Second Degree Price Discrimination

- This note (a) explains why SDPD beats normal monopoly pricing.

(b) examine the optimal SDPD scheme with 2 types of consumers.

- Model: Suppose there are equal nos. of 2 types of consumers.
 - high demand have demand \(p = a_h - q \)
 - low demand have demand \(p = a_L - q \)

- assume \(a_h > a_L > \frac{a_h}{2} \). Assume \(MC = 0 \).
 (for simplicity)

- Standard Monopoly price:

\[
\text{Max} \quad p(a_h - p) + p(a_L - p) \\
\text{For}\,(p) \quad a_h - 2p + a_L - 2p = 0 \\
p^* = \frac{a_h + a_L}{4}
\]
- Nonlinear price $\tilde{p}(q)$ improves on p^m.
- Firm makes extra profit A.
- High type's demand rises $\hat{q}_n \rightarrow \hat{q}_n^*$.

- Nonlinear price $\tilde{p}(q)$ improves on $\bar{p}(q)$.
- Firm makes extra profit B.

- Nonlinear price $\tilde{p}(q)$ improves on $\bar{p}(q)$.
- Firm makes extra profit C.

In fact, given firm sells \hat{q}_L, this is the best the firm can do.
- The last pricing scheme, \(p(q) \), looks quite complicated.

- Is there another way the firm can implement this?

- Suppose firm sells 2 bundles:
 1. Buy \(q^L \) units at price given by area D.
 2. Buy \(q^H \) units at price given by area D + F.

- Low agents will buy bundle (1), while high types buy (2).

- We can use this picture to show this pricing scheme is the best the firm can do, conditional on selling \(q^L \) to low types.

- Suppose firm sells \(q^L \) to low demand agents.

- Most firm can extract is D.

- If high types copy low types, they can always guarantee themselves come up plus E.

- Hence most firm can charge for \(q^H \) units is D + F.
What is optimal choice of \(q^*_L \)?

- What quantity should firm sell to low types?
- First suppose \(q^*_L = q^*_L^* \), the socially optimum quantity.
 - Again firm sells two bundles:
 1. \(q^*_L \) units at \(p = D \)
 2. \(q^*_L \) units at \(p = D + F \)
 - Total profits \(2D + F \).

- Now suppose firm \(q^*_L \) by a little.
 - Suppose firm sells \(q^*_L + \delta \) to low agents.
 - Change in profit:
 - Lost \(AD \) on low types since sell less of good
 - Made \(AE \) on high types since consumer replies lower
 - Observe \(AE > AD \). Hence reduction in \(q^*_L \) increases profit.
We know the firm wants to undersupply the low agent. That is, they supply the agent with less than the efficient amount, \(q^* \). Intuitively, the lost profit on low agents is less than the extra profit made from high types. [recall the duopoly quote]

How far should the firm reduce \(q^* \)?

The answer is easy: they should equate marginal benefit and marginal costs, i.e., \(AD = AE \).

- \(AD \) is proportional to the difference between the demand curves, \(a_H - a_L \).
- \(AE \) is proportional to the height of the low demand curve.

Here, \(AE = AD \) when the low demand curve has height \(a_H - a_L \). That is, \(\bar{q}_L = 2a_L - a_H \).

Intuitively, if \(2L > \bar{q}_L \), then \(AE > AD \) and the firm should sell \(\bar{q}_L \).

If \(2L < \bar{q}_L \), then \(AE < AD \) and the firm should sell \(2L \).