The Economics of E-commerce and Technology
Impact of Innovation

- Enhance competitive advantage of incumbent.
 - PlayStation3 (Sony)
 - Laserjet printer (Hewlett Packard)
- Destroy the incumbent (creative destruction).
 - MP3 player (Sony vs. Apple)
 - Computers (Microsoft and Intel vs. IBM)
 - Digital cameras (Kodak vs. Sony)
- Create new markets.
 - Children’s TV (Disney vs. Nickelodian)
 - Light motorbikes (Triumph vs. Honda)
Types of Innovations

- **Value enhancement**
 - Pneumatic tyres (1845)
 - Cotton replaced by rayon (1938)
 - Run flat tyres (1974)

- **Cost reductions**
 - Banbury mixing (1916)
 - Rayon replaced by nylon (1958)

- **Gradual vs. Drastic**
 - Drastic can put competitor completely out of business.
 - Not the same as “disruptive technology”.
The Lifecycle of Innovation
The Lifecycle of Innovation

- **Questions**
 - How does industry structure changes product life?
 - When does entry occur?
 - When are profits made?

- **Difficulties:**
 - Products are all different.
 - Analyze successful products, but most not successful.
 - What’s a new product?

- **Four phases: Introduction, Growth, Maturity and Decline.**
Phase 1: Introduction

- Begins with few firms
 - If successful, rapid entry.
 - Firms make loss.
 - 99% of ideas die.
- Market is small
 - First adopting customers are not typical.
- Heavy promotion
 - Market education. Free samples.
 - Low pricing.
- Insure customers against product risk
 - Money back guarantees.
 - Help implementation and servicing.
Phase 2: Growth

- **Market**
 - Growth keeps competition down
 - Falling costs
 - High cost and poor quality firms will die
 - Others make large profits

- **Product**
 - Products improve over time
 - Standardization: handful of major designs

- **Strategy**
 - Distribution becomes important
 - Cultivate brand name
 - Prepare for shakeout
Phase 3: Maturity

- **Market**
 - Demand stabilizes. Seek growth abroad.
 - Shakeout

- **Cost Strategy**
 - Minimize costs. Efficient Distribution
 - Basic model becomes a commodity (e.g. VCRs)

- **Value Strategy**
 - Focus on niche
 - Differentiate product
Phase 4: Decline and Replacement

- **Reasons for declines**
 - Technological progress (e.g. B&W TVs)
 - Changing tastes and new info (e.g. fashion or CFCs)
- **Strategy 1: Focus on profitable segments**
 - Market changes (e.g. B&W TVs as security monitors).
- **Strategy 2: Harvesting.**
 - Don’t replace capital. Exit when $p \leq MC$.
- **Strategy 3: Industry consolidation**
 - Importance of coordination
 - Excess capacity leads to ruinous price wars.
 - Strategies 1–3 compliment each other.
- Complain to government.
Roger’s Diffusion Model

- Diffusion is process through which new idea or product spreads.

- Questions:
 - How fast will product be adopted?
 - What factors affect technology adoption?
 - What strategies can we adopt

- We can broadly divide people into
 - Innovators – who experiment with product
 - Imitators – who learn from experience of others
Technology Adoption Lifecycle

- Innovators
- Early Adopters
- Early Majority
- Late Majority
- Laggards

"The Chasm"

Area under the curve represents number of customers
CONSUMPTION SPREADS FASTER TODAY

- ELECTRICITY
- TELEPHONE
- AUTO
- RADIO
- REFRIGERATOR
- STOVE
- CLOTHES WASHER
- CLOTHES DRYER
- DISHWASHER
- MICROWAVE
- AIR-CONDITIONING
- COLOR TV
- COMPUTER
- CELLPHONE
- VCR
- INTERNET
Innovators (Techies)

- Technology enthusiasts
- Willing to learn
- Appreciate technology for its own sake
- Motivated by idea of being change agent
- Willing to tolerate initial problems
- Venturesome, educated

How to sell to these

- Product should be technologically interesting
- Product should be novel in some dimension
- Advertise in specialist outlets
Early Adopters (Visionaries)

- Want new technology to improve function.
- Want discontinuous breakthrough improvement
- Social leaders
- Attracted by high-risk, high-reward
- Anxious, champions

Selling to these

- Sell “dreams” that are clearly defined
- Relate directly to objective
- Demand personalized solutions
- Reference other visionaries
- Price is secondary; they want it right, complete, quickly, on time
The Early Majority

- Want incremental improvement
- Evolutionary, not revolutionary products
- Want proven, established products
- Don’t sell dreams; sell reality
- Deliberate; less risk seeking

Selling to these
- Proven product
- They want to know many satisfied customers
- Buy whole products
- Want lower prices
Finally...

- **Late majority (conservatives)**
 - Skeptical, traditional
 - Price sensitive
 - Want product mature, preassembled, with clear solutions
 - Don’t like change

- **Laggards (skeptics)**
 - Only buy technology if necessary
 - Only now thinking about buying a cell phone
 - A hard sell
Moore’s Chasm

- Visionaries
 - Willing to take risks to obtain radical improvements
 - Change agents

- Pragmatists
 - Want incremental improvements
 - Want comparisons, and solid references
 - Price sensitive; more steps in sales strategy

- The chasm
 - Tech firms must first sell to visionaries; then need to change
 - Requires significant changes in marketing/sales strategy
 - Many firms never overcome this leap
What Determines Speed of Diffusion?

- **Relative Advantage**
 - Improvement over old products

- **Switching costs**
 - Compatibility with previous systems and skills.
 - Complexity of learning new product

- **Network effects**
 - Degree to which my value depends on no. of users.

- **Trialability**
 - Ease of experimentation (cell phone vs. fridge)

- **Observability**
 - Visibility to others (iPhone vs. home computer)
Bass Model of Diffusion

- Let \(f(t) \) be the probability an agent first adopts at time \(t \).
- Suppose hazard obeys
 \[
 \frac{f(t)}{1 - F(t)} = p + q F(t)
 \]
 so the no. of new adopters is linear in the no of users.
- Solving this differential equation,
 \[
 f(t) = \frac{(p+q)^2 e^{(p+q)t}}{q e^{(p+q)t} + p}^2
 \]
- Bass (1969) estimated parameters \(p \) (no. of innovators) and \(q \) (importance of imitation) for different products.
Adoption Incentives

- Firms have different ideal times in adoption
 - Expect to be S–shaped, as with consumers.
- Firms may be substitutes
 - When MRI scanners first adopted, only one hospital needed one
- Preemption in adoption
 - Adopt early in order to steal market
 - e.g. if firms Bertrand competitors, race to be first to adopt
- Delayed adoption.
 - Suppose duopolists make positive profits.
 - If A adopts, B may adopt to regain market share.
 - Anticipating firm B’s reaction, A refuses to adopt.
Innovation Incentives
Incentive to Innovate: Replacement Effect

- Who innovates more: Incumbant or Entrant?
 - Innovation reduces costs to c_L
 - Let i’s profit with costs (c_i,c_j) be $\Pi(c_i,c_j)$
 - Suppose opponent innovates (worst case scenario)
 - Suppose entrant enters if and only if she innovates.

- WTP of incumbent, $V_I = \Pi(c_L,c_L) - \Pi(c_H,c_L)$.
- WTP of entrant, $V_E = \Pi(c_L,c_L) - \Pi(\infty,c_L) > V_I$.
- Entrant has higher willingness to pay.
 - Incumbent cannibalizes herself (e.g. Nintendo vs. Sega).
Incentive to Innovate: Efficiency Effect

- Who innovates more: Incumbant or Entrant?
 - Suppose 3rd party sells patent.
 - Suppose entrant enters if and only if she innovates.

- WTP of incumbent, \(V_I = \Pi(c_L, \infty) - \Pi(c_H, c_L) \).
- WTP of entrant, \(V_E = \Pi(c_L, c_H) - \Pi(\infty, c_L) < V_I \).

- Incumbent usually has higher willingness to pay
 - Monopolist makes more profits than two duopolists

- Key: If I innovates, then E does not. For example,
 - I and E compete in patent race.
 - E only enters if strictly more efficient.
Intellectual Property Protection
Trademark

- A **trademark** is a phrase, symbol, or design that identifies a product, and distinguishes it from others.
 - Aim to stop customers from mixing up brands.
 - Strongest trademarks cover words that have no other meanings (Kodak), or are used in unusual way (Apple).
 - Not to prevent companies from stealing others’ ideas.

- **Trademarks established by**
 - Use in the marketplace
 - Registrations with trademarks office
“How” we use words matters

- Is “How” used in an unusual way?
- Could customers confuse these?
Copyright ©

- **Copyright** grants the creator of an original work exclusive rights to its use and distribution.
 - To incentivize people to create content.
 - Does not cover ideas and information themselves, only the form or manner in which they are expressed.
 - Duration is life of the creator plus 50-100 years.

Justification: Obtaining a copyright

- Must meet minimal standard of originality
- Copyright is automatically granted
- Right based on originality rather than uniqueness

Exemptions for “fair use”

- Depends on % used; impact on copyrighted work
Patents

- A **patent** is exclusive right to inventor for a limited time in exchange for detailed public disclosure of an invention
 - Invention must be novel and non-obvious.
 - Patent allows one firm to block others.
 - Enforced via civil lawsuits; patent may be challenged.
 - Last 20 years from date of filing.

- Patent may cover
 - Business methods (e.g. Amazon’s one-click)
 - Genetically modified organisms (e.g. Monsanto)

- Obtaining a patent
 - File with patent office. Cost $10-30k.
Patenting Strategy

- Patents vs. Trade Secrets
 - Obtain 17 yrs protection, but disclose details of innovation.

- Which is better?
 - Can the competition use information in patent disclosure?
 - Can they get around the patent?
 - Can they see through trade secrets?
 - Do you wish to license or sell the idea?
 - Do you wish others to improve on the idea?
 - How quickly will returns come?

- Computer industry
 - IBM invests $5bn in R&D, while MS invests $6bn.
 - IBM obtained 3250 patents in 2004; licenses many.
 - MS obtained 650. Relies on trade secrets.
Growth in patents
More Patenting Strategy

- **Protective patents**
 - Patent all substitutes, including inferior technology.
 - Analogy: spatial preemption.

- **Defensive patents**
 - Patent holes in competitors process.

- **Timing of Patents**
 - Suppose two ideas are complements.
 - Then can wait to patent idea 2, extending effective patent.
 - Danger: someone patents before you do.
Technology Transfer

- Innovator may not have comparative advantage in using idea.
- Licensing
 - Buyer receives right to exploit innovation.
 - Receives technical assistance and pays fixed fee or royalty.
 - Example: In 2004, IBM earned $1.2bn by licensing.
- Acquisition of patent
 - Seller forgoes independent commercialization.
 - Give away control rights (future sales, agreements)
 - Buyer can assemble complimentary patents.
- Acquisition of innovator
 - Buyer purchases idea and innovator’s capabilities.
Motivating Innovation

- How should a firm provide incentives to innovate?
 - WHO provides incentive to develop AIDS drug.
 - DARPA provides incentives to develop cheap spaceship.
 - Large firms need to provide incentives internally

- Push strategies - fund R&D directly.
 - Who to fund?
 - What are their objectives?

- Pull strategies - award winners.
 - Give one prize or many? Prizes for incremental steps?
 - How define success?
 - Example: Lockheed–Martin makes divisions compete.
Disruptive Innovation
The problem of repeating success

- Main frames – IBM
- Minicomputers – Digital Equip, Data General
- Desktop computers – Apple, Commodore, Tandy, IBM
- Engineering workstations – Apollo, Sun Microsystems
- Portable computers – Compaq, Zenith, Toshiba, Sharp
- Netbooks – Asus, Acer
- Tablets – Apple, Samsung
Types of innovations

- **Sustaining innovations**
 - Vertical improvements
 - Doing the same, but better
 - e.g. Thin film disks in Hard Drive industry.

- **Disruptive innovations**
 - Different package of performance attributes
 - e.g. Architectural innovations - 14”, 8”, 5.25” and 3.5” drives
 - Low end disruptions – least profitable market segments
 - New market disruptions – emerging market

- The disruptive innovation can ultimately takeover
Disruptive technology takes over (1)

- Customer demand rises slower than technical progress
Disruptive technology takes over (2)

- S-curves mean decreasing speed of innovation

At the forefront of innovation through 2G, 3G and 4G cycles

Source: Inter-generational transitions in socio-technical systems: The case of mobile communications
Leadership and Innovation

(a) Numbers of established and entrant firms introducing models employing selected trajectory-sustaining technologies

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin-film</td>
<td></td>
</tr>
<tr>
<td>heads</td>
<td></td>
</tr>
<tr>
<td>Established</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>17</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entrants</td>
<td></td>
</tr>
<tr>
<td>RLL codes</td>
<td></td>
</tr>
<tr>
<td>Established</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Entrants</td>
<td></td>
</tr>
<tr>
<td>Winchester</td>
<td></td>
</tr>
<tr>
<td>architecture</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Established</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

(b) Numbers of established and entrant firms introducing models based upon disruptive architectural technologies

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8-inch</td>
<td></td>
</tr>
<tr>
<td>Entrants</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Established</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5.25-inch</td>
<td></td>
</tr>
<tr>
<td>Entrants</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Established</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>3.5-inch</td>
<td></td>
</tr>
<tr>
<td>Entrants</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Established</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

- Sustaining innovations
 - Leaders continued to dominate across generations
- Disruptive innovation,
 - $\frac{1}{2}$ to $\frac{3}{4}$ of manufacturers failed to introduce new models
 - New wave of entrants
Why?

- Incumbent's dilemma
 - Managers listen to what *current* customers want.
 - Do what worked in the past.
 - Overcome bureaucratic hurdles to launch new product.
 - Don’t want to go down-market.
 - Henry Ford: “If I'd ask customers what they wanted, they would have told me ‘a faster horse’”.

- Example: Seagate
 - Pioneered 5.25” drive, used by IBM for desktops.
 - Developed 3.5” by 1985, but main customers not interested.
 - Former employees founded Conner.
 - New customers, e.g. Compaq, making small desktops
 - Rapid improvement in technology.
 - Seagate entered market in 1987, but then too late.