] and y € M|[0, 1]. Similarly, there exists C’ > 0 such that

DUG) == DUW) 2 < | [ [aelyl0,1,0) — wely/[0,), 1)) 00,
+ 10610, 1) = ([0, 1DJ200, 1]
< 'y =yl

for y,y/, 2 € [0, €], so ||-||; is adapted to U on [0, €].
To see that U is quadratically concave, fix x,y € [0, €]. Differential strict
concavity of v and u provides a constant C” > 0 such that:

u(cd,t) —u(e,t) < wele,t)(d —c) —C"|d — ¢f?
v(d) —v(e) < V(e)(d —¢)—C"|d —cf

for each ¢, ¢ < €[0, 1] and for each ¢. Hence

U() ~U() = [ Fulol0,.0) (a0, 0] e+ o(3[0, 1)) = ([0, 1)

< /01 luc(2]0,4], ) ([0, 1] — 2[0,£]) — C"[y[0,#] — 2[0,#] % dt

+ v'(2[0,1])(y[0,1] — z[0,1]) — C"|y[0,1] — [0, 1]
= DU(z)- (y — )
_ o UO 1[0, 1] — 2[0, #] 2t + |y[0, 1] — [0, 1]|2]

< DU(x)-(y —=2) = C"|ly — =l

—~

where the last inequality is a consequence of Jensen’s inequality.

Infinite horizon economies are perhaps the most familiar examples of mod-
els with infinitely many commodities. In the following example, we consider
such a model with non-separable habit formation preferences.

Example 8.3 Infinite-Horizon Economies. Consider a discrete time in-
finite horizon economy in which the commodity space is ¢, endowed with
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the Mackey topology. Consumer i is characterized by an endowment ¢; and
a utility function that displays habit formation of the form:

Ui(z) = vi(xo) + iﬁfui(%—la )
=1

where ; € (0,1) is a discount factor. We assume that v; : Ry — R and
u; : R — R are C?, strictly increasing and differentiably strictly concave.

As in Example 3.1, such utility functions are not quadratically concave on
any bounded set with respect to the /., norm. However, it is quadratically
concave on bounded sets with respect to the weighted norm:

o0
l2llg, = >_ Bilae
t=1

To see this, let € € /. be given and let z,y € [0,€]. To simplify notation,
for each z € ., and for each ¢ let z(t) = (21, 2). Then

Uy) —Uiz) = wiluo) — vilzo) + 2 B s y(t)) — ua(t))]

t=1

< vi(mo)(yo — o) — c|yo — f0|2

+3 ADu(a) - o) ~ —czﬁtuy (1)
DU (g —)—c [wo o+ 3 Al - x(t)H?]
< DUG) (=) el + ) — o

< DU1(1’> . ( - 1’) - C 1"‘5@ (Zﬁ ‘yt wt‘)
= DUi(z)- (y — x) — c(1 + B3;)blly — |3,

for some ¢, b > 0. Here the first inequality follows from the quadratic concav-
ity of u, and the last inequality uses the fact that in a finite measure space,
the L? norm dominates a multiple of the L' norm; i.e., there is a constant

B > 0 such that || f|ls > B||f||; for all f.
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Similarly, it is straightforward to verify that this weighted norm is adapted
to the utility function U; on bounded sets. Note, however, that if different
individuals discount future consumption at different rates then we must use
different norms for each consumer. Because each of these weighted norms is
absolute, Theorem 7.3 guarantees that almost all endowment distributions
lead to Lipschitz determinate economies.

Appendix

Proof of Lemma 4.2: (i) = (ii): Let = be a Pareto optimal allocation and let ¢
be a supporting price. We first establish the desired representation of g.
For each i, set

_ q- Ty

DU;(;) -
The fact that utility functions are strictly monotone guarantees that the denomi-
nator is strictly positive. The fact that ¢ is a supporting price guarantees that the
numerator, and hence f;, is strictly positive. Our goal is to show that

Bi

q-y= [\/ﬁiDUi(fL‘i)] ‘Y

for every y € X, from which we will easily obtain the desired representation. We
proceed by verifying this equality first when 0 < y < z; for some ¢, then when
0 <y < e, then when y is in the order ideal generated by €, and finally for arbitrary
y e X.

Fix a consumer ¢. Supporting prices equate marginal rates of substitution so
if y € X then
DU (x;) - x4 < DU (x;) -y
q-ri  qy
with equality if y < x;. Rearranging yields

q - T
q-y= (DUi( - i>DUz(y) Y

for every y € Xy, with equality if y < z;. Using the definition of 3; and substitut-
ing, we have

q-y > 0;DU;(x;) -y for all y € X, with equality if y < x; (7)
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If y € Xy and y < z; for i # j, then two applications of (7) imply that
BiDUj(z;) -y = q-y = BiDUs(x;) -y
In particular
B;DUj(x;) -y > BiDUi(z;) -y ify € Xy, y <z (8)

For y € X,

l\/ ﬂz‘DUi(ZEi)] -y = sup {Z BiDU;(;) - ai s a; >0, a; = y} (9)
by the definition of the supremum of linear functionals. Thus

[\/ ﬁiDUi(ffi)] y=0iDUj(z;)-y=q-y ifyeXy,y<u, (10)

Next consider any y € X4 for which 0 < y < &. The Riesz Decomposition
Property of vector lattices guarantees that we can find vectors y; € X such that
y=> y; and 0 <y; < x; for each j. Repeated applications of (10) yield

YﬂiDUi($i)] y = [\/ ﬂiDUi(xi)] . [Ej: y]}
= Z{[\i/ﬁiDUi(xi)] .y]}

J
= Y B;iDUj(x;) -y
J
= > qy
J
= q-)
J
= qy
Now consider any y in the order ideal generated by é; that is, y € X such that

ly| < ke for some k > 0. Write z = (1/k)y and decompose z = 27 — 2z~ as the sum
of positive and negative parts. Then 0 < 2" < e and 0 < 2~ < ¢, so the previous
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paragraph implies that
[\/ ﬁiDUi(l‘i)] 2t = g2t
[\/ ,BiDUi(l‘i)] 2T = gz

It follows from linearity that

Il
<
<

[\/ ﬂiDUi(wi)] Y

Strict positivity of the social endowment & means that the order ideal generated
by € is dense in X, so continuity entails that

[\/ ﬂz’DUi(wi)] y=q-y

for every y € X, which was our goal.

Write =Y 8; and A\; = f3;/3 for each 7, and note that A; > 0 because ; > 0.
Then

q = ,3\//\1DU1(1‘1) (11)

which is the desired representation of g.

It remains only to show that x solves the planner’s problem for these weights A.
To see this, suppose that 2’ is an allocation. Then z} > 0 for each i and ) =, = €,
SO

Moreover, since utilities are concave,
> AUs(ah) =Y AiUi(xs) = > N [Us(a) — Us(a)]

IN

Thus

N AUi()) =Y AUs(zi) <0 N [DU(x3) - (2 — )]
= Z \iDU;(x;) - o — Z NiDU;(x;) - 5
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B
11
< Eqﬁ—BZq-xl
= %Q'e_%Q'sz
P
B B
=0

Thus z solves the planner’s problem for the weights A.

(ii) = (i): Solutions to the planner’s problem are Pareto optima, so we need
only show that \/; A\;DU;(x;) is a supporting price. Note first that for every i,
the first order condition for Pareto optimality implies

AiDUi(z:) - (—y) + AjDU;(;) -y < 0
if y e X4,y <a;. Rewriting yields that
AiDUi(zi) -y > AjDUj(x;5) - y
ifye Xy,y <a;. It follows as above that
q-z>NDUi(x;) - 2
for z € X4 with equality if z < x;.
Now fix 7. To see that g supports U; at z;, let z > 0. Then
Ui(z) = Ui(z;) < DU;i(zi) - (2 — x5)
= DU(x;) - z — DU;(z;) - x5

1
= DUi(z;) -z — SV
o1 I
= )\iq z )\iq Ty
1
= )\—iQ'(Z—l'z‘)

Thus if z > 0 and U;(2) > U;(x;), then g-z > q-z;. It follows that ¢ is a supporting
price, so the proof is complete. O

Proof of Lemma 6.1: 'To establish (i), fix § > 0. Recall that A ={rAeA:\>
6 for each i} and P°(€) = x(A%). Because A° is a compact set and z is weakly
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continuous, P?(&) is a weakly compact subset of P?(€) for each i. Because each
of the norms |[|-||; is adapted to U; on weakly compact subsets of P?(&), there are
constants B;, C; > 0 such that

|DUs(x:) - y| < Billylli (12)
for all z; € P/(€) and y € X, and
|DUs(;) - = = DU;(x5) - 2| < Cillwi — s (13)

for all z;,z; € P?(e) and z € [0,€]. By Lemma 5.1, the solution to the planner’s
problem is Lipschitz on A?, so there is a constant K; > 0 such that

2i(A) = zs(N)|li < K ) |A — Af (14)

for A, X € A%,

Now fix a consumer j and weights A\, \ € A% To simplify notation, write
for each 7. If 0 < z < x;(\) then, as in the proof of Lemma 4.2, the first order
conditions imply that

AjDUj(z4) - 2 > M DUg(z) - 2

for each k. Hence p(}) - z; = A\jDUj(z;) - x; = p; - x;. Similarly, p(\') - 2 =
;DU (%) - o = pj; - ;. Thus

prz;—p -2l = |pj-x;—pj- )+ w2 — P
< pj-xj —pj - 2hl+ Ips - 2 — pf - 2]
= Ip;- (z; — 25)| + |(pj — p}) - ] (15)

Because the norm [|-||; is adapted to U; on Pf(é) and the planner’s problem is
Lipschitz on A?, we conclude that

Ipj - (x5 — 25)| < Bjlley — 2jl; < BiK; Y [Ai = A (16)
((pj — 1) - 25| < Cjllay — jll; < CK; Y [Ai = A (17)

Combining (15), (16), (17) yields (i).

To establish (i), again fix 6 > 0 and let A\, X € A%. Again write z = z()\), 2’ =
z(N), p=pA), 0" = p(N), pi = \iDU;i(z;) and p;, = XN, DU;(x}) for each i. Fix an
arbitrary w € [0, €]. By definition,

prw = (\/pz)-w:sup{Zpi-ai:aiZO7Zai:w}.
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Fix £ > 0 and choose (a;) so that >~ a; = w and

p‘w§€+2pi'ai-

As in the proof of (i), we use quadratic concavity and adaptedness of the norm
[|]li to U; on P?(€) to choose constants B;, C;, K; so that (12)-(14) obtain. Thus

prw—pw < €+sz"ai—2p§'ai

< e+ (pi—pj)
< €+ZCiH$i—1‘¢||i
<

s+;cz-m (;Mk_ m)
_ 5+(;qm> (zmk— u)-

k

Reversing the roles of p, p’ and keeping in mind that ¢ > 0 was arbitrary, we obtain

p-w—p - w| < (;QK@) (;I/\k - /\ﬁfl>

Because w € [0, €] was arbitrary, this is the desired uniform Lipschitz estimate (ii).

(iii) is immediate from (i) and (ii). To establish (iv), fix a consumer ¢ and fix
an arbitrary (), e) € A% x D%(e) and let (X, ¢’) € A? x D°(€) be another point. To
see that S; is continuous at (A, ), note that

1Si(Ae) = Si(X, €)= [p(A) - zi(A) — p(N) - 2:(X) — p(A) - e + p(X') - €]
< |p(N) :m(/\) p(N) - xs(X)]
+p(A) - ei = p(A) - € + p(A) - € — p(X') - €
< p(A) - zi(A ) p(X) - i (X)]
+p(A) - ei = p(A) - €f] + [p(A) - ¢ — p(X) - €]

Let € > 0 be given. By (i) and (ii), there is a neighborhood V' of A such that if
N €V then

Ip(A) - 2;(A) — p(N) - 2;(N)| < €/3 and [p(A) - e —p(XN) - €| <e&/3

Continuity of the linear functional p(\) guarantees that there exists a neighborhood
W of e such that if ¢/ € W then

Ip(A) - ei — p(A) - €] < /3

38



Thus if (N,e) € V x W, then |S;(A,e) — Si(N,€')| < e. It follows that .S; is
continuous at (A, e). Since (A, e) is arbitrary, we conclude that .S; is continuous on
A% x DY(&), which is (iv). O
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