THE ALGEBRAIC GEOMETRY OF GAMES
AND THE TRACING PROCEDURE

Stephen H. Schanuel

Leo K. Simon

william R. Zame

1. INTRODUCTION

This paper has two purposes. The immediate purpose is to point out
some difficulties with the tracing procedure of Harsanyi and Selten, and
show how they can be dealt with. The other purpose is to describe the
theory of semi-algebraic sets and a few of its applications in game theory.

The tracing procedure is the heart of the extensive theory of
equilibrium selection in games which has been developed by Harsanyi and
Selten (Harsanyi [1975], Harsanyi-Selten [1988]). For each (normal or
extensive form) game, the theory of Harsanyi and Selten prescribes (on the
basis of Bayesian and risk analysis) a prior probability distribution over
strategies for this game. Given this prior probability distribution, the
logarithmic tracing procedure identifies a unique Nash equilibrium (the
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logarithmic solution ) from the set of all Nash equilibria. In part because
the logarithmic solution is difficult to compute in practice, Harsanyi and
Selten also use another procedure, which they call the linear tracing
procedure . In contrast to the logarithmic tracing procedure, the linear
tracing procedure is relatively easy to compute, but does not always lead
to a unique solution. However, the linear tracing procedure leads to a
unique solution for “most” games, and when it does lead to a unique
solution, it leads to the logarithmic solution. These two properties of the
linear tracing procedure make it useful in applications.

Unfortunately, there are some difficulties with the descriptions and
constructions that Harsanyi and Selten give for the tracing procedures. In
particular, the arguments for the crucial properties of the tracing
procedure (that the logarithmic tracing procedure always leads to a unique
solution, and that the linear solution - when it is unique - coincides with
the logarithmic solution) are not rigorous. (We discuss the tracing
procedure and the difficulties in Section 4.) i

In this paper we clarify the definitions of ‘the logarithmic and linear
tracing procedures and give rigorous proofs for the crucial properties. Our
methods also show that, viewed as a function of the the initial data (i.e.,
the payoffs of the game and the prior probability distribution), the
logarithmic solution is continuous on a dense open set of full measure. (It
could not possibly be continuous everywhere.)

We believe that our methods are of interest in themselves, and will have
wide applicability in game theory. Primarily, we make use of real
algebraic geometry , which is the study of algebraic and semi-algebraic
sets. (An algebraic set is defined by polynomial equalities; a
semi-algebraic set is defined by (conjunctions and disjunctions of)
polynomial inequalities.) It has been observed by Kohlberg and Mertens
[1986] (and perhaps by many others) that certain of the constructions of
game theory lead to semi-algebraic sets, and that semi-algebraic sets have
a very special structure which is relevant for game theory. In particular,
the set of Nash equilibria of any game is a semi-algebraic set, and hence
has a finite number of connected components. This fact plays a significant
role in the theory of stable equilibrium.

In this paper we show that virtually al/l of the constructions of game
theory give rise to semi-aigebraic sets. This is a consequence of a deep
and remarkable result from mathematical logic, the Tarski-Seidenberg
theorem (Tarski [1931], Seidenberg [1954]). The Tarski-Seidenberg theorem
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asserts that any first order formula in the language of the real numbers
(i.e., a formula which does not involve quantification over sets) is
equivalent to a first order formula which involves no quantifiers at all.
(Indeed, the Tarski-Seidenberg theorem actually gives an explicit procedure
for this “elimination of quantifiers.”) A first order formula which involves
no quantifiers is simply a conjunction and disjunction of polynomial
inequalities, and hence defines a semi-algebraic set. The import of the
Tarski-Seidenberg theorem for game theory is that virtually all of the
usual game-theoretic constructions are (or are equivalent to) first order
constructions, and hence give rise to semi-algebraic sets. (The
Kohlberg-Mertens [1986] notion of stability may be an exception here.
Since stability is a set-valued notion, it does not seem clear whether it
has a first order formulation.)

As a consequence of the Tarski-Seidenberg theorem, we show (Theorem
1) that virtually all of the usual game-theoretic equilibrium
correspondences (Nash, subgame perfect, sequential, perfect, etc.) have
semi-algebraic graphs. It follows (Corollary 1.1) that each of these
correspondences is continuous at every point of a dense open set of full
measure (previously, it had not been known that the perfect equilibrium
correspondence had any points of continuity at all) and admits a selection
which is continuous at every point of the same set. In fact, the
logarithmic solution provides such a selection (previously, the generic
continuity properties of the logarithmic solution were unknown). It also
follows (Corollary 1.2) that for every game, the set of Nash (respectively,
subgame perfect, sequential, perfect) equilibria has a finite number of
connected components, and that there is a bound for this number which
depends only on the game form. Finally (Corollary 1.3), for every game, the
set of Nash (respectively, subgame perfect, sequential, perfect) equilibria
is the finite union of connected real-analytic manifolds (of various
dimensions).

We stress that the above conclusions are immediate applications of the
definitions and known facts about semi-algebraic sets. For other, less
immediate, applications, see Simon [1987] and Blume and Zame [1989].
Blume and Zame use the theory of semi-algrebraic sets to show that, for
generic games, all sequential equilibria are (trembling hand) perfect.
Simon uses a generalization (due to van den Dries [1986]) of the theory of
semi-algebraic sets to establish the existence of mixed-strategy equilibria
for continuous time games. The only other application (of which we are
aware) of the theory of semi-algebraic sets in game theory is the
previously mentioned observation of Kohiberg-Mertens [1986] that the set
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of Nash equilibria of a game is a semi-algebraic set, and hence has only a
finite number of connected components. A different aspect of the
Tarski-Seidenberg theorem (that first order formulas true in one real
closed field are true in all real closed fields) was used by Bewley and
Kohlberg [1976] in their work on stochastic games.

The remainder of the paper is organized in the following way. Section 2
describes the basics of the theory of semi-algebraic sets and the
Tarski-Seidenberg theorem, and gives some simple examples. Section 3
details the general applications to game theory, and in particular gives the
results about equilibrium correspondences described above. Section 4
briefly reviews the tracing procedure, isolates what appear to be the
crucial difficulties, and gives rigorous arguments to circumvent them.
Finally, Section S briefly explicates the relationship of the tracing
procedure to the entire Harsanyi-Selten equilibrium selection procedure.

2. SEMI-ALGEBRAIC SETS

In this section, we describe the basics of the theory of algebraic and
semi-algebraic sets and the Tarski-Seidenberg theorem. Excellent general
references are Bochnak-Coste-Roy [1988] and Delfs-Knebusch [198 13, b].
For a very brief, but readable, synopsis, we recommend van den Dries
[1986].

By definition, an algebraic set in RN is defined by (a finite number of)
poiynomial equalities . More precisely, an algebraic set is a set of the
form:

A={x=(xg...,xN) e RN :py({x) =...=pp(x) = 0),

where py,...pn are polynomials (with real coefficients). Note that the
vanishing of an arbitrary collection of polynomials is equivalent to the
vanishing of a finite number of polynomials because the ring of real
polynomials in N variables is Noetherian. Note also that the vanishing of
at least one of the polynomials qy,...qn is equivalent to the vanishing
of the product nqi » and that the simultaneous vanishing of the
-polynomials py,...pn is equivalent to the vanishing of the sum 2 pil.
reader might note that this elementary fact already draws a sharp




distinction between real polynomials and complex polynomials.) Hence, any
arbitrary conjunction and/or finite disjunction of polynomial equalities is
equivalent to a single polynomial equality. In particular, the family of
algebraic sets is closed under arbitrary intersections and finite unions.
Note that, aside from R itself, the algebraic subsets of R are precisely

the finite sets.

By definition, a semi-algebraic set in RN is the union of a finite
number of sets, each defined by a finite number of polynomial inequalities .
More precisely, a semi-algebraic set is a finite union of sets of the form:

B={xeRN:p(x)=0,q1(x)<0,...,qnp(x)<0}.

where p, qq,...Qn are polynomjals (with real coefficients). (In contrast
with the case of polynomial equalities, a finite conjunction and/or
disjunction of polynomial inequalities need not be equivalent to a single
polynomial inequality.) Note that the complement of 2 semi-algebraic set
is a semi-algebraic set and that the union and intersection of (a finite
number of) semi-algebraic sets is a semi-algebraic set. In other words,
the family of semi-algebraic sets forms a Boolean algebra of sets. We
may also describe the semi-algebraic sets as the smallest Boolean algebra
of sets containing all those defined by a single polynomial inequality

q(x) < 0 . The semi-algebraic subsets of R consist of the all finite
unions of intervals (closed or open or half open, finite or infinite).

Every algebraic set is semi-aigebraic, and that every semi-algebraic set
is the union of (relatively) open subsets of algebraic sets.

If A,B are semi-algebraic sets, a function f: A~ B (or more
generally, a correspondence F: A -+ B ) is semi-algebraic if its graph is
a semi-algebraic set. Note that we do not require a semi-algebraic
function to be continuous, nor do we require a semi-algebraic
correspondence to be upper or lower hemi-continuous, or have closed
values, or even to have non-empty values.

Two aspects of the theory of semi-algebraic sets are of primary
interest to us. The first is that semi-algebraic sets admit an alternate
description, which allows us to recognize as semi-algebraic many sets
which are not presented as the solution sets of polynomial inequalities.
The second is that semi-algebraic sets (and hence semi-algebraic functions
and correspondences) have a very special structure.
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To explain the first aspect, it is convenient to discuss in a very
informal way the first order theory of the real numbers. We begin with the
first order language, which is built up from the usual logical symbols (and,
or, not, such that, implies, ¥V , 3), the real numbers (as constants), (real)
variables, the algebraic operations (+, - ), equality ( = ), and the order
relation ( < ). A first order formula is any formula in this language in
which all quantifiers are extended only over elements of IR and not over
sets . (Keep in mind that many substructures of IR do not have names in
this language. In particular, there is no name for the integers, and there is
no predicate for "is an integer”.) The following are examples of first order
formulas:

(F1) x>0
(F2) v2 - 4uw > 0
(F3) 3dy suchthat x = y2 andy # 0

(F4) 3y and 3z suchthat y#z and uy2 + vy +w = 0
and uz2 +vz+w =0

In these formulas we have followed the usual convention that “unbound
variables are free.” If a formula contains n free variables Xj,...,Xpn,
substituting a particular real number rj for each free variable x; yields
a sentence (i.e., a formula with no free variables) which may be true or
faise. If this sentence is true, we say that ry,...,rn satisfy the
formula. The set of all n-tuples (ry,...,rp) satisfying the formula is the
set defined by the formula.

Thus, formulas (F1) and (F3) each define a set of real numbers, while
(F2) and (F4) each define a subset of RS . Clearly (F1) and (F3) define the
same set, namely the set of positive real numbers. (F4) defines the set of
triples (u,v,w) € R3 such that the polynomial ut2 + vt + w has two
distinct real roots. Since a quadratic polynomial has two distinct real
roots exactly when its discriminant is positive, we see that the formulas
(F2) and (F4) define the same set.

It &(xy,..Xp,y) is a first order formula involving the free variables
X1,...,Xpn and y, then we obtain first order formulas whenever we
specialize or bound the variable y; i.e., if r is any real number then the
following are also first order formulas in which only the variables
X{y...,Xn 2are free:
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(FS)  &(x1,..,%p,")
(F6) 3y, ®(xq,..%n,Y)
(F?) Yy, &(x1,..%pY)

As we have noted, this language contains no name for the set of integers
and no predicate for “is an integer” and there is no first order formula (in
this language) which is satisfied precisely by the integers (or the positive
integers, or the rational numbers). The restriction to first order formulas
is crucial here; the formula

(F8) VXCR,{0eX and (yeX 3 y+1eX)} 3 yex

(with the single free variable y ) is satisfied precisely by the positive
integers. Of course it is not a first order formuia, since it involves
quantification over a set.

Note that a first order formula cannot involve a polynomial of
unspecified degree. However, it may certainly involve a polynomial of 2
particular, pre-specified degree (in a particular, pre-specified number of
variables), since a polynomial of pre-specified degree in a pre-specified
number of variables is determined entirely by its (finite, pre-specified
mumber of) coefficients.

As we have noted, the two formulas (F1) and (F3) above are satisfied by
the same values of the variable x ', and define the same subset of R ; i.e,,
they are equivalent . (In view of this simple observation, it might seem
that the order relation < is redundant, since it can be expressed in terms
of multiplication. However, doing so requires the use of quantifiers, while
it is precisely the elimination of quantifiers which provides the powerful
tool we shall use.) Similarly, the two formulas (F2) and (F4) are
equivalent; they are satisfied by the same values of the variables u, v,
w , and define the same subset of R3 . The forms of these formulas are
notable; (F3) and (F4) involve quantifiers, while (F1) and (F2) do not. That
is, (F3) and (F4) are equivalent to formulas from which the quantifiers have
been eliminated . The following theorem of Tarski and Seidenberg (Tarski
[1931], Seidenberg [1954]) says that this is always possible. (The
Tarski-Seidenberg theorem is frequently phrased as a statement about real
closed fields, and it is in this form that it was used by Bewley-Kohlberg
[1976]. We have phrased it as a statement about the real numbers because
that is more convenient for our purposes. For a more formal discussion of
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the relationship between the two formulations, see Blume-Zame [1989].)

TARSKI-SEIDENBERG THEOREM (version I): Every first order formula
is equivalent to a first order formula with no quantifiers.

A first order formula with no quantifiers is just a conjunction and
disjunction of polynomial inequalities, and hence defines a semi-algebraic
set. Thus, the Tarski-Seidenberg theorem can be phrased in the following
(equivalent) way, which is more convenient for us:

TARSKI-SEIDENBERG THEOREM (version II): A subset of RN is
semi-algebraic if and only if it can be defined by a first order formula.

As we shall see, the Tarski-Seidenberg theorem is remarkably powerful
and at the same time remarkably easy to apply. A few examples may help
to suggest the kind of logical manipulations involved.

PROPOSITION 1: The image of a semi-algebraic set under a
semi-algebraic map is a semi-algebraic set.

PROOF: If f:A-B is a semi-algebraic map between semi-algebraic
sets, then graph(f) is a semi-algebraic subset of AxB . The image of f
is defined by the formula:

(*) beB and Jae A such that (a,b) € graph(f)

Since A, B and graph(f) are semi-algebraic sets and hence are defined
by first order formulas, (*) "is” also a first order formula. A little more
precisely: if &5, g, ¥ are the first order formulas which define A, B,
graph(f) , then (*) is shorthand for the first order formula

(*) ¢pg(b) and Ja such that ®a(a) and ¥(a,b)

Hence, the Tarski-Seidenberg theorem implies that image(f) is
semi-algebraic.




PROPOSITION 2: The closure of a semi-algebraic set is a semi-algebraic
set.

PROOF: If A is a semi-algebraic set in RN, then its closure A is just
the set of points X = (x1,...,xN) € RN satisfying the formula:

(%%) We>0,3yeA suchthat |x-y|2<e

since |x - y|2 is a polynomial and A is defined by a first order
formula, (**) is (shorthand for) a first order formula. Hence, the
Tarski-Seidenberg theorem implies that A is semi-aigebraic. N

As a final example of the sort of manipulations which are sometimes
useful, we give an extension of Proposition 1 which will be needed in
Section 4. By Proposition 1, if A is a semi-algebraic subset of RN and
9 : RN > IRM is a semi-algebraic mapping, then P(A) is a semi-algebraic
set. Hence Y(A) can be defined by polynomial inequalities. We would like
to have bounds for the number of polynomials required, and their degrees.
One suspects that it should be possible to find such bounds if we constrain
A to lie in a "semi-algebraic family of sets” and constrain Y tolieina
"semi-algebraic family of mappings” and this is what we shall
demonstrate. (Precise statements of this sort can be formulated in many
different ways; the formulation we choose is simply one that is
convenient for the application we need.) We formalize the idea of 2
semi-algebraic family of sets by beginning with a semi-algebraic subset B
of RN*! and considering the family sets By obtained by intersecting B
with the hyperplane xp+1 = M . Rather than formalizing the idea of 2
semi-algebraic family of mappings, we simply consider the family of all
linear transformation from RN to RM; identifying a linear
transformation with its matrix yields a natural “semi-algebraic
parametrization” of this family.

To state our result precisely, we first collect some notation. A family
of subsets of RN is a Boolean algebra of sets if it is closed under the
formation of complements, finite unions and finite intersections. If E is
a family of subsets of RN, then by B(E) we mean the Boolean algebra
generated by E; i.e., the smallest Boolean algebra of sets containing E .
Now, B(E) can be constructed from E closing under complements, then
finite intersections, and finally, finite unions. In particular, if E is a
finite family, then B(E) is also a finite family of sets. (It is not
difficult to see that the cardinality of B(E) is at most 2K , where
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k = 2cardinality(E) ) 1r ry,...,f, are polynomials, then we shall abuse
notation to write B(fy,...,fp) for the Boolean algebra generated by the
sets {x:fj(x) <0} and {x:fj(x)<0)}.

The following proposition contains the precise result we need in Section
4. The reader should keep in mind that it is merely a particular example of
the way in which the Tarski-Seidenberg theorem can be "bootstrapped” to
obtain bounds on the number and degrees of polynomials required to express
certain sets.

PROPOSITION 3: Let B be a semi-algebraic subset of IRN*! | and write
m:RM*1 5 R for the projection on the last coordinate. For each me R,
set By =Bn{x:mxX)=m}. Let m be a fixed integer, and let

L = L(RN*1,RM) be the family of all linear transformations ¢ : RN*1 » RM
. Then there are integers K and D such that for every linear
transformation ¢ €L and every m € R, there are polynomials fy,...,fk
(where the degree of each fy is bounded by D ), such that

Y(B ) €Blfy,..., 1k} .

PROOF: We identify a linear transformation ¢ :RN*1 5 RM with its
matrix (in the standard bases), and hence view L as RM(n+1) pefine
the function A :RP*! xL > RMxL xR by A(x,$) = ($-x,P,1(x)) ; this is
a semi-algebraic (in fact, polynomial) mapping, and B x L is clearly a
semi-algebraic subset of IRN*! x L . Hence by Proposition 1, there are
polynomials Fy,...,Fr in m+m(n+1) + 1 variables such that

A(B xL) e B{Fy,...,Fr} . Writing y for the variables in RM, ¢ for the
variables in L = RM(n*1) and 7 for the last variable, observe that for
fixed Y*el, and fixed n*e R, each Fi(y,P*,m*) is a polynomial in m
variables. It is easily seen that

9*Bnx) € BIF1(y,9%,1%), .., Fr(g,9*,n*)

which yields the desired result. Jj

We turn now to the second aspect of the theory of semi-algebraic sets
which is of importance to us: semi-algebraic sets (and semi-algebraic
functions and correspondences) have a very special structure. The most
important consequences of this special structure (at least for our
purposes) are given below.
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Recall that a finite simplicial complex in RN is a finite disjoint
collection (Kj} of open simplices (of various dimensions), having the
property that if Kp meets the closure of Kj, then Kg is an open lower
dimensional face of Kj.

TRIANGULABILITY (Lojasiewicz [1964, 1965], Hironaka [1975]): Every
semi-algebraic set can be semi-algebraically triangulated. Indeed, for
every semi-algebraic subset A of RN, there is a finite simplicial
complex {Kj) in RN and a semi-algebraic homeomorphism h: RN » RN
such that h(K) = A,

Since simplices are connected, it of course follows immediately that
semi-algebraic sets have only a finite number of connected components.

STRATIFIABILITY (Whitney [1957], Bochnak-Coste-Roy [1988, pp.
188-189]): Every semi-algebraic set is the disjoint union of a finite
number of semi-algebraic subsets, each of which is a real-analytic
manifold.

In view of this, we may speak unambiguously of the dimension of a
semi-algebraic set (dimA = maximum of the dimension of smooth
submanifolds of A ), and the dimension of a semi-algebraic set at a point
(dimpA = maximum of the dimension of smooth submanifolds of A whose
closures contain p ). Note that dim A = max{dimpA:peA}. (By
convention, the dimension of the empty set is -1.) Note that the map
p>dimpA isa semi-algebraic function.

If A is any set, we write A for its topological closure. By its
Zariski closure Zar(A) we mean the smallest algebraic set containing
A ; equivalently, Zar(A) is the set of common zeroes of all polynomials
which vanish on A . Note that Zar(A) > A . As we have noted before, the
set of common zeroes of all polynomials which vanish on A is in fact the
set of common zeroes of a single polynomial. In order that A be Zariski
closed (i.e., that A = Zar(A) ) it is necessary and sufficient that there be a
polynomial vanishing at every point of A and nowhere else; i.e., that A
be an algebraic set.
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. DIMENSION (Bochnak-Coste-Roy [1988, Pp. 47, 237D): If A is a

:5 non-e_rpptg semi-algebraic set, then dim Zar(A) = dim A = dim A and
] dim(A-A)<dimA. If f:A> RK js 2 semi-algebraic mapping, then
f-f dim f(A) < dim A; if f is one-to-one, then dim f(A) = dim A .
|
|

It should of course be kept in mind that no such result is true for
arbitrary sets A (even for sets defined by smooth inequalities) or for
. arbitrary mappings f (even for mappings that are continuous and
é differentiable almost everywhere.) For example, set A = {(m/n,
1/n) € R2:m , n positive integers} . It is easily seen that A is a
discrete subset of the upper half plane, and in particular is a differentiable
submanifold of dimension O . On the other hand , A contains the line
{(r,0) : r € R} , and so has dimension 1 . '

TR

B e e

PIECEWISE MONOTONICITY (van den Dries [1986]): Every semi-algebraic

function f:(a,b) > R is piecewise monotone. That is, there exist points
cj€(a,b) with a=cg<cy<...<cx =b such that the restriction of f

to the subinterval (cj,cj+1) is either constant, or continuous and strictly
monotone. In particular, the one-sided limits:

lim f(x) and lim f(x)
X a+ X=2b-

both exist (as extended real numbers).

Note that the analogous statement is false for functions of two
variables; the function f(x,y) = xy/(x2+y2) has no limit as (x,y)
approaches (0,0) .

? GENERIC LOCAL TRIVIALITY (Hardt [1980], Bochnak-Coste-Roy [1988,

| p. 195]): Let A, B be semi-algebraic sets, and let $: A+ B be a
continuous semi-algebraic function. Then there are is a (relatively) closed
semi-algebraic subset B'C B with dimB' <dimB such that for each of the
(finite number of) connected components Bj of B\B' there is a
semi-algebraic set C; and a semi-algebraic homeomorphism

‘ hj : Bjx Cj » 9=1(Bj) with the property that Y«hi(b,c) = b for each

1 beBj,ceCj.
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Informally: except for a small subset of the range, every continuous
semi-algebraic function is locally a product. (Caution: this is false
without the requirement that ¥ be continuous; see Bochnak-Coste-Roy

(1988, p. 196].)

Generic local triviality has many striking consequences. For our
purposes, the most important are that semi-algebraic correspondences and
semi-algebraic functions are generically continuous, that semi-algebraic
correspondences admit generically continuous semi-algebraic selections,
and that semi-algebraic functions are generically real-analytic.

GENERIC CONTINUITY: If X, Y are semi-algebraic sets and

F: X2+ Y is asemi-algebraic correspondence with closed values , then
there is a closed semi-algebraic set X'cC X of lower dimension such that
F is continuous at each point of X \X'. In particular, a semi-algebraic
function is continuous at each point of the complement of a lower
dimensional sem-algebraic set.

PROOF: Set B = X, A = graph(F) C XxY, andlet 9§:A-> B be the
projection onto the first factor and ¥: A+ Y the projection onto the
second factor. Generic triviality yields a semi-algebraic set B'C B, and
connected components Bj of B\B', semi-algebraic sets C;, and
semi-algebraic homeomorphisms hj: Bjx Cj » ¥~ 1(Bj) as above. It is
evident that the restriction of F to Bj is continuous. Moreover, each Bj
is a relatively open subset of B (being one of the finite number of
connected components of the open set B\B'), and UBj = B\B'. We
conclude that F is continuous at each point of B \B'. The second
statement follows from the observation that a single-valued
correspondence is a function. l

SELECTIONS: If X, VY are semi-algebraic sets and F:X-»=» Y is a
semi-algebraic correspondence with non-empty (not necessarily closed)
values, then there is a semi-algebraic function f: XY and a closed
semi-algebraic set X'C X of lower dimension such that f(x)e F(x) for
each xe€ X and f is continuous at each point of X\X'.

PROOF: Set B = X, A = graph(F)c XxY, and let $:A -+ B be the
projection onto the first factor and ¥: A+ Y the projection onto the
seccnd factor. Generic triviality yields a semi-algebraic set B'C B, and
connected components B of B\B', semi-algebraic sets Ci, and

e
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semi-algebraic homeomorphisms hj: Bjx Cj» $-1(Bj) as above. Choose
(for each i) a point cje€ Cj and define fy on UB;j by

f1(b) = ¢ «hj(b,cy) ; fy is evidently a continuous, semi-algebraic selection,
defined on X\ X . We may now apply this procedure to the restriction of
F to Xj;,obtaining a lower dimensional semi-akigebraic subset X, C X,
and a continuous semi-algebraic selection f, defined on X1\ X2 . Since
the dimensions of the sets X; are strictly decreasing, this is a finite
process. Finally, we define the selection f: XY by f(x) = f1(x) for
x€X\X1 and f(x) = fj+1(x) for xeXi\Xj+1. W

We have already noted that semi-algebraic functions are generically
continuous; in fact we can say much more.

GENERIC REAL ANALYTICITY: If X, VY are semi-algebraic sets, X is

a real-analytic manifold, and f: XY is a semi-algebraic function, then
there is a closed semi-algebraic set X'C X of lower dimension such that
f is real analytic at each point of X \X'.

PROOF: As noted above, there is a closed semi-algebraic subset X' C X
such that f is continuous at each point of X\ X" . Let 2 C (X\X'")xY
be the graph of the restriction f|(X\X'), and let

Ty (XAX")xY » (X\X") and mp:(X\X'")x¥Y > Y be the projections.
Since Z is a semi-algebraic set, it is the union of real-analytic manifolds
M;j . By the semi-algebraic version of Sard's theorem (Bochnak-Coste-Roy
[1988, p. 205]), the set Cj of critical values of T |M; is a
semi-algebraic subset of T {(Mj) of lower dimension. Since

T (m(M{)\Cj) = mgemy~1 , 1 is real-analytic on 7 (Mj)\Cj. Taking the
union over all M; and replacing the lower dimensional semi-aigebraic set
UCj by its closure yields the desired result. [}

3. EQUILIBRIUM

As we have noted in the Introduction, the general relevance of the
Tarski-Seidenberg theorem to game theory is that virtually all of the
constructions of game theory have - or can be given - first order
descriptions, and hence define semi-algebraic sets. In particular, this is




the case for almost all of the usual equilibrium correspondences, o0 the
results of the preceeding section lead very easily to extremely strong
conclusions about these equilibrium correspondences.

To make this precise, fix an extensive form I ; i.e., 2 finite set of
players, a game tree, and information sets for each player). An extensive
form game is obtained from T by specifying a probability distribution
over initial nodes, and payoffs (for each player) at each terminal node. If
there are N players, 1 initial nodes, and Z terminal nodes, then we may
parametrize the set of all such games by TI(I) x RNZ | where TI(I) is the
probability simplex of dimension 1-1; the dimension of this set is
NZ+I-1. (Alternatively, we could view the probability distribution o
over initial nodes as fixed and the payoffs u as variable, or vice versa.)
If meT(l) and ue RNZ , we denote the corresponding game by Tgq y. A
(behavioral) strategy for a player in this game is a function from his
information sets to probability distributions on available actions at these
information sets. We write Al for the set of behavioral strategies of
player i ,and A = Alx...xAN for the set of behavioral strategy
profiles. Note that T(I)xRNZ and A are naturally identified with
subsets of Euclidean space, defined by the appropriate linear equalities and
inequalities; in particular, these sets are semi-algebraic. For each
e () and ue RNZ  a Nash (or subgame perfect or sequential or
(trembling hand) perfect) equilibrium for the corresponding game Pa,u is
an element of A , so each of these equilibrium notions yields a
correspondence M(I)xRNZ »» A . (If we view the probability distribution
flp over initial nodes as fixed, and the payoffs u as variable, each of
these equilibrium notions yields a correspondence {110} x RNZ 42 A )

THEOREM 1: For every game form T, the Nash, subgame perfect,
sequential, and (trembling hand) perfect equilibrium correspondences are
all semi-algebraic.

PROOF: To see that the Nash equilibrium correspondence
NE : I(I)x RNZ +- A is semi-algebraic, we write the set

graph(NE) = {(m,u,0) e M xRNZxA : 0 is 2
Nash equilibrium for Ty y)

in terms of polynomial inequalities. This is elementary. write Ei(gj,0-j)
for the expected payoff to player i if he follows the strategy dj and
everyone else follows follows the strategy profile o-j . For o tobe 2
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Nash equilibrium it is necessary and sufficient that Ej(0j,0-j) 2 Ei(sj,0-j)
for every i and for every pure strategy sj of player i. Hence

graph(NE) = {(m1,u,0) : Vi, Vsj, Ei(0{,0-{) 2 Ej(sj,0-i) )

Since each Ei(0j,0-ij) and Ej(sj,0-j) is a polynomial in oj, o-j, 1, and
u, we conclude that graph(NE) is a semi-algebraic set, as desired.

The argument for the subgame perfect equilibrium correspondence is
similar, and equally elementary.

The argument that the sequential equilibrium correspondence is
semi-algebraic is no longer elementary. We must show that

graph(SE) = {(m,u,0) : 0 is a sequential equilibrium for Ta,u)

can be written in terms of polynomial inequalities. In view of the
Tarski-Seidenberg theorem, it will suffice to show that graph(SE) can be
defined by a first order formula. By definition, o is a sequential
equilibrium for the game Ty if there exist beliefs 6 such that the
assessment (0,8) is consistent and sequentially rational. Since beliefs
are probability distributions over actions, they can be represented as
elements of R for sufficiently large £ . Hence assessments lie in Ax
RL . Following Kreps and Wilson [1982], write ¥Oc Ax R for the set
of assessments (0,0) with the property that each action of each player is
given positive probability, and beliefs are derived by Bayes' rule. It is
evident that ¥O0 is defined by a polynomial equalities and inequalities.
Since the set of consistent assessments ¥ is the closure of ¥O, it
follows from Proposition | that ¥ is a semi-algebraic set. Sequential
rationality means that, for each player i and each information set h for
that player, the strategy o; is optimal against o.j, starting from h,
given the beliefs 6. Write EjM0oj,0-i]|6) for the expected payoff to
player i starting from the information set h, if he has the beliefs o,
follows the strategy o, and everyone else follows the strategy profile
O-j; note that this is a polynomial in oj,0-j, 1 ,and u. Putting
everything together, we obtain:

graph(SE) = {(1,u,0): 36 € R such that (0,0) e ¥ and
Vi, Vi, Eihoj,0-i]0) 2 Eih(oj,0-i]6))

The Tarski-Seidenberg theorem now guarantees that graph(SE) is a
semi-algebraic set, as desired.
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The proof that the perfect equilibrium correspondence is semi-algebraic
follows the same outline.

Finally, to see that each of these correspondences remains
semi-algebraic when we view the probability distribution g over initial
nodes as fixed, we need only observe that {mg}xRNZ is a semi-algebraic
subset of TI(I)xRNZ | and that the restriction of a semi-algebraic
correspondence to a2 semi-algebraic subset of its domain is again a
semi-algebraic correspondence. B

with this observation in hand, we can derive some striking
consequences. The first follows immediately from Theorem 1, Generic
Continuity and Selection.

COROLLARY 1.1: For every game form I, there is a closed,
semi-algebraic subset X c T(I) xRNZ of dimension NZ+I-1 such that the
Nash, subgame perfect, sequential, and perfect equilibrium correspondences
are continuous at every point of (T(I) xRNZ)\ X . Moreover, each of these
correspondences admits a semi-algebraic selection which is continuous at
each point of (M(I) xRNZ)\x .

If we view the probability distribution T over initial nodes as fixed,
then we obtain a closed, semi-algebraic subset Xy, C RNZ of dimension
NZ -1 such that the Nash, subgame perfect, sequential, and perfect
equilibrium correspondences are continuous at every point of ({t1g)} xIRNZ)
\X1,. Moreover, each of these correspondences admits a semi-algebraic
selection which is continuous at each point of ({mg} xRN2) \X11q-

It is instructive to compare the conclusions of Corollary 1.1 with those
available from general facts about correspondences. Recall (Hildenbrand
[1974]) that if A, B are complete metric spaces, and F:A-+B is an
upper hemi-continuous correspondence with compact values, then F is
continuous at each point of a residual set (and hence admits a selection
which is continuous at each point of the same residual set). Applying this
result to the correspondences above leads to the conclusion that the Nash,
subgame perfect, and sequential equilibrium correspondences are continuous
at each point of a residual set (and admits a selection which is continuous
at each point of the same residual set). It should be kept in mind,
however, that a residual set might fail to be open (indeed, its complement



could be dense) and might have (Lebesgue) measure zero. On the other
hand, from Corollary 1.1 and the fact that a closed lower dimensional
semi-algebraic subset of RL has no interior and is of (Lebesgue) measure
zero, we conclude that the Nash, subgame perfect, and sequential
equilibrium correspondences are continuous at each point of 2 dense open
set whose complement has measure zero (and admit selections which are
continuous at each point of the same dense open set). This is clearly a
substantial improvement over the conclusions available from general facts
about correspondences. In the case of the perfect equilibrium
correspondence, the improvement is much more dramatic, since the perfect
equilibrium correspondence is not upper hemi-continuous, so might a priori
have no points of continuity whatsoever.,

Recall that Kohlberg and Mertens [1986] have used the fact that the set
of Nash equilibria of any game is semi-algebraic to conclude that the set
of Nash equilibria has only a finite number of connected components. (This
fact plays an important role in the theor of stable equilibria.) The
following Corollary sharpens this observation: the finiteness statement
remains valid for various refinements, and there are uniform bounds on the
number of connected componenets. The proof involves a useful theme:
generic local triviality gives information off a lower dimensional set;
restricting to that lower dimensional set yields a situation to which
generic local triviality can be applied again, yielding finer information, etc.

COROLLARY 1.2: For any game form I, there is an integer r
(depending only on T ) such that the number of connected components of
the set of Nash equilibria (respectively, subgame perfect equilibria,
sequential equilibria, perfect equilibria) of any game TIg y is finite and
bounded by r.

PROOF: We give the argument only for Nash equilibria. Applying generic
local triviality to the projection

proj:graph(NE) - M(I) x RNZ

implies that there is a lower dimensional set X1 c T(I)xRNZ and a finite
number of semi-algebraic sets Yqy,Y12,...,Y 1k, with the property that,
for every (1,u)e (MI)xRNZ \ X ), the set of Nash equilibria of the game
T'q,u is (semi-algebraically) homeomorphic with one of the sets Y.
Applying generic local triviality to the restriction




proj |proj=1(Xy) =+ X

implies that there is a lower dimensional set X2C Xy and a finite
number of semi-algebraic sets Y21,Y22,...,Y2k, With the property that,
for every (m,u)e (X;\X2), the set of Nash equilibria of the game I'qy

is (semi-algebraically) homeomorphic with one of the sets Yj3;.
Continuing in this way, we obtain a finite collection (Yij) of
semi-algebraic sets with the property that for every (m,u)e (T(I)xRNZ |
the set of Nash equilibria of the game TI'q y is (semi-algebraically)
homeomorphic with one of the sets Vij . Triangulability now yields the
desired conclusion. [

The last Corollary follows immediately from Theorem 1| and
Stratifiability.

COROLLARY 1.3: For every game, the set of Nash equilibria
(respectively, subgame perfect equilibria, sequential equilibria, perfect
equilibria) is a finite disjoint union of connected real-analytic manifolds.

(Compare the discussion in Kreps and Wilson [1982] about the set of
sequential equilibria.)

4. THE TRACING PROCEDURE

In this section, we use the general theory of semi-algebraic sets (as
described above) and some other ideas from real algebraic geometry to
repair some gaps in the description of the tracing procedures and the
verifications of the crucial properties. We begin with a review of the
tracing procedure, and a discussion of the difficulties.

We first collect some notation. In what follows, we fix an N-player
normal form game I (the argument for extensive form games requires
only minor modifications). Let AC R2 be the set of profiles of mixed
strategies and let A* be the set of profiles of completely mixed
strategies. Write W = (0,1)x(0,1)xA* , W* = (0,1]x(0,1]xA* and

27



28

W = [0,1]x[0,1]x A ; these are subsets of R2*2 = RxRxRRL; W is open
and W is its closure. Let m,,m,:RxRxRY -»[0,1], be the projections
into the first two variables, and let o : RxRxIR2 » A be the projection
into the last variable. We usually write w = (m,t,q) for a typical element
of R2*L  sothat m = m(w), t = m,(w) and q = o(w); we frequently
refer to q as the strategy part of w. For A c RxRxRL and
nelo,1], write A(m) = {weA:my(w)=m}.

Now, let Hj be the payoff function for player i in the game T ; it is
convenient to view Hj as a (affine) function from A to R. Fixa
probability distribution pe A* . For mel[0,1], te[0,1], we define a
game T(m,t) with the same set of players and the same strategies as T,
but with payoffs Hi,t,n defined by:

Hi,t,n(Qi,9-1) = (1-0OH;(q{,q-§) + tH{(q{,p-i)
* Mt 21og(qik)

where o is a suitable positive constant. (Here we have written qjx for
the k-th component of the strategy vector q; for player i. Note that if
t = 0 the logarithmic term disappears and the game TI'(m,0) coincides
with I' . However, when O<t=<1 and O < m the logarithmic term is
very important. Indeed, as Harsanyi and Selten show, for these values of t
and m , every equilibrium of the game T'(m,t) is in completely mixed
strategies. (A little care must be exercised here. If O<t=< 1 and

0 < m, the payoff functions Hj t n(qj,q-j) are, strictly speaking, only
defined if qj is a completely mixed strategy; otherwise,

Hi,t,n(Qi,q-i) = - . However, as Harsanyi and Selten show, this causes no
difficulties. In particular, each of the games TI'(m,t) does indeed have an
equilibrium, in complietely mixed strategies.) As a consequence, for these
values of t and m , a completely mixed strategy profile qe A* is an
equilibrium exactly when it satisfies the first order conditions. Because
the derivative of log(t) is 1/t (a rational function), these first order
conditions can be written as the conjunction of a finite number of
polynomial identities, and hence as the vanishing of a single polynomial
P(m,t,q) .

‘Write
L = {(n,t,q) e W*: q is an equilibrium of TI'(n,t)},

the graph of the (Nash) equilibrium correspondence. In view of the above,




L is the zero set of the polynomial P(m,t,q) , and so is an algebraic set.
For each m > 0, the game I'(m,1) is separable and has a unique
equilibrium w(m,1) . It follows that there is a tg sufficiently close to
1 such that the game I'(m,t) has a unique equilibrium for to <t < 1.
Equivalently, the restriction ,|L(M) n m,~1((tg,1)) is a homeomorphism
of the smoth curve L(m) n 1, 1((to,1)) onto the interval (tg,1) .

The logarithmic tracing procedure may now be described in the following
way: For each m > 0, L(m) is an algebraic set which contains the point
w(m,1) , and near this point, L(m) is a smooth one dimensional curve.
Hence, by Puiseaux's theorem, we may analytically continue this curve until
it first leaves W* , Harsanyi and Selten prove that every limit point w
of L(M) in W has the property that the strategy part o(w) is a Nash
equilibrium of the game TI'(1,(w),m,(w)) . Since all equilibria of the games
r(m,t) are in completely mixed strategies when m >0 and t > 0, this
means that L(m) can only leave W* through a point w(m) such that
m,(w(m)) = 0, so the strategy profile o(w(m)) is an equilibrium of the
game TI(m,0) . Taking limits as m » O yields the logarithmic solution.

Unfortunately, there are some difficulties with this construction. The
first of these is that Puiseaux's theorem applies only to algebraic curves
(i.e., one dimensional algebraic sets), and the algebraic set L(m) is
generally not a curve. (It is an algebraic set and a portion of it is one
dimensional, but it may also have higher dimensional portions.) Hence
Puiseaux's theorem does not imply that L(m) can be analytically
continued as a curve , and in such a case the recipe of following L(m) is
not well-defined. (This difficulty cannot be remedied by the “obviocus”
means of passing to the “one dimensional branch® of L(m), since it is
entirely possible that L(m) has both one dimensional portions and higher
dimensional portions, but only one branch. See Bochnak-Coste-Roy [1988,
pp. 53-54].) The second difficulty is more subtle (and more difficuit to
deal with). Harsanyi and Selten assert that o(w(m)) has alimitas m-0
because L(m) is a curve and depends algebraically on M . As we have
already noted, L(m) need not be a curve. Even if L(m) is a curve,
however, it may branch, in which case the procedure of following L(n)
will be well-defined, but not an algebraic procedure. (See Figure 1.) To
put it another way: If L(m) is an algebraic curve, then following L(M)
until it first leaves W* amounts to finding the intersection with (t = 0}
of the irreducible branch L*(m) of L(m) that contains the portion of
L(n) near {t = 1}; but the irreducible branch L*(m) does not depend
algebraically on' m . Thus, there is no reason to suppose that the limit
point w(m) depends nicely on T , and in particular, there is no reason to
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suppose that o(w(m)) has a limitas m=0.

Our approach has the same intuition but avoids the pitfalls identified
above. After a preliminary construction (Lemma 1), we show (Lemma 2)
that there is a finite set E € (0,1) with the property that for all m ¢E
there is a unique irreducible analytic curve C(m) C W containing the
portion of L(m) near {t = 1}. (Recall that an analytic subset of W is a

FIGURE 1

closed set which is locally the set of zeroes of a finite number of real
analytic functions; an analytic curve is a one dimensional analytic set.
See Milnor [1968].) Although C(m) is not an algebraic curve, it is a
semi-algebraic curve, and depends semi-algebraically on m . We then
show (Lemma 3) that for each m ¢E, and for t sufficiently close to 0,
there is a unique point 2(m,t) e C(m) with m,(2(m,t)) = t. Because C(m)
depends semi-algebraically on m , The point 2(m,t) depends
semi-algebraically on m and t. Hence, for each fixed m, 2z(m,t) has a
limit 2(m) as t approaches 0, and z(m) in turn depends
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semi-algebraically on m . Hence 2(m) in turn has has a limit as 7
approaches O (Lemma 4). This limit is the logarithmic solution.

To make these ideas precise, fix m > 0. As noted above, for t
sufficiently close to 1., there is a unique point 2(m,t) € L(M) such that
m,(z(m,t)) = t. Hence there is a te[0,1) such that the restriction
1, |L(m) n 11,7 1((t,1)) is one to one. We write tq for the smallest such
t . Evidently, ty is defined by a first order formula and hence is 3
semi-algebraic function of m . Set L(m,t) = L(M) n 1~ ((ty,1)), and
note that L(m,t) is a connected one dimensional manifold (since it is
homeomorphic to the interval (tq,1) ) . Our first task is isolate the
relevant portion of L(m).

LEMMA 1: There is a two dimensional algebraic surface K and a finite
subset E of (0,1] such that:

(DK®=Knw*CL;

(2) for all m, K(m) n 1" H(ty, 1)) = LM, ;

(3)if m ¢E then K(m) is a one dimensional algebraic curve.

PROOF: Set LO = {wel: my(w) >ty (w)). Since ty isa
semi-algebraic function of 7, LO is a semi-algebraic set. Note that for

each 7,
LO(m) = (weLO:m(w) = 1} = L(M,V)

and that this is a one dimensional curve. In particular, LO is a two
dimensional semi-algebraic set, and its Zariski closure K = Zar (LO) is a
two dimensional algebraic surface. Since LOcL and L is the
intersection of W* with an algebraic set, we conclude that K* =

KN w*cL. Inparticular, K(n)n 1~ ((ty,1) = Ln,t) .

since K is two dimensional and K(m) n 1~ 1((ty, 1)) = L(M,t), which
is one dimensional, we conclude in particular that K(m) has dimension at
least one and at most two (for every m ). Moreover, the set of m for
which K(m) has dimension two is a semi-algebraic set; hence either it is
finite or it contains an interval. However, if it contains an interval, K
would necessarily have dimension at least three, a contradiction. Hence,
for all but a finite number of m the set K(m) is an algebraic curve. We
write E for the (possibly empty) set of m for which K(m) is not an
algebraic curve. i
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For each m ¢ E, K(m) is an algebraic curve so K(n) N W is aone
dimensional analytic curve. Let C(m) be the analytically irreducible
branch of K(m) n W that contains L(m,t). (Thatis, C(m) is the
smallest analytic subset of K(m) N W containing L(m,t).) Set
C={weW:m(w)fE and weC(m,(w)))}.

It is important to note that the set C(m) is uniquely defined, and
independent of the choices made in this construction. Indeed, it follows
immediately from uniqueness of analytic continuation that for m ¢E and
tn<t<i, C(m) is the unique irreducible analytic curve in W that
contains L(m) n 1= 1((t,1)) .

LEMMA 2: C is a semi-algebraic set, and, for each m £E, C(m) isa
semi-algebraic set.

PROOF: We are going to provide a first order description of C(m); to do
so, we use some of the structure theory of algebraic curves. (See
Bochnak-Coste-Roy [1988] and Milnor [1968].) By a local algebraic curve
(in RN ) we mean the intersection of an algebraic curve with an open
semi-algebraic subset of RN . For J a local algebraic curve and ze€ J,
we say that z is a (topological) regular point if some neighborhood of 2
in J is an arc; otherwise, 2z is a branch point. (A word of caution:

this is a topological notion of regularity, not a smooth notion. A point may
be be regular in this sense and still be a cusp.) An alternate description of
regular and branch points can be given in the following way. Write B(z,¢)
for the open ball with center z and radius €, and 9B(z,e) for its
boundary. For any point z in the algebraic curve J , and for all ¢ >0,
we consider the number of points in the intersection 9B(z,e) nJ. If € is
sufficiently small, then this number of points becomes independent of ¢,
and is an even integer 28(z) . The integer $(z) is called the branching
order of J at z; 2z is abranch point exactly if the branching order is
greater than 1.

We write Jp for the (necessarily finite) set of branch points of J and
Jr = J\Jp for the set of regular points; note that Jp and Jr are
semi-algebraic sets. Let Jr = UAj be the decomposition of Jr into (a
finite number of) connected components; Aj is an arc and is a
semi-algebraic set. We usually refer to the sets A; as the regular
branches of J.

We say that connected components Aj, Aj of Jr (or more generally,




any pair of disjoint connected subsets of J) are continuations of each
other at the branch point 2z if z is a limit point of both Aj and Aj and
there are a neighborhood U of 2z, and connected components A, and A]

of AjnU and Ajn U respectively such that A, v A] U (2} is an arc and
is an analytic subset of U . (We cannot insist that Aj U Aju {2z} itself
be an analytic set, because of the possibility of loops. Note that this
definition is entirely local in nature. See Figure 2.)

- - v . — ——— — — ——— -

FIGURE 2

Ay ,Az and Az, Az are continuations of each other at z, .
Az , Ag and Asg , Ag are continuations of each other at z3 .
Az , As are not continuations of each other at 25 .

we will show that C(m) is the union of regular branches of K(m)N W,
together with some branch points. Hence to show that C(m) is
semi-algebraic (and depends semi-algebraically on m ), we must deal with
the problem of recognizing when two regular branches of a local algebraic
curve are continuations of each othe at a point 2. We show that this
analytic problem can in fact be reduced to a semi-algebraic problem. In
essence, this is because the algebraic nature of the curve implies that two
regular branches are continuations of each other at z if they agree to
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sufficiently high order at z . The first step in this program is to reduce
to a planar probiem (i.e., a problem in R2.)

Consider a linear mapping © : RN - R2 with the property that there is
a finite set J'C J such that 6|(J\J') is one to one. (Such linear maps
always exist (Bochnak-Coste-Roy [1988, p. 203]). The image of J is a
semi-algebraic set and so belongs to the Boolean algebra generated by a
finite number of polynomials; without loss, we may assume that none of
these polynomials is identically zero. The set M of common zeroes of
these polynomials is a plane algebraic curve contining ©(J) . If the
connected components Aj, Aj of Jr are continuations of each other at
the branch point z, then the images 6(Aj), e(Aj) are continuations of
each other at 6(z) . On the other hand, if z is a branch point of J
which is in the closure of both Aj and Aj and Aj, Aj are not
continuations of each other at z , then there is another component Ay
which is a continuation of Aj; at z. It follows that 6(Aj) and 6(Ay)
are continuations of each other at ©(z) . Since ©|J is one to one on the
complement of a finite set, uniqueness of analytic continuation implies
that ©(Aj) cannot also be a continuation of ©(Aj) at 6(z) . Conclusion:
Aj and Aj are continuations of each other at 2z if and only if ©(Aj) and
8(Aj) are continuations of each other at (2) .

We have now reduced our original problem to a two dimensional problem;
the next step is to reduce it to the solution of a power series equation.
The image 6(J) is a semi-algebraic set and is contained in the algebraic
curve M, which is the set of common zeroes of a finite number of
polynomials, and hence of a single polynomial f . In view of Proposition 3,
there is a bound on the degree d of this polynomial that depends oniy on
J, and not on the choice of linear mapping 6 . Fix a point
p=(xo,yo) €M . If V is a sufficiently small neighborhood of p , then
M NV is the union of a finite number of analytic arcs, each containing p ;
these are the Jocal analytic branches of M at p. Puiseaux's theorem
(see Milnor [1968] for example), implies that, (for V sufficiently small)
each local analytic branch of M at p can be parametrized by a pair of
functions:

x(t) = xg + th , y(t) = yo + D ¢t
i=1

where u 1is an integer not exceeding the degree of f and the power
series ) cit! is convergent on some interval (-¢,+¢). (Or else such a




parametrization exists with the roles of x,y interchanged, 3 possibility
we shall henceforth not mention.) Given disjoint connected subsets

My, M2 of M, it follows (using uniqueness of analytic continuation) that
M; and M2 are continuations of each other at p if and only if there
exist an integer u and a convergent power series » cijt! such that for
arbitarily small ¢ > 0, the image of the interval (-¢,+¢) under the
mapping x(t) = xo + tH, y(t) = yo + 2 cjt! is contained in M and meets
both My U M2z . Note that, if this is the case, then the image of (-¢,0)
must be contained in one of My, M2 and the image of (0,+¢) must be
contained in the other.

We now show that this power series problem can be reduced to a
semi-algebraic problem. To do this we make the following observation.
suppose we are given an integer u and a polynomial g(t) of degree 2
and no constant term; we ask: when it is possible to find a convergent
power series » cjtl whose first 2 terms agree with g(t), such that the
functions x(t) = xg + tH, y(t) = yo + D cjti parametrize one of the local
analytic branches of M at p ? Since M is the zero set of the polynomial
f , this will be possible if and only if it is possible simply to find a
convergent power series » cit! whose first 2 terms agree with g(t)
such that f(x(t),y(t)) = 0. An elementary calculation with coefficients (or
an appeal to a resuilt of E. Cartan) shows that this will be possible if
0 >ud+1 (where d is the degree of the polynomial f ) and
(1) f(xg + th,yo + g(t)) , which is a polynomial in t, has no terms of
order less than pd + 1 . Given such a polynomial g(t), Taylor's theorem
and the observation at the end of the last paragraph imply that, in order
that the parametrization (x(t),y(t)) meet both M; and Mz and be
contained in My U Mo, we must also have, in addition to the above
(reversing the roles of M{ and M, if necessary): (2) for all sufficiently
small ¢ > 0, and all te(-¢,0), there is a point (xj,y1)€ My such that:

|x1-x0-th| < [t](nd+(1/2)} and |yy-yo-g(t)] < |t|{nd+C1/2))

(3) for all sufficiently small € > 0, and all te (0,+€) , there is a point
(x2,42) € M2 such that

|x2 - xg - th] < |t]{ud+(1/2)}
ly2 -yo - gt < |t]{ud+(1/2)}

That is, My and M, are continuations of each other at p = (xq,yo) if and



only if there is an integer u <d and a polynomial g(t) of degree ud+1
and no constant term satisfying the conditions (1), (2), (3). The existence
of such an integer and polynomial is a first order statement. (Because it
amounts to the the assertion that there is a polynomial of degree d+1 or
a polynomial of degree 2d+1,..., or a polynomial of degree d2+1, and
because asserting the existence of a polynomial of degree & with no
constant term really amounts to asserting the existence of 2 real
numbers - the coefficents of the polynomial.)

Putting all of this together, we see that we have reduced the analytic
problem of determining when two regular branches of the local algebraic
curve J are continuations of each other to the existence of a linear
mapping ©, an integer u <d and a polynomial g(t) of degree at most
d. This is a first order - hence semi-algebraic - problem, as desired.

Specializing to the local algebraic curve K(m)n W, we write Kp(m)
for the set of branch points, K(m) for the set of regular points, and
Kr(m) = UAj(n) for the decomposition into regular branches. We may
number these connected components so that A(m) is the regular branch
containing L(m,t) . We can describe C(m) as the closure (in W ) of the
union of all those connected components Aj(m) of K(m) which are either
equal to A (m), or are continuations of Aj(m) at some branch point, or
are continuations of a regular branch which is a continuation of A{(m),
etc. Since each of the regular branches Ai(m) is semi-algebraic, the set
C(m) is the closure of the union of (a finite number of) semi-algebraic
sets and hence is semi-algebraic.

What remains is to show that the set C is semi-algebraic. To do this,
we first appeal to Proposition 3 to guarantee the existence of an integer D
such that, for every m ¢E and every linear mapping ©: R2*2 5 R2 | the
image ©(K(m) N W) is contained in an algebraic curve defined by a single
polynomial of degree at most D . We then appeal to generic triviality to
conclude that there are a finite number of mj € (0,1), with
0=m1<mN2...<Mg =1, semi-algebraic curves J; and semi-algebraic
homeomorphisms

®i: (MjyMis1)x Jj = Cn - H(mi,Mie))

which map {m}xJ; onto C(m) for each m e (mj,Mj+1) . In particular, for
each i and each m € (mj,Mj+1), the curves J; and C(m) have the same

number of regular branches; we let Jjy ,..., Jj; be the regular branches
of Jj. Since Aj(m) is the regular branch of C(m) that contains
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L(m,t) , we may number so that ®j(m,Jj1) = Ayj(m) . We can now write a
first order description of the set C: it is the set of all points
z = (m,t,9) in K(m)nWw satisfying one of the following statements:

(a) m = mj for some i,and zeC(M);

(b) me(Mi,Mij+1), and 2z € ¢j(n,Jji) or there is an index
j such that ze &i(m,Jjj) and &i(m,Jij) and
®i(m,Jj1) are continuations of each other, or there is
an index j and an index k such that 2z e ®i(m,Jjk)
and ¢i(m,Jik) and &i(m,Jij) are continuations of
each other and ¢i(m,Jjj) and ®i(m,Jjy) are
continuations of each other, or...;

(c) me(MjMi+1), and z € Kp(m) and for every § >0
there is a point 2'e€ K(m) such that |z-z'| <& and
2' satisfies (b) above.

Since we have reduced the probiem of determining when regular branches of
C(m) are continuations of each other to a first order problem this provides
a first order description of C . The Tarski-Seidenberg theorem therefore
guarantees that C is a semi-algebraic set. [

With this hard work out of the way, the remainder is relatively
straightforward.

LEMMA 3: For each T ¢E, there is an se€ (0,1) such that the restriction
M, | C(m) n 1,7 1((0,s)) is a one to one map onto the interval (0,s).

PROOF: Since 1, is a semi-algebraic map and C(m) is a semi-algebraic
set, it follows that for each te (0,1) the set C(m)n 1~ 1(t) is
semi-algebraic and of dimension zero or one. If C(m)n 1,~!(t) were of
dimension one then it would contain a relatively open subset of C(m),
which would imply that all of C(m) lies entirely in the hyperplane
1,~1(t) , an absurdity. We conclude that for each te (0,1),

C(n) n 1,~1(t) is a finite set.

Generic triviality implies that there is a &§ > O and an integer r
(possibly 0 ) such that C(m) n 1,~1((0,8)) is the union of arcs
A1,...,Ar with the following properties: (1) each Aj is a relatively



open subset of C(M) N 1,7 1((0,8)) ; (2) AjnAj =g if i#j; (3) the
restriction 1, | Aj is a homeomorphism of A; onto the interval (0,8).
The desired conclusion is that r = 1,

That r# O follows as in Harsanyi-Selten [1988]. Because C(m) is an
analytic curve in W, every point of C(m) has a neighborhood in C(m)
which is the union of a finite number of open (analytic) arcs. Hence if we
delete from C(m) a small neighborhhood of 2(0,1) , what remains must
have a limit point T on the boundary of W ; i.e.,, Q€ W\W . Moreover,
the strategy part o(f) must be an equilibrium for the game
I(1(Q),m(T)) . Since 7(Z) = m € (0,1), this can only be the case if
(T =0 ,or M) =1,0r O0< mMRQ)<1 and o) e A\NA* . The last
of these is impossible, since for 0 <m <1 and O0<t< 1, every
equilibrium of the game TI(m,t) is in completely mixed strategies. The
second of these is impossible because it would imply that, for t
arbitrarily close to 1, the game TI'(m,t) had two distinct equilibria. We
conclude that T,({) = 0 and hence that r# 0.

It remains to show that r cannot exceed 1. Since C(m) is an
irreducible analytic curve, there is a real analytic function ¢ :(0,1) » C(m)
and a finite set B € (0,1) such that ¥|(0,1)\B is a homeomorphism onto
C(m)\P(B). Shrinking & if necessary, there is no loss of generality in
assuming that Y- 1(A;)nB =g for each i. It follows that the sets
¢-1(Aj) are disjoint open intervals in (0,1); say that 9-1(Aj) = («j,Bi) -
For each i, ¥|(«j,8i) is a homeomorphism onto Aj and T,|A;j isa
homeomorphism onto (0,8) , so it follows that T,y |(xj,Bi) is a
homeomorphism onto (0,8) . Now if r 2 2 then we can find indices j,k
such that $j < « . Since T,y maps (xg,$x) homeomorphically onto
the interval (0,8), and Ti,¥ maps all of (0,1) onto (0,1), it can only
be that m,eP(xyx) = § and Bk = 1. Similarly, we conclude that
TeP($j) = & and that «j = O. But this means that (0,1) is the union of
the sets T,¢9((0,8j)), Mo P((exi,1)) and T P([Bj,xk]) . However, the
first two of these coincide with the interval (0,58) , and the third is
compact,which contradicts the fact that the image of m,+¥ is the entire
interval (0,1) . We conclude that r = 1t , as desired. l

Now, for each m ¢E, we define sn to be the largest s so that the
restriction 1, [C(n) n 1, 1((0,s)) is one to one. Since sy is defined by
a first order formula, it is a semi-algebraic function of m . For m ¢E
and 0 <t <sy ,we write 2(m,t) for the unique point in
ﬂle(Tl) n ﬂz-l((0|3‘n)) .




We have shown that C(m) depends semi-algebraically (not
algebraically!) on m ; it follows that z(m,t) depends semi-algebraically

on m and t.

LEMMA 4: (1) 2(-,r) is a semi-algebraic functionof m and t.
(2) The limit

z(n) = lim 2(m,t)
t-+0
exists and is a semi-algebraic function of 7 .

(3) The limit lim z(m) exists.
n-0

PROOF: To see that z(-,-) is a semi-algebraic functionof m and t,
note that its domain is D = {(m,t) € (0,1)x(0,1): t <sq} (which is a
semi-algebraic set because s(-) is a semi-algebraic function) and that its
graph is {w eC: (1 (w),m,(w)) € D} (which is a semi-algebraic set
because 1, and T, are semi-algebraic - indeed, linear - functions). The
existence of the limit z(m) follows immediately from piecewise
monotonicity of the semi-algebraic functions which are the components of
2(m,*) . To see that 2z(-) is itself a semi-algebraic function, write its

graph as:

graph(z(-)) = {(n,w): Ve >0 ,3t such that 0 <t<e and
|w - 2(n,t)]2 <e2)

and apply the Tarski-Seidenberg theorem. Finally, the existence of the
limit lim z(m) follows immediately from piecewise monotonicity. [ |

We define the Jogarithmic solution for the game I to be the strategy
part of the limit lim z(m) . That is, the logarithmic solution for the game
I' is A = o(lim z(m)) = lim o(2(m)) .

This procedure depends of course on the prior probability distribution p
and on the game I'. If we fix the game form and consider the game as
parametrized by the payoffs u, we may view the logarithmic solution A
as a function of the prior probability distribution p and the payoffs u.
Routine modifications of Lemmas 1 - 4 show that A(p,u) depends
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semi-aigebraically on p and u. Summarizing:

THEOREM 2: The logarithmic solution A(p,u) is well-defined, and is a
semi-algebraic function of the prior probability distribution p and the
payoffs u.

In particular, if we view the prior probability distribution as fixed, and
view the logarithmic solution as a function solely of the payoffs u, we
conclude that it is continuous at every point of a dense open set whose
complement has (Lebesgue) measure zero.

We turn now to the linear tracing procedure. Write
G = {(0,t,9) : q is an equilibrium of the game T(0,t)}

A linear trace is by definition a curve in G from 2z(0,1) (the strategy
part of which is the unique equilibrium of the game TI'(0,1)) to a point of
the form (0,0,9) (so that in particular, q is an equilibrium of the game
I'). If alinear trace exists and is unique, we say the Jinear tracing
procedure is well-defined and the strategy q is the linear solution of the
game T . Harsanyi and Selten assert that there is always a linear trace
from 2z(0,1) to (0,0,\), where X is the logarithmic solution. (In
particular, if the linear tracing procedure is well-defined then the the
linear solution and the logarithmic solution coincide.) To deduce this,
Harsanyi and Selten give the following argument. For each T,
parametrize the curve L(m) by arc length, normalized so that the total
length of L(m) is 1. For se[0,1], let w(m,s) be the point in L(m)
whose distance from 2z(m,1) is s . Define w(s) = lim w(mn,s), so that
the function w defines a curve in G, beginning at z(0,1) and ending at
(0,0,)) .

Unfortunately this argument is not correct. The first difficulty is that,
just as above, the set L(m) need not be a curve. Even if it is a curve, the
function w(m,s) need not depend on the parameter m in any sort of
algebraic or semi-algebraic way, so that w(s) = lim w(mn,s) need not be
defined. (Keep in mind that arclength is not an algebraic- or even a
semi-algebraic - function!) And even if w(s) = lim w(m,s) is defined, it
will not in general be a continuous function of s, so that we will not
obtain the desired curve beginning at 2(0,1) and ending at (0,0,\).




However, our construction provides a straighforward route around these
difficulties.

THEOREM 3: There is a linear trace from 2(0,1) to (0,0,A\), where X
is the logarithmic solution. In particular, the logarithmic solution and
linear solution coincide whenever the latter is unique.

PROOF: Let Z be the limiting set, as m =+ 0, of C(m); i.e.,

2 ={z:Ye>0,37m,3welC(n) such that
0O<m<e and |w-2|2<e2)

It is evident that Z is a semi-algebraic set. As before, we see that every
point z € Z is an equilibrium for the game T[(1(2),1,(2)) . On the other
hand, T,(z) = 0 forevery zeZ,so0 2C G. Since z(m,1), z(n) e C(n)
for each m , we see that 2(0,1) and (0,0,\) belong to 2. Since each
C(m) is connected, so is Z . Finally, since Z is a connected
semi-algebraic set, it follows from triangulability that every two points of
Zz lieonacurvein Z. R

S. EQUILIBRIUM SELECTION

As we have shown, the tracing procedure yields, for each game, a
well-defined logarithmic solution, but the tracing procedure itself
constitutes only a part of the entire Harsanyi-Selten equilibrium selection
procedure. However, as the sketch below shows, the results of Section 4
yield rather easily that the entire Harsanyi-Selten equilibrium selection
procedure is well-defined. (For details on the selection procedure we refer
to Harsanyi-Selten [1988], and especially to the Summary of Procedures,
Section 5.7.)

To apply the equilibrium selection procedure to a game I (in standard
form), we begin by constructing, for all sufficiently small € >0, the
uniformly perturbed game T'g . For each of these games, we apply the
appropriate decompositions and reductions, and - if necessary - apply the
tracing procedure to find the soiution T(e) for the game TI¢ . It is easy to
see that the decompositions and reductions are semi-algebraic; thus, in
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view of Theorem 2, above, the solution T(e) depends semi-algebraically on
the parameter € . Piecewise monotonicity assures us that the solutions
t(¢) approach a limit T as ¢ approaches O, and this limitis the
solution for the original game I .
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