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Prices And Portfolio Choices In Financial Markets:

Econometric Evidence.

Abstract

Structural econometrics is developed to test an extension of standard general equilibrium theory that was suggested

in [2] as explanation for why in experiments securities prices tend to the predictions of general equilibrium theory but

allocations do not. The test’s asymptotic properties are derived as one increases the number of subjects (relatively large

in the experiments at hand), keeping fixed the time dimension (small in the experimental setting). The test, based on

GMM, is arranged such that errors in the estimation of individual subjects’ risk tolerance coefficients average out as

the number of subjects increases. Prices are linked to individual portfolio choices, thereby providing a comprehensive

test of equilibrium conditions, unlike in studies of field data. The empirical distribution of the test’s central statistic is

a horizontal translation of its distribution under the null (a χ2 distribution with one degree of freedom), implying that

there are more rejections than expected by chance. Learning (markets move closer to equilibrium in later periods of an

experiment) does not explain the finding. Small-sample bias contributes to the rejections, as evidenced by correlation

between the test’s statistic and a standard measure of the distance from equilibrium pricing. A closer examination

of the estimated average allocation prediction errors reveals model mis-specification as an additional source of the

rejections: violations of short-sale constraints on the riskfree asset.
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Prices And Portfolio Choices In Financial Markets:

Econometric Evidence.

1 Introduction

Consider a set of markets where a large number of agents trade securities which will pay a single, risky liquidating

dividend in the near future. There is a riskfree security. The markets are isolated in the sense that agents cannot

simultaneously trade in other markets until the dividends are realized, and risk is not correlated with outside risk.

In addition, risk is small. It is sufficiently simple, so that the number outcomes (“states”) equals the number of

nonredundant securities.

Abstracting from the complexities of the actual trading, this case can reasonably be modeled as a one-period set

of complete, competitive securities markets. In equilibrium, a representative agent exists. If her preferences are of

the expected-utility type and smooth, they could be approximated with a quadratic function, because risk is small.

Markets are isolated, so they have their own “market portfolio” (per-capita supply of risky securities). Consequently,

one could expect them to generate the CAPM equilibrium.

The CAPM makes the following predictions about prices and allocations. Prices are such that the market portfolio

is mean-variance optimal, i.e., the difference between its Sharpe ratio (expected excess return divided by volatility)

and the maximal Sharpe ratio is zero. Agents will all be holding the same portfolio of risky assets, namely, the market

portfolio itself. The latter property is usually referred to as portfolio separation.

[1, 2] report the outcomes of a number of financial markets experiments set up as described above, with three

securities (denoted A, B, and Notes). Details about the experimental setup can be found in the Appendix. While

prices clearly moved in the direction predicted by the CAPM, allocations did not. Table 1 and Figure 1 roughly

summarize the results.

Table 1 reports Sharpe ratio differences at the end of each period1 as well as the maximum difference during the

period (in parentheses). The Sharpe ratio differences at the end of the period are often low, and predominantly in the

lower half of the interval between zero (the theoretical minimum) and the maximum value for the period (62 out of

83, which corresponds to a p level of 0.01 under the null that the end-of-period Sharpe ratios are equally likely to be

in the lower and upper half).

Figure 1, however, demonstrates that there is no relationship between proximity to CAPM pricing (as measured by

end-of-period Sharpe ratio differences) and proximity to CAPM allocations. The latter are measured as mean absolute

deviations across subjects between the proportion of their risk-exposed wealth allocated to the first of the two risky
1Reported are averages based on prices for the last 10 transactions. Each “period” is a replication of the same situation described above.

See Appendix.
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securities (A) and the corresponding weight in the market portfolio. Under the CAPM, the mean absolute deviations

should be zero.

The fact that these mean absolute deviations between actual holdings and CAPM predictions are nonzero may not

be surprising, as they may not necessarily entail large utility losses. It is puzzling, however, to observe that allocations

are no closer to CAPM when pricing is, for the allocational prediction (portfolio separation) is generally understood

to be crucial to obtain CAPM pricing.

Nevertheless, [2] point out that CAPM pricing may still obtain even if the model makes large allocation prediction

errors, as long as these errors average out. [2] went on to explore the nature of the allocation prediction errors,

attributing the bulk of them to preference heterogeneity (including loss aversion, biased beliefs, non-state-separable

preferences, etc.), instead of to inattention, optimization mistakes and trading mistakes. They also estimate the size

of the allocation prediction errors and report that they are large, in the sense that they would entail a significant loss

in utility if subjects really had mean-variance preferences.

The model in [2], to be referred to henceforth as BPZ model, provides a potential explanation for the absence of

correlation depicted in Figure 1, but the link is not tight. The BPZ model makes predictions about allocation prediction

errors, defined as deviations between actual holdings of risky securities, on the one hand, and mean-variance optimal

holdings given observed prices, on the other hand, and not about deviations in between actual portfolio composition

and the composition of the market (plotted in Figure 1). The purpose of this paper is to bring the BPZ model to the

data in a structural test built around its core prediction, namely that allocation prediction errors are mean zero.

There is crucial difference between our structural test of (the BPZ version of) CAPM on experimental data and

tests used on field data. Ours ties links allocations and prices, unlike in field tests, where generally only pricing is

investigated. Note that pricing restrictions are only one aspect of equilibrium. Equilibrium cannot genuinely be tested

for without considering allocations, because it could be that CAPM pricing obtains even when demand does not equal

supply. Because our tests links prices and allocations, it is a genuine test of equilibration.

Closer inspection of our test statistic will reveal that it effectively measures how far prices are from making the

market portfolio mean-variance efficient. That is, it measures the distance of the market portfolio from mean-variance

optimality, as in a field test of the CAPM. The standard errors that scale this distance, however, are based on estimates

of the cross-sectional variance of allocation prediction errors, unlike in field tests, where standard errors are based on

sampling variation in the empirical distribution of future returns. This also means that our test effectively explains

deviations from CAPM pricing as sampling variation in allocation prediction errors.

In essence, allocation prediction errors provide the stochastic structure for our econometric test. In field tests,

sampling error in the estimated distribution of future returns generates variation in the test statistics. It would be

inappropriate to build a structural test for our (experimental) data on the basis of sampling error in the estimated

distribution of future payoffs, because the payoff distribution is a control, and hence, known without error.
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Our test of the BPZ model is a variation of generalized method of moments (GMM). There is a complication,

though: estimates are needed of the risk tolerance (inverse risk aversion parameter) of each subject. Risk tolerances

can only be estimated from the time series of end-of-period choices. Because experiments necessarily contain a limited

number of periods, the estimation errors of the individual risk tolerances will never disappear, even if we take the

cross-section (number of subjects) to be large. By setting up our estimators in a particular way, however, errors in

estimating risk tolerances have no asymptotic effect on the GMM χ2 statistic. Our appealing to large cross-sections

to derive the statistical properties of the GMM estimator and test is in line with the nature of the experiments. They

involve an unusally large number of subjects (unusual for experimental economics, that is).

The remainder of this paper is organized as follows. The next section briefly describes the nature of the data

that the experiments in [2] generate. Section 3 presents the BPZ model. Section 4 derives the corresponding GMM

structural test. The empirical results are reported in Section 5. Section 6 concludes. Description of the experiments

and technical details of the proofs are collected the Appendix.

2 Nature Of The Data

Our experiments involve multiple markets in simple assets. Without going into detail (the Appendix provides a more

thorough description), the experiments are set up as replications, each replication being referred to as a period, of

markets in a number of short-lived securities. With the exception of one security, their end-of-period liquidating

dividend is stochastic. The actual dividend is determined by a random drawing of a state. Subjects know the nature

of the randomness as well as the payoff matrix (mapping from states to dividends). The number of assets equals at

least the number of states, and the payoff matrix is full rank, implying that markets are complete. No subject is given

superior information.

Subjects are allocated a specific number of each of the assets at the beginning of a period. For up to 25 minutes,

subjects can buy and/or sell assets in a set of parallel, continuous open book markets, organized over the web (the

mechanism is referred to as Marketscape). All payments are effected using an artificial currency referred to as francs

(to avoid having to deal with noninteger prices), converted to U.S. dollars at a pre-announced exchange rate at the end

of the experiment. Subjects are given a certain amount of cash at the beginning of each period. They can generate

additional cash by selling or (to a certain extent) borrowing. Borrowing takes place through shortsales of the riskfree

securities referred to as Notes. At the end of each period, a fixed, pre-announced amount is subtracted from subjects’

cash holdings plus the dividend payments on the assets they still hold. This way, subjects can actually have negative

earnings in a period. If they generate negative cumulative earnings more than two periods in a row, subjects are

excluded from further participation (in which case they forego the opportunity to make more money).

Subjects are not allowed to shortsell risky assets, a constraint that is not binding in CAPM and even more general
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versions of competitive equilibrium, where everybody will end up with the same positively weighted portfolio of risky

assets, as we will explain shortly. Shortsales of riskfree securities (Notes) are allowed. Because Notes were always in

zero net supply, such shortsales are necessary for efficient risk sharing between subjects with different levels of risk

aversion. Nevertheless, subjects could sell short riskfree securities only up to about one-half the value of their initial

holdings of risky securities.

The experiments generate a rich dataset that includes bids and bid quantities, asks and ask quantities (at various

levels in the book), transaction prices and quantities, and changes in portfolio holdings, all time stamped to the second.

Because the scale of the experiments is rather large (relative to standard economics experiments – up to 63 subjects),

the data are high frequency and the one-second time stamp is not a luxury. A typical experiment easily generates

over 1,000 transactions, and several times that number in terms of bids and asks. Changes in portfolio composition

through trading can be accurately followed. For the purpose of this paper, we are going to retain only a subset of the

data, namely, end-of-period portfolio holdings and transaction prices. We then ask to what extent the holdings and

prices in this subset are arranged in the way predicted by general equilibrium theory.

3 The BPZ Model

Abstracting from the complex, continuous trading in the experiments, we choose to bring general equilibrium theory

to bear on the data. As argued in the Introduction, features of the experiments allow us to narrow the analysis down

to the CAPM. This model makes a sharp pricing prediction: securities should become priced such that the market

portfolio is mean-variance optimal. This comes about because of an extreme feature of demands in the context of

quadratic utility (the type of preferences underlying CAPM), namely, portfolio separation: no matter how risk averse

a subject is, the optimal demand can always be decomposed into two parts: the riskfree asset and a single benchmark

portfolio of risky securities. In equilibrium, this single benchmark portfolio must be the market portfolio.

Inspired by standard practice in applied economics, we now enrich the basic CAPM and add an error term to

individual demands. This error term will be referred to as allocation prediction error. It is meant to capture preference

heterogeneity that is not modeled in the traditional CAPM (which assumes quadratic utility). The allocation prediction

error is assumed to be mean zero and independent across subjects.

More specifically, let h0
n ∈ R+ denote subject n’s endowment of the riskless asset and z0

n ∈ RJ
+ subject n’s endow-

ment of the risky assets. We assum that subject n’s demand can be written as the sum of the optimal demand for

some quadratic utility function (with parameters that may differ across n) plus a mean-zero, independent error term.

It should be emphasized that our introducing additive error terms at the demand level is a deliberate modeling

choice (we could have introduced them at the utility level, for instance). It ensures that standard pricing results

(CAPM pricing) are not invalidated, at least as long as there is a large number of subjects, even if portfolio choices
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do not exhibit standard properties (portfolio separation). We demonstrate this later on in this section.

To fix ideas, we first derive the optimal demands and corresponding equilibrium as if all subjects had quadratic

utility. We then add the error terms, to investigate the impact on equilibrium prices and allocations.

Instead of using quadratic utility, we will work with the more popular and equivalent representation in terms of a

trade-off between mean return against variance. Write Dj(s) for the return of the j-th risky asset in state s. Let µ be

the vector of expected payoffs of risky assets and ∆ = [cov (Dj , Dk)] be the covariance matrix. A subject who holds

h units of the riskless asset and the vector z of risky assets will enjoy utility

un(h, z) = h + [z′µ]− bn

2
[z′∆z] (1)

bn will be referred to as the risk aversion coefficient; its inverse will be called risk tolerance.

Using the price of the riskfree asset as numéraire, let p denote the vector of prices of risky assets. Given prices p,

investor n’s budget set consists of portfolios (h, z) that yield non-negative consumption in each state and satisfy the

budget constraint

h + p · z ≤ h0
n + p · z0

n (2)

Assuming the portfolio choice yields consumption between 0 and 1/bn in each state of the world (an assumption that

held in all our experiments), the first order conditions characterize optima, so investor n’s demand for risky assets

given prices p is

z̃n(p) =
1
bn

∆−1(µ− p) (3)

In particular, all investors choose a linear combination of the riskless asset and the same portfolio of risky assets — a

conclusion usually referred to as portfolio separation.

As usual, an equilibrium consists of prices p̃ for assets and portfolio choices h̃n, z̃n for each investor so that subjects

optimize in their budget sets and markets clear. Given the nature of demands (3), market clearing requires that

the portfolio ∆−1(µ − p̃) be a multiple of the market portfolio z0 =
∑

z0
n (the supply of risky assets). Solving for

equilibrium prices yields

p̃ = µ−

(
N∑

n=1

1
bn

)−1

(∆z0)

It is convenient to write B = ( 1
N

∑N
n=1

1
bn

)−1 for the harmonic mean risk aversion and z̄ = 1
N

∑N
n=1 z0

n for the mean

endowment (mean market portfolio). With this notation, the pricing formula becomes

p̃ = µ−B∆z̄ (4)

This is the Capital Asset Pricing Model (CAPM).
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We now extend the CAPM such that actual portfolio choice is represented as a perturbation of the theoretical

(CAPM–optimal) portfolio choice. Formally, we suppose that actual demand zn is the sum of the theoretical demand

z̃n and an error εn, which, as mentioned before, we refer to as allocation prediction error:

zn = z̃n(p) + εn (5)

We do not assume allocation prediction errors are small. That is, εn is not to be interpreted as an approximation

error. We only impose that allocation prediction errors are independent across n, with mean zero

E[εn] = 0, (6)

and finite variance V

E[ε2n] = V > 0. (7)

Direct computation shows that equilibrium prices will now be:

p = µ−B∆z0 + B∆
1
N

N∑
n=1

εn (8)

Hence the difference between equilibrium prices p and CAPM prices p̃ is

p− p̃ = B∆
1
N

N∑
n=1

εn (9)

Note that the difference between equilibrium prices and CAPM pricing is proportional to the average error term:

1
N

N∑
n=1

εn.

Sampling variation in this average will generate fluctuations of equilibrium prices around CAPM pricing. On average,

CAPM pricing obtains. This is the model that we would like to confront with the experimental data.

Before we do so, notice the effect of adding subjects, ensuring that the endowment average z0 remains finite, risk

tolerances 1/bn have a finite non-zero mean, and perturbations εn continue to be independent with zero mean and

finite variance. To emphasize the dependence on the number of subjects, write p̃N , pN for equilibrium prices in the

CAPM economy and perturbed economy with N investors. The Law of Large Numbers implies that, as N →∞

|pN − p̃N | → 0 a.s., (10)

1
N

N∑
n=1

[zn − z̃n]2 → V a.s.. (11)

That is, for large N equilibrium prices in the true economy will (with high probability) be close to equilibrium prices in

the benchmark CAPM economy, but equilibrium portfolio choices in the true economy will not be close to equilibrium

portfolio prices in the benchmark CAPM economy.
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4 The GMM Structural Test

Our model provides a unified framework to develop a structural test on experimental data. Typically, we have data

from several periods, each period being a replication of the same environment. We’d like to test our theory on the

prices and allocations at the end of each period. We present an estimation and testing strategy within the framework

of generalized method of moments (GMM).

4.1 The GMM Estimator

The idea may seem straightforward, but some of the details are not, mainly because we insist that the estimators

exhibit standard properties as only the cross-sectional size (number of subjects) increases, keeping the time series

length (number of periods) constant. Indeed, while our trading mechanism (Marketscape) opens up the possibility of

experiments with very large subject numbers, one is still limited in the number of periods that could practically be

squeezed into an experimental session.

We begin with introducing a time index, to reflect the nature of the data, which consists of prices and portfolio

choices in each of T periods. Use t for this time index: t = 1, 2, ..., T . As before, n = 1, ..., N is the index for the

subjects. This way, pN
t denotes the (vector) of prices of risky securities in period t given N subjects. Although we

could have chosen differently, we take the end-of-period transaction prices. Likewise, zn,t denotes subject n’s holdings

of risky securities at the end of period t. In addition, z̃n(pN
t ) denotes the optimal choice for someone exhibiting mean-

variance risk attitude with coefficient of risk aversion that matches subject n’s choices most closely. It will become

clear what we mean with closeness when we present our estimator of individual risk aversion coefficients (actually, risk

tolerances, which are the inverse of risk aversion coefficients). Choices z̃n(pN
t ) depend on prices as follows:

z̃n(pN
t ) =

1
bn

∆−1(µ− pN
t ).

The difference between zn,t and z̃n(pN
t ) is the allocation prediction error εn,t:

εn,t = zn,t − z̃n(pN
t ).

We impose the following restriction on the allocation prediction error.

E[εn,t|pN
t ] = 0, (12)

with εn,t mutually independent across n given pN
t . We also assume that the conditional variances of εn,t are finite,

and impose an orthogonality condition over time:

E[εn,tεn,s|pN
t , pN

s ] = 0, (13)
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for t, s = 1, 2, ..., T , t 6= s.

Unlike in the equivalent assumptions in the theory of the previous section, we condition explicitly on prices. This

means that we treat prices as fixed across replications of our experiments in the derivation of the statistical properties

of our test. A substantial simplification ensues.

Such conditioning does imply that one major difference between the asset pricing model and the econometric

model. In the former, we impose eqn. (6). Since prices obviously correlate with the allocation prediction errors εn,t,

through the equilibrium condition in (8), eqn. (12) does not follow. But this is the key assumption in our econometric

model.

Nevertheless, the two models converge asymptotically, at a speed that is sufficient not to affect the asymptotic

distributional characteristics of the GMM test. More specifically, our asset pricing model implies

lim
N→∞

E[εn,t|pN
t ] = 0.

That is, the restriction in our econometric model obtains asymptotically. To see this, note that, as N increases, prices

converge to the traditional CAPM (see (10)), where they are obviously independent of individual allocation prediction

errors εn,t. We also ought to prove that our asset pricing model converges to the econometric model at the right speed.

In particular,

lim
N→∞

√
NE[εn,t|pN

t ] = 0. (14)

To prove that this obtains, we would have to show that

√
NE[(εn,t)h(pN

t )′] → 0,

for any measurable function h. Let us limit our attention to demonstrating that it is true for linear functions h(pN
t )

= Θ + ΓpN
t . From (8),

√
NE[εn,t(Θ + ΓpN

t )′]

=
√

NE[εn,t

(
Θ + Γp̃N + BΓ∆

1
N

N∑
m=1

εm,t

)′
]

=
1√
N

BE[εn,t(εn,t)′∆Γ′]

→ 0.

In principle, we could formulate our econometric model to be identical to the asset pricing model, and use (14).

But this would complicate the analysis without adding any new econometric insights. Indeed, the arguments would

be standard, having been appealed to many times before, among others in the context of Pitman drift.2

2The interested reader could consult, e.g., [3], p. 154 ff.
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We are ready to propose our GMM estimator. The estimator provides a consistent estimate of the harmonic mean

risk aversion BN (the superscript N is added to reflects its dependence on the sample size).

Remember:

BN =

(
N∑

n=1

1
bn

)−1

.

Now define gn,t:

gn,t = BN εn,t. (15)

From (12), it follows that

E[gn,t|pN
t ] = bNE[εn,t|pN

t ] = 0. (16)

This restriction suggests the following GMM estimation strategy. Define:

hN,t =
1
N

N∑
n=1

gn,t. (17)

Now estimate the parameter BN by minimizing the following quadratic form:

min
BN

[
√

Nh′N,t]A
−1[
√

NhN,t], (18)

where the weighting matrix A is a consistent estimate of the asymptotic covariance matrix of
√

NhN,t. (We will

discuss shortly how to obtain A.)

Notice that, given A, the criterion function does not depend on the N individual risk aversion parameters bn. To

see this, write hN,t explicitly as a function of prices and choices:

hN,t =
1
N

N∑
n=1

gn,t

=
1
N

N∑
n=1

BN εn,t

=
1
N

N∑
n=1

(
BNzn,t −

BN

bn
∆−1(µ− pt)

)

= BN 1
N

N∑
n=1

zn,t −∆−1(µ− pt). (19)

The corresponding GMM test verifies whether the criterion function in (18) is significantly different from zero.

Because the weighting matrix A must be positive definite, GMM tests whether the vector in (19) is zero, making

it effectively a test of mean-variance optimality of the market portfolio. This is because 1
N

∑N
n=1 zn,t, the average
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holdings of risky securities, is the market portfolio, by definition, and if we set (19) equal to zero, we obtain the

optimality condition for risk aversion parameter BN (compare to (3)).

That is, the GMM test effectively verifies mean-variance optimality of the market portfolio, as if it were a test

on field data. Unlike in the latter, however, distance is not measured in function of error in the estimation of the

distribution of payoffs. Instead, it is measured in terms of the variances (and covariances) of the allocation prediction

errors of the traditional CAPM, i.e., the weighting matrix A. Consequently, both price and allocation information is

used to test the BPZ extension to the CAPM.

Our GMM estimator will have the usual asymptotic properties. Letting B̂N denote the GMM estimator of BN ,

this means:

|B̂N −BN | → 0,

almost surely, and, when evaluated at B̂N ,

[
√

Nh′N,t]A
−1[
√

NhN,t]

is asymptotically χ2 distributed, with degrees of freedom equal to the length of the vectors hN,t (i.e., the number of

risky securities) minus 1.

These properties will obtain only if the weighting matrix A is a consistent estimator of the asymptotic covariance

matrix of
√

NhN,t. It is not obvious which estimator will work. Let us now discuss one possible procedure.

4.2 An Estimator Of The Weighting Matrix A

At the outset, one should realize that the usual estimator will not work. Because of our assumption that the allocation

prediction errors εn,t and hence, the gn,ts are independent, A would traditionally be obtained as the sum of the sample

covariance matrices of the gn,ts when evaluated at the parameter value that minimizes the GMM criterion function

for A = I (the identity matrix). The problem is that the sample covariance of each gn,t depends on its own incidental

parameter bn.

To obtain A, estimates of the individual risk aversion coefficients or their inverse, the risk tolerances, are necessary.

We generate estimates of the individual risk tolerances from the time series of individual portfolio choices. Since

we wish to keep the time series length fixed and small, estimation errors are inevitable and potentially large. We

write A as a function of the estimates of the risk tolerances in a way that affords large estimation errors that need

not disappear as we increase the number of subjects. In particular, we let the estimates enter A linearly and ensure

that they are multiplied at most with the allocation prediction error εn,t. We choose an unbiased estimator with an

estimation error that is uncorrelated with εn,t. Linearity, unbiasedness and lack of correlation with εn,t altogether

imply that the influence on A of the estimation errors in the risk tolerances disappears asymptotically, by the law of

large numbers.
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Let us first discuss estimation of the risk tolerance parameters. Consider the time series history of subject n’s

end-of-period holdings:

zn,t = z̃n(pN
t ) + εn,t (20)

=
1
bn

∆−1(µ− pN
t ) + εn,t (21)

The assumption in (12) (E[εn,t|pN
t ] = 0) implies that the regression function of zn,t onto ∆−1(µ− pN

t ) is linear. The

slope of each of the projections of the elements of zn,t onto the corresponding elements of ∆−1pN
t equals the risk

tolerance. Hence, the ordinary least squares (OLS) estimate of the slope is an unbiased estimate of the risk tolerance.

There will be several estimates: one for each element of zn,t. We aggregate them simply by taking the average. The

resulting estimate of the risk tolerance remains unbiased. We repeat this for all subjects, generating N estimated risk

tolerances.

When computing the weighting matrix A for period t, we estimate the risk tolerances on the basis of the history

of subjects’ holdings at the end of all periods except period t. Our deletion of period-t holdings in the estimation

of the risk tolerances is deliberate. Let βn,t denote our estimate of subject n’s risk tolerance. The estimation error,

βn,t − 1
bn

, depends linearly on the allocation prediction errors εn,τ for all periods τ except τ = t.3 The assumption

in (13) implies that βn,t− 1
bn

is uncorrelated with εn,t.4 Later on, it will become clear that this ensures that the effect

3Applying OLS analysis, define

βj
n,t =

cov([zn,τ ]j , [∆−1(µ − pN
τ )]j)

var([∆−1(µ − pN
t )]j)

,

where cov and var denote the sample covariance and variance, respectively, over τ in 1, ..., T with τ 6= t. Also, j = 1, ..., J , with J denoting

the number of risky securities (length of the vector zn,τ ). [y]j denotes the jth element of the vector y. With this notation, our estimator

of the risk tolerance parameter equals

βn,t =
1

J

∑
j

βj
n,t.

Borrowing further results from OLS analysis, we obtain

βj
n,t −

1

bn
=

cov([εn,τ ]j , [∆−1(µ − pN
τ )]j)

var([∆−1(µ − pN
t )]j)

.

Therefore,

βn,t −
1

bn
=

1

J

∑
j

cov([εn,τ ]j , [∆−1(µ − pN
τ )]j)

var([∆−1(µ − pN
t )]j)

.

The sample covariances in the last expression are linear in the allocation prediction errors [εn,τ ]j . It follows that the estimation error

βn,t − 1
bn

is as well.
4To see this, notice:

E{[εn,t]k(βn,t −
1

bn
)|pN

1 , ..., pN
T } =

1

J

∑
j

cov(E{[εn,t]k[εn,τ ]j |pN
1 , ..., pN

T }, [∆−1(µ − pN
τ )]j)

var([∆−1(µ − pN
t )]j)

= 0,

for all k (k = 1, ..., J).
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on A of the errors in the estimation of the individual risk tolerances disappear as N increases.5

As mentioned before, A should be a consistent estimator of the asymptotic covariance matrix of
√

NhN,t. We

don’t use the most straightforward estimator. Instead, we use one where the influence of the estimation errors of the

individual risk tolerances averages out in large cross-sections (N large), as already mentioned. Because the εn,ts are

independent across n, the asymptotic covariance matrix of
√

NhN,t equals the following.

lim
N→∞

NE[hN,t hN,t
′ |pN

t ]

= lim
N→∞

(BN )2
1
N

N∑
n=1

E[εn,t εn,t
′ |pN

t ]

= lim
N→∞

(BN )2
{

1
N

N∑
n=1

εn,t εn,t
′ − 1

N

N∑
n=1

(
εn,t εn,t

′ − E[εn,t εn,t
′ |pN

t ]
)}

= lim
N→∞

(BN )2
1
N

N∑
n=1

εn,t εn,t
′ (22)

Note that this is not the limit of the sample covariance matrix of holdings across individuals, which we will denote

cov(zn,t). Let

z̄N =
1
N

N∑
n=1

zn,t. (23)

cov(zn,t) equals:

cov(zn,t) =
1
N

N∑
n=1

(zn,t − z̄N ) (zn,t − z̄N )′ .

We propose the following formula for A.

A = (B̂N )2
{

cov(zn,t)−
1
2

1
N

N∑
n=1

(βn,t −
1
N

N∑
ν=1

βν,t)(zn,t − z̄N )(µ− pN
t )′∆−1

−1
2

1
N

N∑
n=1

(βn,t −
1
N

N∑
ν=1

βν,t)∆−1(µ− pN
t )(zn,t − z̄N )′

}
. (24)

Let us first demonstrate here that estimation errors of the risk tolerances have no effect on A asymptotically. Consider

the second term on the right hand side in (24). The arguments for the third term are analogous. Ignoring the leading

factor, we can rewrite it in terms of the true risk tolerance parameters plus estimation errors:

1
N

N∑
n=1

(βn,t −
1
N

N∑
ν=1

βν,t)(zn,t − z̄N )(µ− pN
t )′∆−1

5If we included τ = t, then the estimation error βn,t − 1
bn

and the allocation prediction error εt is correlated. But the correlation can

be expected to be small and not to affect the GMM estimation much. This was borne out in the results. Still, we only report the results

with τ 6= t.
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=
1
N

N∑
n=1

(
1
bn
− 1

N

N∑
ν=1

1
bν

)(zn,t − z̄N )(µ− pN
t )′∆−1

+
1
N

N∑
n=1

(
(βn,t −

1
bn

)− 1
N

N∑
ν=1

(βν,t −
1
bν

)

)
(zn,t − z̄N )(µ− pN

t )′∆−1

Consider the deviations of portfolio choices from the grand mean in the second term of the last expression, zn,t − z̄N ,

n = 1, ..., N . These depend linearly on the allocation prediction errors εn,t, n = 1, ..., N . In the same term, the

estimation errors, namely, βn,t − 1
bn

and βν,t − 1
bν

, are mean zero, by unbiasedness of the OLS estimator. At the

same time, they are uncorrelated with the allocation prediction errors εn,t, because they depend linearly on allocation

prediction errors εn,τ for τ 6= t, as emphasized before. Clearly, the second term in the above expression is simply the

sample covariance of, on the one hand, linear transformations of allocation prediction errors εn,τ for τ 6= t, and on the

other hand, linear transformations of the allocation prediction errors εn,t. In expectation, this sample covariance is

zero. Because allocation prediction errors εn,τ and εn,t are assumed independent across n, the law of large numbers

implies that the sample covariance will converge to its expectation. Consequently, the second term in the above

expression is zero asymptotically, leaving only the first term. The random behavior of the first term does not depend

on errors in the estimation of the risk tolerances. We have the desired result: asymptotically, estimation errors have

no impact on A.

It is now straightforward to demonstrate that A provides a consistent estimator of the asymptotic covariance matrix

of
√

NhN,t. Because the proof is tedious, we delegate it to the Appendix.

Our choice of A has the main advantage that it can accommodate the errors in estimation of the incidental risk

tolerance parameters. They will not affect the results asymptotically. Against that, however, one should hold that

that A is not necessarily positive definite in small samples (N small). At this point, it is not obvious how to guarantee

positive definiteness.

5 Empirical Results

Let us first recapitulate the results in [2] and summarized in Tables 1 and Figure 1. While prices move towards CAPM

by the end of the trading period (Table 1), allocations are not as predicted by CAPM and do not even correlate with

distance from CAPM pricing (Figure 1). Distance from CAPM pricing is measured as the difference between the

Sharpe ratio (ratio of expected return over volatility) of the market portfolio and the maximal Sharpe ratio.6 The

6In computing the maximal Sharpe ratio, shortsale constraints on Securities A and B were accounted for, except in the case of 001113.

The latter experiment involved trade in a complete set of state securities as well as Notes, implying that one of the securities was redundant.

We therefore expressed the market portfolio and optimal portfolios in terms of investments in two of the three state securities (X and Y).

When expressed as supplies of X and Y only, even the market portfolio involves shorting of X. Therefore, we computed the maximal Sharpe
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success of CAPM in predicting allocations is measured as the mean absolute deviation between the proportion of their

risk-exposed wealth subjects allocate to security A and the market portfolio weight of A.

The BPZ model was developed as a straightforward extension of general equilibrium theory that would potentially

explain this price-allocation paradox. Table 2 reports the results from the GMM goodness-of-fit test of the core

prediction of the BPZ model, namely, that the expected allocation prediction error of mean-variance utility theory

equals zero. The table leads to the following observations.

First, the estimates of the harmonic mean risk aversion BN are almost uniformly positive and significant, rejecting

risk neutrality. The estimates of BN are of the same order of magnitude across experiments, although they tend to

be higher when the GMM test rejects.

Second, while the p levels of the GMM χ2 statistics are often acceptable, there are far more rejections than expected

by chance. There appears to be some value to the BPZ model, but it is rejected overall. Figure 2 illustrates this aptly.

It plots the empirical distribution of the (logarithm of the) χ2 statistic across the 83 periods of our experiments. The

empirical distribution (jagged line) is a horizontal translation of the theoretical distribution of the (logarithm of the)

GMM statistic (smooth line). It is as if the shape of the distribution is well specified, but not the location.

One possible explanation for the high number of rejections would be that it takes time for markets to equilibrate,

even several periods, but that subjects learn. Under this scenario, numerous rejections in early periods of the experi-

ments are to be expected, with the frequency decreasing over time. Contrary to this conjecture, there is little evidence

of a gradual decrease in the χ2 statistic as a function of period number. See the evidence in Figure 3.7

Small-sample biases may account for part of the high frequency of rejections. We derived the properties of the

GMM criterion function for large samples only, whereas our samples have as few as 15 observations (in experiment

000804). One small-sample feature that should be immediately apparent is correlation between the GMM statistic and

the distance from CAPM pricing. In constructing our GMM test, we ruled out such correlation – see Equation (12),

which stated that allocation prediction errors are mean-independent of prices, and hence, uncorrelated with functions

of prices such as distance from CAPM pricing.8 Figure 4 plots the relationship between the (logarithm of) the GMM

χ2 statistic and the distance from CAPM pricing. A positive relationship emerges. The correlation coefficient is

estimated to be 0.34, which is significant at the 1% level. The solid line depicts a piecewise linear spline fit. The fit

remains high and stays above 1 even when prices are close to CAPM (asymptotically, the GMM χ2 statistic has an

expectation equal to 1, which means that its logarithm has an expectation strictly less than 0).

A pronounced pattern in mean allocation prediction errors generated by the GMM estimation procedure suggests

ratio without shortsale constraints on the risky securities.
7Table 1 also reveals that, with the exception of 991110, there is no tendency of pricing to become closer to CAPM over time. As a

matter of fact, prices are already close to CAPM at the end of the first period in experiments such as 981116, 990407, 991111 and 011205.
8We did emphasize that allocation prediction errors become mean-independent of prices in large samples, so that Equation (12) is

consistent with the BPZ model at least asymptotically.
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another source for the high frequency of rejections. Estimates of the mean allocation prediction errors are reported

in Table 3. With the exception of 001113, the mean allocation prediction error for security A is almost invariably

positive, while that for security B is almost always negative.

Notice incidentally that the average allocation prediction errors are generally higher than 1. They are measured in

units of each security. The fact that they are generally above 1 therefore indicates that discreteness9 cannot explain

the high frequency of rejections either.10

The pattern in mean allocation prediction errors can be explained as the effect of binding shortsale constraints on

the riskfree security. Sufficiently risk tolerant subjects would like to borrow more than they are allowed to (8 Notes).

Because they are shortsale-constrained, they optimally choose not to buy a mean-variance optimal portfolio. If there

are enough shortsale-constrained subjects, this will affect pricing.

To see how binding shortsale constraints affect average allocation prediction errors, consider the following. In the

analysis, we will need the value of the entries of a particular vector, namely, ∆−1µ. In all the experiments except

001113 (the latter is exceptional for other reasons as well, as we point out later), the second entry of this vector (to

be referred to below as [∆−1µ]2) is higher than the first one (to be referred to below as [∆−1µ]1) by a factor of 4.

Let there be two types of agents, n = 1, 2, exhibiting mean-variance preferences with coefficients b1 < b2, i.e.,

type-1 agents are less risk averse. Imagine that, at prices p, type-1 agents are shortsale-constrained, whereas type-2

agents are not. The optimal demands zC
n (p) are (n = 1, 2):

zC
n (p) =

1
bn

∆−1(µ− λnp),

where λ1 > 1 (reflecting the shortsale constraint) and λ2 = 1 (i = 2 is not shortsale-constrained). These demands

imply the following equilibrium price vector, denoted pC . As before, let

BN =

(
1
2

2∑
n=1

1
bn

)−1

,

the harmonic mean of the bns. Define

BC =

(
1
2

2∑
n=1

1
bn/λn

)−1

.

BC is the harmonic mean of adjusted coefficients bn/λn. Because λ1 > 1 and λ2 = 1, BN > BC , a fact we will exploit

later on. The equilibrium price vector equals:

pC =
BC

BN
µ−BC∆z̄. (25)

9Subjects could only trade integer quantities of the securities.
10Likewise, direct analysis of sensitivity of the GMM χ2 statistics revealed no noticeable effect from discreteness.
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Note that, at prices PC , the market portfolio will not be mean-variance optimal. That is, the CAPM does not obtain.

Let us now determine the average allocation prediction error that our GMM procedure would estimate in this case.

The procedure finds the parameter B̂N that minimizes the norm of the vector of scaled average allocation prediction

errors:
1
2

∑
n=1,2

gn =
1
2

∑
n=1,2

B̂N εn = B̂N 1
2

∑
n=1,2

zC
n (pC)−∆−1(µ− pC).

Effectively, our procedure searches for the mean-variance efficient portfolio closest to the actual average demands of

the agents. Because the average demands of the agents necessarily add up to the market portfolio (i.e., the average

supply z̄), we can simplify the vector of scaled average allocation prediction errors:

1
2

∑
n=1,2

B̂N εn = B̂N z̄ −∆−1(µ− pC).

Replacing pC with its equilibrium expression in terms of primitives of the economy, equation (25), and rearranging,

we obtain:
1
2

∑
n=1,2

B̂N εn = (B̂N −BC)z̄ − BN −BC

BN
∆−1µ.

As norm, GMM uses the quadratic form defined in terms of the symmetric, positive-definite weighting matrix A−1;

see (18). The first-order conditions of the GMM minimization problem are:(
(B̂N −BC)z̄′ − BN −BC

BN
µ′∆−1

)
A−1z̄ = 0.

Straightforward algebra generates an expression for the GMM estimator B̂N :

B̂N = BC +
1

z̄′A−1z̄

BN −BC

BN
µ′∆−1A−1z̄.

Note that z̄′A−1z̄ > 0 and remember that BN > BC . Since ∆−1µ > 0 in all the experiments (except 001113), we

conclude that

B̂N > BC(> 0).

All this allows us to obtain conditions on the harmonic mean risk aversion BN under which the average allocation

prediction error of the first security is higher than that of the second security, as is the case in most periods of our

experiments (except 001113).

1
2

∑
n=1,2

εn =
B̂N −BC

B̂N

(
z̄ − BN −BC

B̂N −BC

1
BN

∆−1µ

)
.

Straightforward algebra then shows that the average allocation prediction error of the first security is higher than that

of the second security whenever

[z̄]2 − [z̄]1 <
1

BN

BN −BC

B̂N −BC
([∆−1µ]2 − [∆−1µ]1).
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Here, [z̄]j and [∆−1µ]j denote the jth entry of vectors z̄ and ∆−1µ, respectively.

The condition is immediately satisfied if the supply of the first security is at least as high as that of the second

security ([z̄]2 − [z̄]1 ≤ 0), as was the case in experiment 981007 (where [z̄]2 = [z̄]1), because the right-hand-side of the

above inequality is always positive (among other things, [∆−1µ]2 > [∆−1µ]1, as mentioned before). The condition will

be satisfied even if the supply of the first security is higher than that of the second security ([z̄]2− [z̄]1 > 0; this is the

situation in the other experiments) provided the harmonic mean risk aversion BN is sufficiently low, which obviously

is how shortsale constraints will be binding in the first place.

Table 4 reports the percentage of subjects for whom shortsale constraints on the riskfree security (Notes) were

binding. In all experiments, this percentage is significant, lending credibility to the hypothesis that binding shortsale

constraints explain the pattern in mean allocation prediction errors revealed in Table 3.11

Table 4 shows a pattern in the percentage shortsale-constrained subjects that is to be expected from rational

subjects. Even if they are risk-neutral, subjects should take into account foregone opportunities to earn more if

excessively risky positions force them to be barred from further trading (see the Appendix for an explanation of

the bankruptcy rule). Hence, their actions ought to reveal a higher level of risk aversion in the early periods of an

experiments. Table 4 confirms this: fewer subjects are shortsale-constrained in the first half of the experiment.

The above analysis does not apply to experiment 001130. Remember that three state securities were traded.

Because Notes were also available, one security is redundant. We translated subjects’ holdings of Notes and three

state securities into the equivalent holdings in terms of Notes and state securities X and Y (the tables refer to them

as securities A and B, respectively). Shortsale constraints in the original full-state-securities configuration, however,

do not readily translate into the configuration in terms of Notes, A and B. For instance, holdings of the state security

Z correspond to short positions in A and B and a long position in Notes. That is, a subject who is holding a long

position in the state security Z may even be recorded as having a short position in one of the risky securities once

the holdings are translated into holdings of A, B and Notes only. Not surprisingly, the estimated average allocation

prediction errors display no clear pattern (see Table 4).

6 Conclusion

The development of a structural econometric test of a general equilibrium asset pricing model appropriate for exper-

imental data constitutes the methodological contribution of this paper. The test is purposely different from those

used for field data. It exploits cross-sectional size rather than time series length. Its stochastic structure is based
11Further corroborating evidence came from a set of experiments where uncertainty was eliminated, but quadratic utility was induced

by means of nonlinearities in subjects’ payoff functions. See [2] for a description. Where shortsale constraints were binding at equilibrium,

analogous patterns in the estimated average allocation prediction errors emerged.
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on errors of expected utility theory in predicting subjects’ choices, instead of estimation error in the distribution of

payoffs (which is known in an experimental context). Unlike field data tests, the ready availability of portfolio holdings

allows ours to verify the predictions of general equilibrium theory in a comprehensive way: the link between prices

and allocations is tested, instead of some necessary condition on prices alone.

While the shape of the empirical distribution of the core statistic of the structural test corresponds to its asymptotic

distribution under the posited model, it is displaced, implying that there are more rejections than expected by chances.

“Learning” cannot explain this, for there is no relationship between the frequency of rejections and time. Small-sample

biases are evident in the positive correlation between the test statistic and the distance from CAPM pricing.

The structural estimation allowed us to discover patterns in the data that would be impossible to discern in a

simple graphical or descriptive-statistic analysis. In particular, the structural estimation generated estimates of the

mean error that expected utility theory makes in predicting allocations. A strong pattern emerged, indicating that

our model was mis-specified in that it ignored short-sale constraints on the riskfree security. Such mis-specification

obviously provides another reason for the high number of rejections.

In principle, one could extend the structural econometric tests to encompass a variation of our equilibrium model

that allows for binding shortsale constraints. The ensuing nonlinearities, however, make such an extension nontrivial.

Remember that each subject’s risk tolerance had to be estimated as part of the structural test. Because only a few

choices are observed per subject, risk tolerance parameters are estimated with significant error. We set up our test

statistic, however, in such a way that errors in the estimation of risk tolerances average out across subjects, so that

large-sample properties are unaffected. It is not clear how such a trick may be devised when there are nonlinearities

induced by binding shortsale constraints.

In any event, before embarking on generalizations, one ought to ponder whether binding shortsale constraints

are the sole source for the high frequency of rejections. We already mentioned another source: small-sample biases.

But there is another complication. One would expect rejections to be related to the number of shortsale-constrained

subjects. The more subjects are shortsale-constrained, the bigger the deviation from CAPM equilibrium. Figure 5,

however, displays no pattern in the relation between the (logarithm of our) test statistic and the percentage subjects

that are shortsale-constrained...

References

[1] Bossaerts, P. and C. Plott [2000], “Basic Principles of Asset Pricing Theory: Evidence from Large-Scale Exper-

imental Financial Markets,” Caltech working paper.

20



[2] Bossaerts, P., C. Plott and W. Zame [2002], “Prices And Portfolio Choices In Financial Markets: Theory and

Experimental Evidence,” Caltech working paper.

[3] Gallant, R. [1987], Nonlinear Statistical Models. New York: Wiley.

Appendix I: Asymptotic Behavior of A

Here follows a proof that A provides a consistent estimator of the asymptotic covariance matrix of
√

NhN,t. Because

their estimation errors have no effect asymptotically, we first re-write A as a function of the true risk tolerances

(including their true harmonic mean):

A = (BN )2
{

cov(zn,t)−
1
2

1
N

N∑
n=1

(
1
bn
− 1

N

N∑
ν=1

1
bν

)(zn,t − z̄N )(µ− pN
t )′∆−1

−1
2

1
N

N∑
n=1

(
1
bn
− 1

N

N∑
ν=1

1
bν

)∆−1(µ− pN
t )(zn,t − z̄N )′

}
.

Next, consider 1
N

∑N
n=1 E[zn,t|pN

t ]. Apply the definition of z̄N – see (23) – to derive the following:

z̄N − 1
N

N∑
n=1

E[zn,t|pN
t ] =

1
N

N∑
n=1

(zn,t − E[zn,t|pN
t ])

=
1
N

N∑
n=1

εn,t

→ 0,

by the law of large numbers (which applies here, because of the cross-sectional independence of the errors εn,t).

Because the difference between 1
N

∑N
n=1 E[zn,t|pN

t ] and z̄N disappears asymptotically, we will substitute the latter for

the former in expressions that depend on the former.

Invoking (22), compute the difference between A and the covariance matrix of
√

NhN,t:

A−NE[hN,t hN,t
′ |pN

t ]

= (BN )2
{

cov(zn,t)−
1
2

1
N

N∑
n=1

(
1
bn
− 1

N

N∑
ν=1

1
bν

)(zn,t − z̄N )(µ− pN
t )′∆−1

−1
2

1
N

N∑
n=1

(
1
bn
− 1

N

N∑
ν=1

1
bν

)∆−1(µ− pN
t )(zn,t − z̄N )′

}

− (BN )2
{

1
N

N∑
n=1

εn,t εn,t
′

}
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= (BN )2
{

cov(zn,t)−
1
2

1
N

N∑
n=1

(
1
bn
− 1

N

N∑
ν=1

1
bν

)(zn,t − z̄N )(µ− pN
t )′∆−1

−1
2

1
N

N∑
n=1

(
1
bn
− 1

N

N∑
ν=1

1
bν

)∆−1(µ− pN
t )(zn,t − z̄N )′

}

− (BN )2
{

1
N

N∑
n=1

(zn,t − z̄N ) (zn,t − z̄N )′

− 1
N

N∑
n=1

(zn,t − z̄N )
(
E[zn,t|pN

t ]− z̄N

)′
− 1

N

N∑
n=1

(
E[zn,t|pN

t ]− z̄N

)
(zn,t − z̄N )′

+
1
N

N∑
n=1

(
E[zn,t|pN

t ]− z̄N

) (
E[zn,t|pN

t ]− z̄N

)′}

= (BN )2
{

cov(zn,t)−
1
2

1
N

N∑
n=1

(
1
bn
− 1

N

N∑
ν=1

1
bν

)(zn,t − z̄N )(µ− pN
t )′∆−1

− 1
2

1
N

N∑
n=1

(
1
bn
− 1

N

N∑
ν=1

1
bν

)∆−1(µ− pN
t )(zn,t − z̄N )′

− cov(zn,t) +
1
N

N∑
n=1

(
1
bn
− 1

N

N∑
ν=1

1
bν

)(zn,t − z̄N )(µ− pN
t )′∆−1

+
1
N

N∑
n=1

(
1
bn
− 1

N

N∑
ν=1

1
bν

)∆−1(µ− pN
t )(zn,t − z̄N )′

− 1
2

1
N

N∑
n=1

(
1
bn
− 1

N

N∑
ν=1

1
bν

)(zn,t − z̄N )(µ− pN
t )′∆−1

− 1
2

1
N

N∑
n=1

(
1
bn
− 1

N

N∑
ν=1

1
bν

)∆−1(µ− pN
t ))(zn,t − z̄N )′

+
1
2

1
N

N∑
n=1

εn,t

(
E[zn,t|pN

t ]− z̄N

)′
+

1
2

1
N

N∑
n=1

(
E[zn,t|pN

t ]− z̄N

)
εn,t

′

}

=
1
2
(BN )2

{
1
N

N∑
n=1

εn,t

(
E[zn,t|pN

t ]− z̄N

)′
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+
1
N

N∑
n=1

(
E[zn,t|pN

t ]− z̄N

)
εn,t

′

}
.

Since 1
N

∑N
n=1 E[zn,t|pN

t ] and z̄N are indistinguishable asymptotically, let us replace z̄N in the last expression. We

obtain:

A−NE[hN,t hN,t
′ |pN

t ]

=
1
2
(BN )2

 1
N

N∑
n=1

εn,t

(
E[zn,t|pN

t ]− 1
N

N∑
ν=1

E[zν,t|pN
t ]

)′
+

1
N

N∑
n=1

(
E[zn,t|pN

t ]− 1
N

N∑
ν=1

E[zν,t|pN
t ]

)
εn,t

′

 .

Once again, cross-sectional independence of the allocation prediction errors εn,t implies that the two terms in paren-

theses converge to zero, by the law of large numbers.

Appendix II: Description Of Experiments

Three assets could be traded. Two, labeled Securities A and B, had a risky payoff, determined by the random drawing

of one of three “states,” referred to as States X, Y and Z. The third asset, labeled Note, was riskfree, and unlike

the risky securities could be sold short, up to eight units. Note that markets are complete, which has particular

implications for theoretical predictions. Among other things, this implies that, in equilibrium, shortsale of the risky

securities has not restrictive. In contrast, subjects’ ability to shortsell the riskfree security is potentially important

even in equilibrium. Subjects were endowed with a certain number of securities A and B. The Notes were always in

zero net supply.

Subjects could offer for sale or purchase, or trade, in each of the securities during periods of fifteen to twenty-five

minutes, after which the state was announced and dividends were paid depending on the final holdings of the securities.

The assets were then taken away, and subjects were given a fresh supply of the risky securities, as well as a certain

amount of cash. The times between initial allocation of securities and cash and final realization of the dividends will

be referred to as periods. Each experiment involved up to nine periods.

Cash was given at the beginning of every period. At the end of each period, subjects had to pay the experimenter

for the initial cash as well as the initial allocation of risky securities. That is, initial cash and risky securities were

given “on loan,” and the end-of-period payment to the experimenter was therefore referred to as “loan repayment.”

This loan repayment created leverage, causing a magnification of the risk involved in the holding of securities A and

B.

All accounting was done in terms of a fictitious currency called francs, to be exchanged for dollars at the end of the

experiment at a pre-announced exchange rate. In some experiments, subjects were also given an initial sign-up fee,

theirs to keep if they succesfully finished the experiment (but fully exposed to any losses from holding risky securities).
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Subjects were barred from further trading if they ran net cumulative losses more than two periods in a row. Such a

bankruptcy rule induces risk aversion up to the penultimate period of an experiment even if subjects are risk neutral.

With the exception of experiment 001113, the payoff matrix was always the same, namely:

State X Y Z

Security A 170 370 150

Security B 160 190 250

Notes 100 100 100

Note that the payoffs on securities A and B are negatively correlated. In other words, purchases of B can readily be

used to diversify the risk of A.

Experiment 001113 had a different payoff matrix. While the number of states remained the same (3), we added a

security (security C) and gave subjects a simple payoff matrix:

State X Y Z

Security A 200 0 0

Security B 0 200 0

Security C 0 0 200

Notes 100 100 100

Note that there is redundancy: a portfolio of one unit of each of the risky securities generates the same payoff pattern

as two Notes. The risky securities are of a type that is fundamental to general equilibrium asset pricing theory: they

are state securities, paying a positive amount in one state, and nothing otherwise.

Trade took place over the internet, in a set of parallel, continuous, computerized open book markets, one for each

security. The open book system worked as the ones used in field markets, such as the Paris Bourse, with one major

exception: no orders could be hidden. The identity of the traders was not revealed; only an ID number identified

orders in the book. The trading system, referred to as Marketscape, was developed at Caltech. It had been used

succesfully in other experiments, also aimed at studying competitive equilibrium theory. The reader who would like

to try out the mechanics of Marketscape should visit http://eeps3.caltech.edu/market-demo/.

The remaining data and parameters for the experiments are displayed in the table below. Notice the variation in

initial endowments across experiments. With the exception of the first experiment, endowments also differed across

subjects within an experiment. Subjects were not told other subjects’ endowments (they were not even told how many

subjects participated). This is a deliberate design feature. We wanted to avoid that subjects could easily deduce the

nature of the aggregate risk (in the jargon of the most popular model: the payoff pattern of the market portfolio).

Once aggregate risk is known, subjects could use standard models (like the CAPM) to price securities if they cared
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to do so. The purpose of the experiments is to generate the predictions of asset pricing theory, not through subjects’

deliberate pricing on the basis of the theory that they may have heard about, but through the fundamental economic

forces that the theory claims are behind its pricing results. Note also that subjects need not know the nature of

aggregate risk for the predictions of general equilibrium theory in complete markets to be valid. In general equilibrium

theory, prices are the only piece of marketwide information that agents are given.

States were drawn randomly. In the earlier experiments, states were drawn with replacement, meaning that the

probability of occurence of each state remained 1/3 throughout. In the later experiments, states were drawn without

replacement, as follows. Subjects were told to envision an urn with 18 balls, 6 of whom were marked X, 6 were marked

Y, and 6 were marked Z. A ball is drawn at random. The letter marked on this ball determines the state, say X.

Subjects were then told the new composition of the urn: 5 of X, 6 of Y and 6 of Z. The state for the subsequent period

was determined through random drawing from this urn with 17 balls.

The table below summarizes the parameter settings for each experiment.
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Date Draw Subject Signup Endowments Cash Loan Exchange

Type a Category Reward A B C Notes Rate

(Number) (franc) (franc) (franc) $/franc

981007 I 30 0 4 4 N/Ab 0 400 1900 0.03

981116 I 23 0 5 4 N/A 0 400 2000 0.03

21 0 2 7 N/A 0 400 2000 0.03

990211 I 8 0 5 4 N/A 0 400 2000 0.03

11 0 2 7 N/A 0 400 2000 0.03

990407 I 22 175 9 1 N/A 0 400 2500 0.03

22 175 1 9 N/A 0 400 2400 0.04

991110 I 33 175 5 4 N/A 0 400 2200 0.04

30 175 2 8 N/A 0 400 2310 0.04

991111 I 22 175 5 4 N/A 0 400 2200 0.04

23 175 2 8 N/A 0 400 2310 0.04

000804 I 8 175 5 4 N/A 0 400 2200 0.04

7 175 2 8 N/A 0 400 2310 0.04

001113 I 29 125 7 13 9 0 400 2200 0.04

30 125 8 11 12 0 400 2310 0.04

011114 D 21 125 5 4 N/A 0 400 2200 0.04

12 125 2 8 N/A 0 400 2310 0.04

011126 D 18 125 5 4 N/A 0 400 2200 0.04

18 125 2 8 N/A 0 400 2310 0.04

011205 D 17 125 5 4 N/A 0 400 2200 0.04

17 125 2 8 N/A 0 400 2310 0.04

aI=states are drawn independently across periods; D=states are drawn without replacement, starting from an urn with

six balls of each type (state).
bN/A = not applicable.

We did not have full control over the number of participants in the experiments. Subjects could register in a

database several days before the actual experiment. After that, they could retrieve an ID and password with which

to log on to the Marketscape website from which the experiment would be run, and execute some trades as practice.

Subjects were given clear instructions, which they could read on the website for each experiment, and which we did

not alter across experiments. These instructions included a description of some portfolio strategies. They did not

mention a strategy whereby the subject is invited to gamble against the experimentor’s random drawing of states.12

12The interested reader can visit http://eeps3.caltech.edu/market-011126 to view the instructions for market-011126, which include a
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It should be pointed out that most subjects had familiarity with financial markets. Students were a mixture of

U.S. and Canadian MBAs, economics undergraduates and undergraduates in the sciences and engineering. Students in

011126 had no prior experience with financial markets: they were mathematics majors of Sofia University in Bulgaria.

Experiment 011126 was meant to reveal to what extent payment scale affects the results. The Bulgarian students

were paid on the same dollar scale. Because their standard of living is less than 1/10th that of the U.S. and Canada,

we effectively paid them more than 10 times as much as U.S. and Canadian students.

Bulgarian translation of the standard English instructions.
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Table 1: Average Absolute Difference Between Market Sharpe Ratio and Maximal Sharpe Ratio (Average Based On

Last Ten Transactions; Maximum In Parentheses).

Experiment Period

1 2 3 4 5 6 7 8 9

981007 0.13 0.02 0.03 0.01 0.02 0.01

(0.71) (0.31) (0.34) (0.27) (0.13) (0.05)

981116 0.06 0.00 0.01 0.01 0.04 0.03

(2.74) (0.16) (0.02) (0.09) (0.16) (2.04)

990211 0.10 0.20 0.05 0.08 0.03 0.16 0.24

(13.17) (0.67) (0.29) (0.39) (0.09) (0.21) (0.56)

990407 0.02 0.00 0.03 0.11 0.39 0.03 0.08 0.45

(0.35) (0.37) (0.17) (0.34) (0.55) (0.53) (0.22) (0.67)

991110 0.20 0.19 0.11 0.02 0.01 0.04

(0.74) (0.30) (0.31) (0.23) (0.22) (0.11)

991111 0.01 0.02 0.16 0.15 0.14 0.14 0.03 0.02

(0.49) (0.35) (0.20) (0.30) (0.27) (0.29) (0.33) (0.13)

000804 0.09 0.10 0.02 0.03 0.07 0.12 0.13

(0.33) (0.20) (0.26) (0.05) (0.10) (0.14) (0.40)

001113 0.11 0.05 0.06 0.09 0.04 0.28 0.03 0.00 0.20

(0.16) (0.06) (0.12) (0.13) (0.33) (0.32) (0.11) (0.09) (0.28)

011114 0.10 0.01 0.00 0.01 0.14 0.07 0.10 0.17 0.04

(0.21) (0.15) (0.17) (0.09) (0.22) (0.20) (0.34) (0.24) (0.11)

011126 0.24 0.06 0.03 0.03 0.01 0.01 0.00 0.05

(4.28) (0.53) (0.14) (0.14) (0.03) (0.29) (0.36) (0.07)

011205 0.00 0.08 0.12 0.03 0.07 0.07 0.09 0.14 0.01

(0.52) (0.12) (0.15) (0.13) (0.10) (0.13) (0.18) (0.45) (0.21)
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Table 2: GMM Tests Of Equilibration

Experiment Statistic Periods

1 2 3 4 5 6 7 8 9

981007 χ2
1 36.2 2.2 79.3 28.9 21.0 12.6

p-level .00 .14 .00 .00 .00 .00

bN (*10−3) 0.8 0.7 1.3 1.1 1.3 1.1

s.e. (*10−3 ) 0.0 0.1 0.0 0.1 0.0 0.0

981116 χ2
1 23.7 0.9 1.0 4.4 3.5 30.3

p-level .00 .35 .32 .04 .06 .00

bN (*10−3) 1.5 1.1 0.8 1.0 1.9 2.0

s.e. (*10−3 ) 0.1 0.1 0.1 0.1 0.1 0.1

990211 χ2
1 5.3 11.2 5.5 33.3 4.0 15.4 0.2

p-level .02 .00 .02 .00 .04 .00 .69

bN (*10−3) 1.1 1.5 1.4 2.8 1.2 1.5 -0.2

s.e. (*10−3 ) 0.1 0.1 0.1 *a 0.1 0.1 0.1

990407 χ2
1 7.5 0.7 13.8 116.7 †b 2.5 13.6 †

p-level .01 .39 .00 .00 - .62 .00 -

bN (*10−3) 0.5 0.5 0.3 -0.3 2.8 0.3 0.2 0.9

s.e. (*10−3 ) 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1

991110 χ2
1 197.5 72.8 31.6 7.4 2.7 6.9

p-level .00 .00 .00 .01 .10 .01

bN (*10−3) 3.0 2.4 1.9 1.2 1.1 1.4

s.e. (*10−3 ) * 0.1 0.1 0.1 0.1 0.1

991111 χ2
1 4.8 1.5 114.4 61.4 36.3 43.4 31.6 30.8

p-level .03 .23 .00 .00 .00 .00 .00 .00

bN (*10−3) 0.4 0.3 1.7 1.4 1.2 1.0 1.3 1.3

s.e. (*10−3 ) 0.0 0.1 * 0.0 0.0 0.0 0.0 0.0

000804 χ2
1 31.3 20.4 9.6 7.5 25.3 12.1 4.9

p-level .00 .00 .00 .01 .00 .00 .03

bN (*10−3) 1.5 1.0 1.2 0.9 1.3 0.7 0.2

s.e. (*10−3 ) 0.0 0.0 0.1 0.1 0.0 0.1 0.1

001113 χ2
1 0.3 0.5 0.0 0.3 1.2 11.6 0.5 22.4 1.7

p-level .61 .49 .88 .60 .27 .00 .46 .00 .19

bN (*10−3) 0.1 -0.0 -0.0 0.4 0.3 0.7 0.3 0.6 0.4

s.e. (*10−3 ) 0.2 0.2 0.2 0.2 0.3 0.1 0.1 0.1 0.1

011114 χ2
1 37.5 2.3 2.2 5.4 17.6 15.4 10.7 21.8 4.4

p-level .00 .13 .14 .02 .00 .00 .00 .00 .04

bN (*10−3) 0.9 0.9 0.9 0.9 1.4 0.5 0.1 1.1 1.3

s.e. (*10−3 ) 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0

011126 χ2
1 186.6 0.6 7.8 5.6 1.5 1.3 0.2 6.8

p-level .00 .44 .01 .02 .23 .25 .65 .01

bN (*10−3) 4.1 1.3 1.7 1.7 1.0 1.3 1.1 1.7

s.e. (*10−3 ) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

011205 χ2
1 2.9 10.4 17.4 13.8 13.0 15.3 7.8 19.0 5.0

p-level .09 .00 .00 .00 .00 .00 .01 .00 .02

bN (*10−3) 0.8 1.8 1.7 1.5 1.9 1.3 0.6 0.6 0.7

s.e. (*10−3 ) 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0

a* denotes that the weighting matrix was not positive definite, and hence, standard errors could not be computed.
b† denotes negative χ2 because weighting matrix was not positive definite.
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Table 3: Average Estimated Allocation Prediction Errors Relative To Mean-Variance Optimal Demands

Experiment Security Periods

1 2 3 4 5 6 7 8 9

981007 A 2.03 1.29 2.23 2.20 1.66 1.19

B -2.82 -1.23 -1.74 -2.59 -1.65 -1.22

981116 A 1.77 0.55 0.65 1.03 0.51 1.43

B -2.82 -1.23 -1.74 -2.59 -1.65 -1.22

990211 A 1.66 2.55 1.89 1.60 1.77 2.40 -1.71

B -2.01 -2.99 -2.27 -2.07 -1.54 -4.50 1.91

990407 A 2.71 0.51 -3.59 15.25 4.29 -0.71 -6.52 4.11

B -4.48 -0.95 6.23 -13.27 8.30 0.92 8.30 19.49

981110 A 1.68 1.91 1.84 1.38 0.95 0.98

B -3.65 -3.29 -2.82 -1.84 -1.30 -1.46

991111 A 1.47 -1.84 2.30 2.18 2.59 2.86 1.51 1.11

B -2.02 2.26 -2.58 -2.63 -2.65 -2.89 -1.85 -1.10

000804a A 2.16 2.30 1.15 1.42 2.02 3.23 6.11

B -1.52 -2.05 -1.77 -1.54 -2.21 -3.39 -5.08

001113 A -5.37 -53.16 3.65 -1.64 4.12 -2.30 2.76 7.99 3.84

B -2.86 -23.10 0.76 -0.77 1.40 -0.44 1.79 4.22 1.96

011114 A 2.58 0.63 0.74 1.39 2.42 1.88 1.64 2.44 0.86

B -3.12 -0.86 -0.88 -1.27 -2.07 -1.82 -1.63 -2.67 -1.14

011126 A 2.27 -0.38 1.57 1.26 1.19 0.58 -0.42 1.48

B -3.75 0.51 -2.10 -1.68 -1.53 -0.90 0.42 -1.66

011205 A 0.64 1.60 2.37 1.27 1.72 2.40 1.95 3.00 1.04

B -0.75 -2.46 -2.76 -2.16 -2.60 -2.57 -2.49 -2.87 -1.18

aSecurity A pays 200 in state X and 0 otherwise; security B pays 200 in state Y and 0 otherwise.
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Table 4: Percentage Shortsale-Constrained Subjects

Experiment Period

1 2 3 4 5 6 7 8 9

981007 7 17 13 20 17 17

981116 9 9 14 18 20 11

990211 5 16 11 5 11 16 16

990407 7 9 11 9 16 11 9 16

991110 5 8 11 16 14 11

991111 20 16 18 16 11 18 9 11

000804 7 7 7 7 7 13 7

001113 16 18 18 21 16 13 13 9 11

011114 5 17 14 21 23 12 14 17 19

011126 6 6 6 6 14 11 11 14

011205 6 18 9 15 6 18 29 26 22
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Figure 1: Plot of mean absolute deviations of subjects’ end-of-period holdings from CAPM predictions against distances

from CAPM pricing (absolute difference between market Sharpe ratio and maximal Sharpe ratio, based on last ten

transactions), all periods in all experiments.
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Figure 2: Empirical distribution of the GMM χ2 statistics, all periods in all experiments (jagged line) against the

theoretical asymptotic distribution under the hypothesis in (12).
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Figure 3: Plot of the logarithm of the GMM χ2 statistics against period number. Stars represent period averages.
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Figure 4: Plot of the logarithm of the GMM χ2 statistics against distances from CAPM pricing (absolute difference

between market Sharpe ratio and maximal Sharpe ratio, based on last ten transactions), all periods in all experiments.

The solid line represents a piecewise linear spline fit. The scatter plot generates a (linear) correlation coefficient equal

to 0.34 (p < 0.01).
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Figure 5: Plot of the logarithm of the GMM χ2 statistic against the percentage of subjects for whom the constraint

on shortsales of Notes is binding.
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