Modeling Aggregate Behavior and Fluctuations in Economics: Stochastic Views of Interacting Agents

Masanao Aoki

©Masanao Aoki
Table of Contents

(i) Preface
1 Overview
 1.1 Our Objectives and Approaches
 1.2 Partial List of Applications
 1.3 States: Fractions of Types and Partition Vectors
 1.3.1 Vector of Fractions of Types
 1.3.2 Partition Vector
 1.4 Jump Markov Processes
 1.5 The Master Equation
 1.6 Decomposable Random Combinatorial Structures.
 1.7 Cluster Sizes and Limit Behavior of Large Fractions
2 Setting Up Dynamic Models
 2.1 Two Kinds of State Vectors
 2.2 Empirical Distributions
 2.3 Exchangeable Random Sequences
 2.4 Partition Exchangeability
 2.5 Transition Rates
 2.6 Detailed Balance Conditions and Stationary Distributions
3 The Master Equation
 3.1 Continuous time dynamics
 3.2 Power series expansion
 3.3 Aggregate dynamic equations and Fokker-Planck Equations
 3.4 Discrete time dynamics
4 Introductory Simple and Simplified Models
 4.1 A Two-Sector Model of Fluctuations
 4.2 Closed Binary Choice Models
 4.2.1 A Pólya Distribution Model
 4.3 Open Binary Models
 4.3.1 Examples
 4.4 Two Logistic Process Models
 4.4.1 Model 1: The Aggregate Dynamics and Associated Fluctuations
 4.4.2 Model 2: Nonlinear Exit Rate
 4.4.3 Nonstationary Pólya Model
4.5 An Example: A deterministic analysis of nonlinear effects may mislead!

5 Aggregate Dynamics and Fluctuations of Simple Models
 5.1 Dynamic binary choice models
 5.2 Dynamics for the Aggregate Variable
 5.3 Potentials
 5.4 Critical Points and Hazard Functions
 5.5 Multiplicity—An Aspect of Random Combinatorial Features

6 Evaluation of Alternatives
 6.1 Representation of Relative Merits of Alternatives
 6.2 Value functions
 6.3 Extreme distributions and Gibbs distributions
 6.3.1 Type I extreme distribution
 6.4 Approximate evaluations of value functions with a large number of alternatives
 6.5 Small entry and exit probabilities: An Example
 6.6 Approximate Evaluation of Sums of a Large Number of Terms
 6.7 Approximations of Error Functions
 6.7.1 Generalization
 6.7.2 Example

7 Solving Non-Stationary Master Equations
 7.1 Example: Open model with two types of agents
 7.1.1 Equilibrium Distribution
 7.1.2 Probability Generating Function
 7.1.3 Cumulant Generating Function
 7.2 Example: A Linear Birth-and-Death with Immigration Process
 7.2.1 Stationary Probability Distribution
 7.2.2 Generating Function
 7.2.3 Time Inhomogeneous Transition Rates
 7.2.3 Cumulant Generating Function
 7.3 Models for Market Shares by Imitation, or Innovation
 7.3.1 Deterministic Innovation Process
 7.3.2 Deterministic Imitation Process
 7.3.3 A Joint Deterministic Process
 7.3.4 A Stochastic Dynamic Model
7.4 A Stochastic Model with Innovators and Imitators
 7.4.1 Case of a Finite Total Number of Firms

7.5 Symmetric Interactions
 7.5.1 Stationary Distribution
 7.5.2 Nonstationary Distribution

8 Growth and Business Cycle Models

8.1 Two Simple Models for Emergence of New Goods
 8.1.1 Poisson growth model
 8.1.2 An urn model for growth

8.2 Disappearance of Goods from Markets
 8.2.1 Model
 8.2.2 Stability Analysis

8.3 Shares of Dated Final Goods by Households
 8.3.1 Model

8.4 Deterministic share dynamics

8.5 Stochastic business cycle model

8.6 A New Model of Fluctuations and Growth: Case with Under-utilized Factor of Production
 8.6.1 Holding Times
 8.6.2 Transition Rates Specifications

8.7 Stationary Probability Distribution for the Two Sector Model

8.8 Outputs and Excess Demands

8.9 Zero Excess Demand Conditions, and Equilibrium Sizes of the Sectors

8.10 Excess Demands off the Equilibrium
 8.10.1 Two Sector Model
 8.10.1.1 Emergence of New Sectors
 8.10.1.2 Simulation Runs

8.11 Discussion

8.12 Langevin equation approach to stochastic models
 8.12.1 Stationary Density Function
 8.12.2 Exponential Distribution of the Growth Rates of Firms

8.13 Time Dependent Density and Heat Equation

8.14 Size Distribution for Old and New Goods
 8.14.1 Diffusion quation approximation
8.14.2 Lines of Product Developments and Innovations

9 Example: A New Look at the Diamond Search Model
 9.1 Model
 9.2 Transition Rates
 9.3 Aggregate Dynamics: Dynamics for the Mean of the Fraction
 9.4 Dynamics for the Fluctuations
 9.5 Value Functions
 9.5.1 Expected Value Functions
 9.6 Multiple Equilibria and Cycles: an Example
 9.6.1 Asymmetrical Cycles
 9.6.1.1 Approximate Analysis
 9.6.1.2 Example
 9.7 Equilibrium Selection
 9.8 Possible Extensions of the Model

10 Interaction Patterns of Agents and Distributions of Cluster Sizes
 10.1 Clustering processes
 10.2 Three Types of Transition Rates
 10.2.1 Selections
 10.2.2 Multisets
 10.2.2.1 Capacity limited process
 10.2.3 Assemblies
 10.2.3.1 Internal Configurations of Assemblies
 10.3 Transition Rate Specifications of Partition Vector
 10.4 Logarithmic Series Distribution
 10.4.1 Frequency Spectrum of the Logarithmic Series Distribution
 10.5 Dynamics of Clustering Processes
 10.5.1 Examples of Clustering Process Distribution
 10.5.2 Example: Ewens Sampling Formula
 10.5.3 Dynamics of Partition Patterns: Example
 10.6 Large Clusters
 10.6.1 Expected Value of the Largest Cluster Size
 10.6.2 Joint Probability Density for r Largest Clusters
 10.7 Moment Calculations
 10.8 Frequency Spectrum
10.8.1 Definition
10.8.2 Herfindahl Index of Concentration
10.8.3 A Heuristic Derivation
10.8.4 Recursion Relations
10.8.5 Examples of Applications
10.8.6 Discrete Frequency Spectrum

10.9 Parameter Estimation

11 Example: Share Markets with Two Dominant Types of Participants in a Market

11.1 Transition Rates
11.2 Ewens Distribution
 11.2.1 The Number of Clusters and Value of θ
 11.2.2 Expected Values of the Fractions
 11.2.3 The Two Largest Shares

11.3 Market Volatility
11.4 Market Excess Demand Behavior
 11.4.1 Zero Excess Demand Conditions
 11.4.2 Volatility of the Market Excess Demand
 11.4.3 Approximate Dynamics for Price Differences and Power Law
 11.4.3.1 Simulation Examples

12 References

13 Appendices

A.1 Solving Generating Functions via Characteristic Curves
A.2 Urn models
 A.2.1 P ólya’s Urn
 A.2.2 Hoppe’s Urn
 A.2.3 Markov Chain Associated with the Urn

A.3 Conditional Probabilities for Entries and Exits
 A.3.1 Transition Probabilities
 A.3.2 Transition Rates

A.4 Holding Times and Skeletal Markov Chains
 A.4.1 Sojourn Time Models

A.5 Stirling Numbers
 A.5.1 Introduction
 A.5.2 Recursion
A.5.3 Relation with Combinatorics
A.5.4 Explicit Expressions and Asymptotic Relations
A.5.5 Asymptotics

A.6 Order Statistics
A.7 Poisson random variables and the Ewens sampling formula
 A.7.1 Approximations by Poisson Random Variables
 A.7.2 Conditional Poisson Random Variables

A.8 Exchangeable Random Partitions
 A.8.1 Exchangeable Random Sequences
 A.8.2 Partition Exchangeability

A.9 Random Partitions and Permutations
 A.9.1 Permutations
 A.9.2 Random Partitions
 A.9.3 Non-interference of Partitions
 A.9.4 Consistency

A.10 Dirichlet Distributions
 A.10.1 Beta Distribution
 A.10.2 Dirichlet Distribution
 A.10.3 Marginal Dirichlet Distribution
 A.10.4 Poisson-Dirichlet Distribution
 A.10.5 Size-biased Sampling

A.11 Residual Allocation Models
A.12 Gem Distribution
A.13 Stochastic Difference Equations
A.14 Random Growth Process
A.15 Diffusion Approximation to Growth Processes
Preface

This book is a sequel to Aoki (1996) in a loose sense that it is motivated by a similar set of considerations as its predecessor, and shares some of the same objectives. It records my efforts, since the publication of my last book in 1996, at evaluating and reformulating macroeconomic models that are employed by the mainstream economic profession. A stochastic point of views is taken to construct models for finite numbers of interacting agents in this book. In other words, the book emphasizes models that focus on economic phenomena that involve stochastic laws, or stochastic regularities that govern economic phenomena.

To make this book more readily accessible to traditionally trained economists and graduate students in economics, this book is more narrowly focussed than my previous one, and attempts to establish better links with some well-known models in the macroeconomic literature than my previous one. This book is motivated by my strong desire to persuade some traditionally trained economists to phrase their questions in stochastic ways, and apply some of the methods in this book in their works.

Mainstream economists and graduate students of economics may wonder why use stochastic models or what additional or new insights do they gain, or if stochastic laws in economics are so useful, why have they not heard of it before.

A short answer is that models with finite numbers of agents in appropriate stochastic contextreveal interesting economic phenomena that are invisible in deterministic models with infinite numbers of (representative) agents. Traditional models wash out some important information about economics, but one would not know them. This finitary and stochastic approach provides more information about economy than deterministic economic laws permit.

There are many areas of economics to which my approach applies. In speaking of inflation and unemployment, Tobin, in his presidential address at the American Economic Association meeting in 1971, comes close to describing stochastic laws, and aggregate dynamics and fluctuations (in terms of Fokker-Planck equations, say) of my ways of modelings, when he says, "... stochastic macro-equilibrium, stochastic, because random intersectoral shocks keep individual labor markets in diverse states of disequilibrium; macro-equilibrium, because the perpetual flux of particular markets produces fairly definite aggregate outcomes of unemployment and wages ...".

Another major class of examples is building business cycle models. All kinds of theories are found in the literature, and new theories keep crop-
ping up. The real business cycle (RBC) theory by Kydland and Prescott (1982) may arguably be the most influential current theory of the mainstream economists. As typified by the RBC, a natural research strategy to study business cycles is to explain fluctuations as a direct outcome of the behavior of individual agents. The more strongly one wishes to interpret aggregate fluctuations as something 'rational' or 'optimal', the more likely one is led to this essentially microeconomic approach. The mission of this approach is to explain fluctuations as responses of individual agents to changes in their economic environments. The consumer’s intertemporal substitution, for example, is a device to achieve this goal. This has been the standard approach in the mainstream economics in the last twenty years or so.

Surely, we would like to know the distributions of durations of "good" times and "bad" times. When models admit multiple equilibria, which equilibrium if any, the model will settle in? How long will the system expected to stay in one basin of attraction before it moves to another? And so on. This book presents a different approach to fluctuations. This alternative approach is based on the fact that economy consists of a large number of agents or sectors. (Population of a large industrialized economy, for example, consists of the order of 10^8 agents.) Even if agents intertemporally maximize their respective objective functions, their environments or constraints all differ, and are always subject to idiosyncratic shocks. Our alternative approach emphasizes that an outcome of interactions of a large number of agents facing such incessant idiosyncratic shocks cannot be described by a response of the representative agent, and calls for a model of stochastic processes. In a seminal work, Slutzky (1937) proposed a stochastic approach. We follow his lead in this book to build a stochastic model of fluctuations and growth.

Although studies of macroeconomy with many heterogeneous agents are not new, dynamic behavior of economies in disequilibrium is not satisfactorily analyzed. The traditional Walrasian economy is the egregious example. It focuses on price adjustment with the help of the non-existent auctioneer.

In a nutshell, this book formulates and analyze a large but a finite number of interacting economic agents as continuous time Markov chains with discrete state spaces. Dynamics are described in terms of the backward Chapman-Kolomogorov equations, also known as the master equations. We are interested in such questions as the existence of stationary probability distributions for some variables, of critical points of aggregate dynamics, and fluctuations about locally stable equilibria, distributions of relative sizes of the basins of attractions and associated probabilities, and how they relate to the lengths of business cycles, and so forth. The agents are assumed to be exchangeable rather than representative, and have either a finite or
countably infinite choices or decisions to choose from, or they are of a finite or a countably infinite types or categories.

Unlike jump Markov processes treated in standard textbooks on probability or stochastic processes, transition rates of the processes in this book are endogenously determined via the value maximizations by the agents in the model. Using this framework, we take fresh looks at some well-known search models, such as the Diamond model, disequilibrium quantity adjustment models, as well as models for diffusions of innovations and endogenous growth. Formulations of a few large clusters of agents in markets, and the implications on volatility of returns on financial asset market, which may develop from interaction of many agents, are also examined using some random combinatorial analysis. Such investigations lead to results not usually discussed in the traditional macroeconomic literatures, such as existence of power-laws for some variables of interest, discoveries that some common laws apply to some seemingly unrelated areas, and so on.

This book is aimed at advanced graduate students and practicing professionals in economics, as well as in some related areas, such as recently formed area of econo-physics. Some of the topics have been discussed by the author at graduate courses at UCLA, and Keio University, Tokyo, and at several conferences, workshops, and seminars. The author wishes to express his appreciations to Profs. R. Craine, K. Kawamata, A. Kirman, M. Marchesi, T. Lux, W. Semmler, H. Yoshikawa, and J.-B. Zimmermann for opportunities for presenting talks, and to Profs. Y. Shirai, D. Costantini, U. Garibaldi, and D. Sornette for their useful comments on some parts of the topics in the book. I am particularly indebted to Professors Yoshikawa, Costantini, and Garibaldi for their helps and guidance in overcoming my ignorance and misunderstandings. Simulations reported in this book were programmed by a former and current graduate student at UCLA, J. Nagamine, and R. Singh. I thank them for their help.

Some of my research activities reported here were supported in parts by grants from the Academic Senate of the University of California, Los Angeles.